中文版 | English
题名

高速光通信发射机芯片设计

其他题名
DESIGN OF HIGH-SPEED TRANSMITTER CHIP FOR OPTICAL COMMUNICATION
姓名
姓名拼音
ZHU Siqiang
学号
12132492
学位类型
硕士
学位专业
0809 电子科学与技术
学科门类/专业学位类别
08 工学
导师
潘权
导师单位
深港微电子学院
论文答辩日期
2024-05-14
论文提交日期
2024-06-22
学位授予单位
南方科技大学
学位授予地点
深圳
摘要

       随着5G时代的降临、大数据技术的广泛应用以及AI算法的日益普及,数据中心的数据交互量呈现井喷式增长,这无疑对通信系统提出了更为严苛的要求。然而,传统的电缆通信受限于信道和背板等传输媒介带来的高损耗,难以实现高数据率的传输。此外,电缆通信还面临着高发热和高电磁干扰等问题,难以满足数据中心内部通信的复杂需求。近年来,光通信系统因其超低损耗、高数据传输速率、强大的抗干扰能力以及低噪声特性而备受瞩目。在众多激光器中,垂直腔面发射激光器(VCSEL)凭借其高集成度、低功耗、封装便捷以及低成本等诸多优势脱颖而出。因此,基于VCSEL的光发射机成为数据中心内部短距通信的理想选择。电子与电气工程师协会(IEEE)最新发布了100Gb/s短距离光通信协议标准(IEEE802.3db-2022),这一标准的推出显著促进了基于VCSEL的光发射机向100 Gb/s高速率的演进。
  本论文对高速光通信的链路进行了分析,并重点探讨了基于VCSEL的高速光发射机芯片技术。本论文以高速率和低功耗为核心目标,设计了一款满足IEEE最新短距光通信标准的基于VCSEL的高速光发射机,适用于数据中心内部短距通信。该高速光发射机由连续时间线性均衡器(CTLE)、可变增益放大器(VGA)、前馈均衡器(FFE)、输出驱动器(DRV)和自动增益控制电路(AGC)组成。CTLE创新性地将均衡电路与吉尔伯特单元相结合,同时能实现均衡功能和输入信号极性反转的功能。输出驱动器创新性地采用大阻值负载电阻与PMOS并联的输出方案,将输出驱动器的功耗降低了45%,同时可以通过调整PMOS尺寸来改变充电电容,从而改变输出充电路径的时间常数,实现对输出眼图上升下降沿的非对称补偿。
       本论文基于130nm SiGe BiCMOS工艺,对高速光发射机进行了电路设计、版图绘制、后仿真验证与流片。光发射机系统整体带宽为40.4 GHz,最高数据率为112 Gb/s。输出偏置电流为2-15 mA,输出调制电流为2-12 mApp。 由于没有使用电感,单通道版图核心电路面积仅为0.18 mm2。创新型的低功耗设计使得单通道光发射机功耗为256 mW,能量效率为2.28 pJ/bit,达到国际领先水平。

关键词
语种
中文
培养类别
独立培养
入学年份
2021
学位授予年份
2024-06
参考文献列表

[1] Kim J, Balankutty A, Dokania R K, et al. A 112 Gb/s PAM-4 56 Gb/s NRZ reconfigurable transmitter with three-tap FFE in 10-nm FinFET [J]. IEEE Journal of Solid-State Circuits, 2018, 54(1): 29-42.
[2] Index C V N. Global mobile data traffic forecast update, 2016–2021 white paper [J]. Cisco: San Jose, CA, USA, 2017, 7(180.
[3] 王军锋, 李跃进, 杨银堂. 光互连的研究与新进展[J]. 激光与光电子学进展, 2005, 42(1): 16-21.
[4] 毛宝春. 远程水下光收发一体模块设计[D]. 国防科学技术大学, 2005.
[5] Wang K C. High-speed circuits for Lightwave communications[M]. World Scientific, 1999.
[6] IEEE Standard for Ethernet - Amendment 3: Physical Layer Specifications and Management Parameters for 100 Gb/s, 200 Gb/s, and 400 Gb/s Operation over Optical Fiber using 100 Gb/s Signaling [J] IEEE Std 802.3db-2022 (Amendment to IEEE Std 802.3-2022 as amended by IEEE Std 802.3dd-2022 and IEEE Std 802.3cs-2022) , 2022.
[7] Takemoto T, Yamashita H, Yuki F, et al. A 25-Gb/s 2.2-W 65-nm CMOS optical transceiver using a power-supply-variation-tolerant analog front end and data-format conversion[J]. IEEE Journal of Solid-State Circuits, 2013, 49(2): 471-485.
