中文版 | English
题名

基于多重键合的自愈合导电水凝胶设计及柔性传感应用

其他题名
DESIGN OF SELF-HEALING CONDUCTIVE HYDROGELS BASED ON MULTIPLE BONDING AND FLEXIBLE SENSING APPLICATIONS
姓名
姓名拼音
XU Chengsheng
学号
12233350
学位类型
硕士
学位专业
0856 材料与化工
学科门类/专业学位类别
08 工学
导师
唐为
导师单位
中国科学院深圳先进技术研究院
论文答辩日期
2024-05-08
论文提交日期
2024-07-03
学位授予单位
南方科技大学
学位授予地点
深圳
摘要
  柔性应变传感器,即可将应变转化为电信号的柔性器件,具有良好的柔性、灵活性与可集成性。传统柔性器件由柔性基底和导电材料组装而成,尽管可以通过调控其组成和微观结构获得具有高灵敏度和拉伸性的器件,但由于存在两相界面问题,易造成器件失效。此外,传统柔性器件材料生物相容不足,且缺乏组织黏附性,难以满足未来用于人体健康监测应用场景的需求。水凝胶作为一类具有高含水量、三维网络结构的高分子材料,因其可通过官能团设计和多元交联方式实现可调力学性能和多样化功能,被认为是极具应用潜力的柔性器件材料。尽管通过引入导电聚合物、添加导电材料或增加导电离子可获得具有导电功能的水凝胶材料,但现有报道的水凝胶器件仍很难兼顾导电性、灵敏度、力学性能和生物活性。
  综上,本课题基于载银聚多巴胺纳米材料和改性壳聚糖的设计提出一种新型水凝胶柔性应变传感器:通过苯硼酸和没食子酸改性的壳聚糖构建柔性、黏附、自愈合的水凝胶基底;通过开发载银聚多巴胺纳米粒,赋予壳聚糖水凝胶导电、抗氧化、光热和抗菌性能;同时通过载银聚多巴胺纳米粒与壳聚糖水凝胶间的多重键合(硼酸酯键、配位键、氢键和席夫碱键)协同增强该柔性器件的力学性能和传感稳定性。通过系统的理化、传感和生物学性能表征,本课题开发的载银聚多巴胺纳米粒改性壳聚糖柔性器件在 100%应变具有 2.48 的灵敏度、0.999 的线性度、263 ms 的响应/恢复时间、低迟滞性(小于 4%)和优异的重复性,在 30%应变下经受 350 次循环测试仍表现良好;同时,材料内部丰富的酚羟基为器件提供了良好的黏附性,黏附强度为 10.95 kPa。该器件在生物学安全性评价中展现出良好的生物学性能:体外溶血率低于 5%;细胞活死染色中未观察到死细胞存在,具有良好细胞增殖行为。在抗氧化实验中呈现出与水凝胶浓度正相关的抗氧化能力;对大肠杆菌和金黄色葡萄球菌的抗菌率分别高达 92.76%98.08%; 并可促进伤口愈合,具有作为人体健康监测和人机交互的应用潜力。
关键词
语种
中文
培养类别
独立培养
入学年份
2022
学位授予年份
2024-06
参考文献列表

[1] WANG H, HE M, ZHANG Y. Carbon Nanotube Films: Preparation and Application in Flexible Electronics [J]. Acta Physico-Chimica Sinica, 2019, 35(11): 1207-23.
[2] YAN T, WANG Z, PAN Z-J. Flexible strain sensors fabricated using carbon-based nanomaterials: A review [J]. Current Opinion in Solid State and Materials Science, 2018, 22(6): 213-28.
[3] KHAN Y, OSTFELD A E, LOCHNER C M, et al. Monitoring of Vital Signs with Flexible and Wearable Medical Devices [J]. Advanced Materials, 2016, 28(22): 4373 -95.
[4] AMJADI M, KYUNG K U, PARK I, et al. Stretchable, Skin‐Mountable, and Wearable Strain Sensors and Their Potential Applications: A Review [J]. Advanced Functional Materials, 2016, 26(11): 1678-98.
[5] SHEN Z, LIU F, HUANG S, et al. Progress of flexible strain sensors for physiological signal monitoring [J]. Biosens Bioelectron, 2022, 211: 114298.
[6] AMOLI V, KIM S Y, KIM J S, et al. Biomimetics for high-performance flexible tactile sensors and advanced artificial sensory systems [J]. Journal of Materials Chemistry C, 2019, 7(47): 14816-44.
[7] CUI X, JIANG Y, HU L, et al. Synergistically Microstructured Flexible Pressure Sensors with High Sensitivity and Ultrawide Linear Range for Full‐Range Human Physiological Monitoring [J]. Advanced Materials Technologies, 2022, 8(1): 2200609.