[8] Takemoto T, Matsuoka Y, Sugiyama Y, et al. A 50-Gb/s NRZ-modulated optical transmitter based on a DFB-LD and a 0.18-μm SiGe BiCMOS LD driver[C]. 2015 Optical Fiber Communications Conference and Exhibition (OFC). IEEE, 2015: 1-3.
[9] Shi J, Yin B, Qi N, et al. Design techniques for signal reflection suppression in high-speed 25-Gb/s laser drivers in CMOS[J]. IEEE Photonics Technology Letters, 2017, 30(1): 39-42.
[10] Ledentsov N N, Makarov O Y, Shchukin V A, et al. High speed VCSEL technology and applications[J]. Journal of Lightwave Technology, 2022, 40(6): 1749-1763.
[11] Tsunoda Y, Sugawara M, Oku H, et al. 8.9 A 40Gb/s VCSEL over-driving IC with group-delay-tunable pre-emphasis for optical interconnection[C]//2014 IEEE International Solid-State Circuits Conference Digest of Technical Papers (ISSCC). IEEE, 2014: 154-155.
[12] Yazaki T, Chujo N, Yamashita H, et al. 25-Gbps× 4 optical transmitter with adjustable asymmetric pre-emphasis in 65-nm CMOS[C]//2014 IEEE International Symposium on Circuits and Systems (ISCAS). IEEE, 2014:2692-2695.
[13] Ramani A S, Nayak S, Shekhar S. A differential push-pull voltage mode VCSEL driver in 65-nm CMOS[J]. IEEE Transactions on Circuits and Systems I: Regular Papers, 2019, 66(11): 4147-4157.
[14] He J, Lu D, Xue H, et al. Design of a PAM-4 VCSEL-based transceiver front-end for beyond-400G short-reach optical interconnects[J]. IEEE Transactions on Circuits and Systems I: Regular Papers, 2022, 69(11): 4345-4357.
[15] Chen F, Zhang C, Wang L, et al. A 2.05-pJ/b 56-Gb/s PAM-4 VCSEL Transmitter with Piecewise Nonlinearity Compensation and Asymmetric Equalization in 40-nm CMOS[C]//ESSCIRC 2023-IEEE 49th European Solid State Circuits Conference (ESSCIRC). IEEE, 2023: 373-376.
[16] Kishi T, Nagatani M, Kanazawa S, et al. 2ch× 53-Gbps optical transmission performance of a low-power PAM-4 transmitter front-end flip-chip-bonded 1.3-μm LD array-on-Si[J]. Journal of Lightwave Technology, 2021, 39(4): 1221-1230.
[17] Do H, Sull J W, Lee S, et al. A 64 Gb/s 2.09 pJ/b PAM-4 VCSEL Transmitter with Bandwidth Extension Techniques in 40 nm CMOS[C]//2021 IEEE Asian Solid-State Circuits Conference (A-SSCC). IEEE, 2021: 1-3.
[18] Kuchta D M, Rylyakov A V, Doany F E, et al. A 71-Gb/s NRZ modulated 850-nm VCSEL-based optical link[J]. IEEE Photonics Technology Letters, 2015, 27(6): 577-580.
[19] Ahmed A H, El Moznine A, Lim D, et al. A dual-polarization silicon-photonic coherent transmitter supporting 552 Gb/s/wavelength[J]. IEEE Journal of Solid-State Circuits, 2020, 55(9): 2597-2608.
[20] Talkhooncheh A H, Zhang W, Wang M, et al. A 100-Gb/s PAM-4 optical transmitter in a 3-D-integrated SiPh-CMOS platform using segmented MOSCAP modulators[J]. IEEE Journal of Solid-State Circuits, 2022, 58(1): 30-44.
[21] Liao Q, Zhang Y, Ma S, et al. A 50-Gb/s PAM-4 silicon-photonic transmitter incorporating lumped-segment MZM, distributed CMOS driver, and integrated CDR[J]. IEEE Journal of Solid-State Circuits, 2021, 57(3): 767-780.
[22] Roshan-Zamir A, Yu K, Liang D, et al. A 14 Gb/s directly modulated hybrid microring laser transmitter[C]//Optical Fiber Communication Conference. Optica Publishing Group, 2018: M1I. 7.
[23] Li H, Balamurugan G, Sakib M, et al. A 112 Gb/s PAM-4 silicon photonics transmitter with microring modulator and CMOS driver[J]. Journal of Lightwave Technology, 2020, 38(1): 131-138.
[24] RAZAVI B. Limiting amplifiers and output buffers[M]. Design of Integrated Circuits for Optical Communications. McGraw-Hill. 2003: 136-140.
[25] BATES R J. Optical switching and networking handbook[M]. McGraw-Hill Professional, 2001.
[26] HOPKINS H H, KAPANY N S. A flexible fibrescope, using static scanning[J]. Nature, 1954, 173(4392): 39-41.
[27] PAN Q. Optoelectronic receivers in standard CMOS for short-range optical communications[D]. 2014
[28] KAO K C, HOCKHAM G A. Dielectric-fibre surface waveguides for optical frequencies; proceedings of the Proceedings of the Institution of Electrical Engineers, F, 1966 [C]//IET.
[29] Keiser G. Optical fiber communications[M]. 4th ed. Beijing: Publishing House of Electronics Industry, 2011.
[30] Forouzan B A. Data communications and networking[M]. 5th ed. Beijing: China Machine Press, 2013.
[31] Gutiérrez-Castrejón R, Saber M G, Alam M S, et al. Systematic Performance Comparison of (Duobinary)-PAM-2,4 Signaling under Light and Strong Opto-Electronic Bandwidth Conditions. Photonics, 2021.
[32] Zhong L, Wu H, Wu W, et al. A 2×50 Gb/s Single-Ended MIMO PAM-4 Crosstalk Cancellation and Signal Reutilization Receiver in 28 nm CMOS[C]//ESSCIRC 2022-IEEE 48th European Solid State Circuits Conference (ESSCIRC). IEEE, 2022: 501-504.
[33] Park H, Song J, Lee Y, et al. 23.3 A 3-bit/2UI 27Gb/s PAM-3 single-ended transceiver using one-tap DFE for next-generation memory interface[C]//2019 IEEE International Solid-State Circuits Conference-(ISSCC). IEEE, 2019: 382-384.
[34] Cho W H, Li Y, Du Y, et al. 10.2 A 38mW 40Gb/s 4-lane tri-band PAM-4/16-QAM transceiver in 28nm CMOS for high-speed Memory interface[C]//2016 IEEE International Solid-State Circuits Conference (ISSCC). IEEE, 2016: 184-185.
[35] Lee S M, Yi I M, Jung H K, et al. An 80 mV-swing single-ended duobinary transceiver with a TIA RX termination for the point-to-point DRAM interface[J]. IEEE Journal of Solid-State Circuits, 2014, 49(11): 2618-2630.
[36] Forouzan B A. Data communications and networking[M]. 5th ed. Beijing: China Machine Press, 2013.
[37] IEEE Standard for Ethernet Amendment 2: Physical Layer Specifications and Management Parameters for 100 Gb/s Operation Over Backplanes and Copper Cables[J]. IEEE Std 802.3bj-2014 (Amendment to IEEE Std 802.3-2012 as amended by IEEE Std 802.3bk-2013), 2014: 1-368.
[38] Wei J L, Ingham J D, Cunningham D G, et al. Performance and Power Dissipation Comparisons Between 28 Gb/s NRZ, PAM, CAP and Optical OFDM Systems for Data Communication Applications[J]. Journal of Lightwave Technology, 2012, 30(20): 3273-3280.
[39] Khafaji M M, Belfiore G, Pliva J, et al. A 4×45 Gb/s Two-Tap FFE VCSEL Driver in 14-nm FinFET CMOS Suitable for Burst Mode Operation[J]. IEEE Journal of Solid-State Circuits, 2018, 53(9): 2686-2695.
[40] Hwang J, Choi H S, Do H, et al. A 64Gb/s 2.29 pJ/b PAM-4 VCSEL transmitter with 3-tap asymmetric FFE in 65nm CMOS[C]//2019 Symposium on VLSI Circuits. IEEE, 2019: C268-C269.
[41] Hu S, Yao T, Yin B, et al. A 50Gb/s PAM-4 retimer-CDR+ VCSEL driver with asymmetric pulsed pre-emphasis integrated into a single CMOS die[C]//2019 Optical Fiber Communications Conference and Exhibition (OFC). IEEE, 2019: 1-3.
[42] Suhr L F, Olmos J J V, Mao B, et al. Direct modulation of 56 Gbps duobinary-4-PAM[C]//Optical Fiber Communication Conference. Optica Publishing Group, 2015: Th1E. 7.
[43] Yang C, Hu R, Luo M, et al. IM/DD-based 112-Gb/s/lambda PAM-4 transmission using 18-Gbps DML[J]. IEEE Photonics Journal, 2016, 8(3): 1-7.
[44] Li H, Xuan Z, Titriku A, et al. 22.6 A 25Gb/s 4.4 V-swing AC-coupled Si-photonic microring transmitter with 2-tap asymmetric FFE and dynamic thermal tuning in 65nm CMOS[C]//2015 IEEE International Solid-State Circuits Conference-(ISSCC) Digest of Technical Papers. IEEE, 2015: 1-3.
[45] Mishra S, Shawon M J, Dorzhigulov A, et al. A hybrid cmos photonic 25gbps microring transmitter with a-0.5–1.2 v direct-coupled drive[C]//2022 IEEE International Symposium on Circuits and Systems (ISCAS). IEEE, 2022: 1000-1004.