[8] LIU X, SU G, GUO Q, et al. Hierarchically Structured Self‐Healing Sensors with Tunable Positive/Negative Piezoresistivity [J]. Advanced Functional Materials, 2018, 28(15): 1706658.
[9] LIAO X, ZHANG Z, LIANG Q, et al. Flexible, Cuttable, and Self-Waterproof Bending Strain Sensors Using Microcracked Gold Nanofilms@Paper Substrate [J]. ACS Appl Mater Interfaces, 2017, 9(4): 4151-8.
[10] XU H, LV Y, QIU D, et al. An ultra-stretchable, highly sensitive and biocompatible capacitive strain sensor from an ionic nanocomposite for on-skin monitoring [J]. Nanoscale, 2019, 11(4): 1570-8.
[11] YANG T, XIE D, LI Z, et al. Recent advances in wearable tactile sensors: Materials, sensing mechanisms, and device performance [J]. Materials Science and Engineering: R: Reports, 2017, 115: 1-37.
[12] LI J, CAI J, YU J, et al. The Rising of Fiber Constructed Piezo/Triboelectric Nanogenerators: From Material Selections, Fabrication Techniques to Emerging Applications [J]. Advanced Functional Materials, 2023, 33(44): 2303249.
[13] XIN Y, HOU T, LIU C, et al. Flexible piezoelectric sensor based on PVDFTrFE/Nanoclay composite nanofibers for physiological micro-vibration signal sensing [J]. Measurement, 2022, 201: 111742.
[14] KIM Y-G, SONG J-H, HONG S, et al. Piezoelectric strain sensor with high sensitivity and high stretchability based on kirigami design cutting [J]. npj Flexible Electronics, 2022, 6(1): 52.
[15] HE J, ZHANG Y, ZHOU R, et al. Recent advances of wearable and flexible piezoresistivity pressure sensor devices and its future prospects [J]. Journal of Materiomics, 2020, 6(1): 86-101.
[16] WAN Y, WANG Y, GUO C F. Recent progresses on flexible tactile sensors [J]. Materials Today Physics, 2017, 1: 61-73.
[17] DA COSTA T H, CHOI J-W. A flexible two dimensional force sensor using PDMS nanocomposite [J]. Microelectronic Engineering, 2017, 174: 64-9.
[18] JI B, ZHOU Q, HU B, et al. Bio-Inspired Hybrid Dielectric for Capacitive and Triboelectric Tactile Sensors with High Sensitivity and Ultrawide Linearity Range [J]. Advanced Materials, 2021, 33(27): e2100859.
[19] ZHANG Y, GUO X, WANG W, et al. Highly Sensitive, Low Hysteretic and Flexible Strain Sensor Based on Ecoflex-AgNWs- MWCNTs Flexible Composite Materials [J]. IEEE Sensors Journal, 2020, 20(23): 14118-25.
[20] CAYKARA T, SANDE M G, AZOIA N, et al. Exploring the potential of polyethylene terephthalate in the design of antibacterial surfaces [J]. Med Microbiol Immunol, 2020, 209(3): 363-72.
[21] YANG N, LIU H, YIN X, et al. Flexible Pressure Sensor Decorated with MXene and Reduced Graphene Oxide Composites for Motion Detection, Information Transmission, and Pressure Sensing Performance [J]. ACS Appl Mater Interfaces, 2022, 14(40): 45978-87.
[22] DAS A, MAHANWAR P. A brief discussion on advances in polyurethane applications [J]. Advanced Industrial and Engineering Polymer Research, 2020, 3(3): 93 -101.
[23] MUNJE R D, MUTHUKUMAR S, PRASAD S. Lancet-free and label-free diagnostics of glucose in sweat using Zinc Oxide based flexible bioelectronics [J]. Sensors and Actuators B: Chemical, 2017, 238: 482-90.
[24] GUO Y, GAO S, YUE W, et al. Anodized Aluminum Oxide-Assisted Low-Cost Flexible Capacitive Pressure Sensors Based on Double-Sided Nanopillars by a Facile Fabrication Method [J]. ACS Appl Mater Interfaces, 2019, 11(51): 48594 -603.
[25] ZHANG X, ZHENG C, LI Y, et al. Magnetically Levitated Flexible Vibration Sensors with Surficial Micropyramid Arrays for Magnetism Enhancement [J]. ACS Appl Mater Interfaces, 2022, 14(33): 37916-25.
[26] TAO L Q, ZHANG K N, TIAN H, et al. Graphene-Paper Pressure Sensor for Detecting Human Motions [J]. ACS Nano, 2017, 11(9): 8790-5.
[27] ZHU Y, MURALI S, CAI W, et al. Graphene and graphene oxide: synthesis, properties, and applications [J]. Advanced Materials, 2010, 22(35): 3906-24.
[28] ZOU Q, HE K, OU-YANG J, et al. Highly Sensitive and Durable Sea-Urchin-Shaped Silver Nanoparticles Strain Sensors for Human-Activity Monitoring [J]. ACS Appl Mater Interfaces, 2021, 13(12): 14479-88.
[29] GONG S, CHENG W. One‐ Dimensional Nanomaterials for Soft Electronics [J]. Advanced Electronic Materials, 2016, 3(3): 1600314.
[30] WU S, LIU P, TONG W, et al. An ultra-sensitive core-sheath fiber strain sensor based on double strain layered structure with cracks and modified MWCNTs/silicone rubber for wearable medical electronics [J]. Composites Science and Technology, 2023, 231:109816.
[31] DENG C, PAN L, ZHANG D, et al. A super stretchable and sensitive strain sensor based on a carbon nanocoil network fabricated by a simple peeling -off approach [J]. Nanoscale, 2017, 9(42): 16404-11.
[32] LI C, PAN L, DENG C, et al. A highly sensitive and wide-range pressure sensor based on a carbon nanocoil network fabricated by an electrophoretic method [J]. Journal of Materials Chemistry C, 2017, 5(45): 11892-900.
[33] TRAN H, FEIG V R, LIU K, et al. Polymer Chemistries Underpinning Materials for Skin-Inspired Electronics [J]. Macromolecules, 2019, 52(11): 3965-74.
[34] GUEYE M N, CARELLA A, FAURE-VINCENT J, et al. Progress in understanding structure and transport properties of PEDOT-based materials: A critical review [J]. Progress in Materials Science, 2020, 108: 100616.
[35] WANG Y, ZHU C, PFATTNER R, et al. A highly stretchable, transparent, and conductive polymer [J]. Science Advances, 2017, 3(3): e1602076.
[36] CHEN J, FENG J, YAN W. Influence of metal oxides on the adsorption characteristics of PPy/metal oxides for Methylene Blue [J]. J Colloid Interface Sci, 2016, 475: 26 -35.
[37] LUO M, LI M, LI Y, et al. In-situ polymerization of PPy/cellulose composite sponge with high elasticity and conductivity for the application of pressure sensor [J]. Composites Communications, 2017, 6: 68-72.
[38] ZHANG H, ZHANG D, ZHANG B, et al. Wearable Pressure Sensor Array with Layerby-Layer Assembled MXene Nanosheets/Ag Nanoflowers for Motion Monitoring and Human-Machine Interfaces [J]. ACS Appl Mater Interfaces, 2022, 14(43): 48907 -16.
[39] ANASORI B, LUKATSKAYA M R, GOGOTSI Y. 2D metal carbides and nitrides (MXenes) for energy storage [J]. Nature Reviews Materials, 2017, 2(2): 16098.
[40] SINHA A, DHANJAI, ZHAO H, et al. MXene: An emerging material for sensing and biosensing [J]. TrAC Trends in Analytical Chemistry, 2018, 105: 424 -35.
[41] LI T, CHEN L, YANG X, et al. A flexible pressure sensor based on an MXene–textile network structure [J]. Journal of Materials Chemistry C, 2019, 7(4): 1022 -7.
[42] AHMED E M. Hydrogel: Preparation, characterization, and applications: A review [J]. Journal of Advanced Research, 2015, 6(2): 105-21.
[43] PARK J, JEON N, LEE S, et al. Conductive hydrogel constructs with three -dimensionally connected graphene networks for biomedical applications [J]. Chemical Engineering Journal, 2022, 446: 137344.
[44] GUO M, YANG X, YAN J, et al. Anti-freezing, conductive and shape memory ionic glycerol-hydrogels with synchronous sensing and actuating properties for soft robotics [J]. Journal of Materials Chemistry A, 2022, 10(30): 16095-105.
[45] WANG X, BAI Z, ZHENG M, et al. Engineered gelatin-based conductive hydrogels for flexible wearable electronic devices: Fundamentals and recent advances [J]. Journal of Science: Advanced Materials and Devices, 2022, 7(3): 100451.
[46] 齐钰, 鲁洋, 周青青, et al. 高性能水凝胶在可穿戴传感器中的应用进展 [J]. 分析化学, 2022, 50(11): 1699-711.
[47] ZHAO X, CHEN X, YUK H, et al. Soft Materials by Design: Unconventional Polymer Networks Give Extreme Properties [J]. Chem Rev, 2021, 121(8): 4309 -72.
[48] RONG Q, LEI W, LIU M. Conductive Hydrogels as Smart Materials for Flexible Electronic Devices [J]. Chemistry, 2018, 24(64): 16930-43.
[49] YANG Y, WU N, LI B, et al. Biomimetic Porous MXene Sediment-Based Hydrogel for High-Performance and Multifunctional Electromagnetic Interference Shielding [J]. ACS Nano, 2022, 16(9): 15042-52.
[50] REN J, LIU Y, WANG Z, et al. An Anti ‐ Swellable Hydrogel Strain Sensor for Underwater Motion Detection [J]. Advanced Functional Materials, 2021, 32(13): 2107404.
[51] LU X, SI Y, ZHANG S, et al. In Situ Synthesis of Mechanically Robust, Transparent Nanofiber ‐ Reinforced Hydrogels for Highly Sensitive Multiple Sensing [J]. Advanced Functional Materials, 2021, 31(30): 2103117.
[52] GAO Z, KONG L, JIN R, et al. Mechanical, adhesive and self-healing ionic liquid hydrogels for electrolytes and flexible strain sensors [J]. Journal of Materials Chemistry C, 2020, 8(32): 11119-27.
[53] ZHOU Z, HE Z, YIN S, et al. Adhesive, stretchable and antibacterial hydrogel with external/self-power for flexible sensitive sensor used as human motion detection [J]. Composites Part B: Engineering, 2021, 220: 108984.
[54] LIU K, WANG M, HUANG C, et al. Flexible Bioinspired Healable Antibacterial Electronics for Intelligent Human-Machine Interaction Sensing [J]. Adv Sci (Weinh), 2024, 11(10): e2305672.
[55] ZHANG Y, XU Z, YUAN Y, et al. Flexible Antiswelling Photothermal ‐ Therapy MXene Hydrogel ‐ Based Epidermal Sensor for Intelligent Human – Machine Interfacing [J]. Advanced Functional Materials, 2023, 33(21): 2300299.
[56] REN J, LIU Y, WANG Z, et al. An Anti-Swellable Hydrogel Strain Sensor for Underwater Motion Detection [J]. 2022, 32(13): 2107404.
[57] DANG C, WANG M, YU J, et al. Transparent, Highly Stretchable, Rehealable, Sensing, and Fully Recyclable Ionic Conductors Fabricated by One-Step Polymerization Based on a Small Biological Molecule [J]. 2019, 29(30): 1902467.
[58] XIA S, SONG S, JIA F, et al. A flexible, adhesive and self-healable hydrogel-based wearable strain sensor for human motion and physiological signal monitoring [J]. Journal of Materials Chemistry B, 2019, 7(30): 4638-48.
[59] RAFEEDI T, ABDAL A, POLAT B, et al. Wearable, epidermal devices for assessment of swallowing function [J]. npj Flexible Electronics, 2023, 7(1): 52.
[60] 徐苏, 蔡文玮, 李晨奕, et al. 社区老年人吞咽障碍现状及其影响因素研究 [J]. 中国全科医学, 2024: 1-8.
[61] KIM M K, KANTARCIGIL C, KIM B, et al. Flexible submental sensor patch with remote monitoring controls for management of oropharyngeal swallowing disorders [J]. Science Advances, 2019, 5(12): eaay3210.
[62] LIM S, SON D, KIM J, et al. Transparent and Stretchable Interactive Human Machine Interface Based on Patterned Graphene Heterostructures [J]. Advanced Functional Materials, 2014, 25(3): 375-83.
[63] RAO Z, ERSHAD F, ALMASRI A, et al. Soft Electronics for the Skin: From Health Monitors to Human–Machine Interfaces [J]. Advanced Materials Technologies, 2020, 5(9): 2000233.
[64] ZHAO L, WANG K, WEI W, et al. High‐performance flexible sensing devices based on polyaniline/MXene nanocomposites [J]. InfoMat, 2019, 1(3): 407 -16.
[65] LING Y, AN T, YAP L W, et al. Disruptive, Soft, Wearable Sensors [J]. Advanced Materials, 2020, 32(18): e1904664.
[66] WANG C, XIA K, WANG H, et al. Advanced Carbon for Flexible and Wearable Electronics [J]. Advanced Materials, 2019, 31(9): e1801072.

所在学位评定分委会
材料与化工
国内图书分类号
TP212
来源库
人工提交
成果类型学位论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/778929
专题中国科学院深圳理工大学(筹)联合培养
推荐引用方式
GB/T 7714
许成胜. 基于多重键合的自愈合导电水凝胶设计及柔性传感应用[D]. 深圳. 南方科技大学,2024.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
12233350-许成胜-中国科学院深圳(5631KB)----限制开放--请求全文
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[许成胜]的文章
百度学术
百度学术中相似的文章
[许成胜]的文章
必应学术
必应学术中相似的文章
[许成胜]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。