[46] Atharav A, Razavi B. A 56-Gb/s 50-mW NRZ Receiver in 28-nm CMOS[J]. IEEE Journal of Solid-State Circuits, 2021, 57(1): 54-67.
[47] 陈晓飞. 光纤通信用高 dI/dt 集成半导体激光器驱动器研究[D]. 华中科技大学, 2006.
[48] Palermo S, Emami-Neyestanak A, Horowitz M. A 90 nm CMOS 16 Gb/s transceiver for optical interconnects[J]. IEEE Journal of Solid-State Circuits, 2008, 43(5): 1235-1246.
[49] Proesel J E, Toprak-Deniz Z, Cevrero A, et al. A 32 Gb/s, 4.7 pJ/bit optical link with− 11.7 dBm sensitivity in 14-nm FinFET CMOS[J]. IEEE Journal of Solid-State Circuits, 2017, 53(4): 1214-1226.
[50] Malacarne A, Neumeyr C, Soenen W, et al. Optical transmitter based on a 1.3-μm VCSEL and a SiGe driver circuit for short-reach applications and beyond[J]. Journal of Lightwave Technology, 2018, 36(9): 1527-1536.
[51] Sharif-Bakhtiar A, Lee M G, Carusone A C. A 40-Gbps 0.5-pJ/bit VCSEL driver in 28nm CMOS with complex zero equalizer[C]//2017 IEEE Custom Integrated Circuits Conference (CICC). IEEE, 2017: 1-4.
[52] Hu S, Bai R, Wang X, et al. A 4×times25 Gb/s Optical Transmitter Using Low-Cost 10 Gb/s VCSELs in 40-nm CMOS[J]. IEEE Photonics Technology Letters, 2019, 31(12): 967-970.
[53] Belfiore G, Khafaji M, Henker R, et al. A 50 Gb/s 190 mW asymmetric 3-tap FFE VCSEL driver[J]. IEEE Journal of Solid-State Circuits, 2017, 52(9): 2422-2429.
[54] Cho S, Lee D S, Lee J, et al. A 4-Channel Multi-Rate VCSEL Driver with Automatic Power, Magnitude Calibration using High-Speed Time-Interleaved Flash-SAR ADC in 0.13 μm CMOS[J]. JSTS: Journal of Semiconductor Technology and Science, 2016, 16(3): 274-286.
[55] Proesel J E, Lee B G, Baks C W, et al. 35-Gb/s VCSEL-based optical link using 32-nm SOI CMOS circuits[C]//Optical Fiber Communication Conference. Optica Publishing Group, 2013: OM2H. 2.
[56] Mahran S, Liboiron-Ladouceur O, Cowan G. 20 Gb/s dual-mode SST VCSEL driver[C]//2021 IEEE International Midwest Symposium on Circuits and Systems (MWSCAS). IEEE, 2021: 428-431.
[57] 贺健. 面向数据中心400G光互连高速驱动芯片的研究[D].西安理工大学,2023.
[58] 何睿. 高速光通信系统接收机模拟前端电路设计[D]. 复旦大学, 2014.
[59] Jung W, Lee K, Park K, et al. A 48 Gb/s PAM-4 Receiver With Pre-Cursor Adjustable Baud-Rate Phase Detector in 40 nm CMOS[J]. IEEE Journal of Solid-State Circuits, 2023, 58(5): 1414-1424.
[60] CHROSTOWSKI L, HOCHBERG M. Silicon photonics design: from devices to systems[M]. Cambridge University Press, 2015.
[61] 拉扎维, 陈贵灿. 模拟CMOS集成电路设计[M]. 第2版. 西安: 西安交通大学出版社, 2018.
[62] Patel D, Sharif-Bakhtiar A, Carusone T C. A 112-Gb/s —8.2-dBm Sensitivity 4-PAM Linear TIA in 16-nm CMOS With Co-Packaged Photodiodes[J]. IEEE Journal of Solid-State Circuits, 2023, 58(3): 771-784.
[63] Soenen W, Vaernewyck R, Yin X, et al. 40 Gb/s PAM-4 transmitter IC for long-wavelength VCSEL links[J]. IEEE Photonics Technology Letters, 2014, 27(4): 344-347.

所在学位评定分委会
电子科学与技术
国内图书分类号
TN432
来源库
人工提交
成果类型学位论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/778930
专题南方科技大学-香港科技大学深港微电子学院筹建办公室
推荐引用方式
GB/T 7714
朱思强. 高速光通信发射机芯片设计[D]. 深圳. 南方科技大学,2024.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
12132492-朱思强-南方科技大学-(3968KB)----限制开放--请求全文
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[朱思强]的文章
百度学术
百度学术中相似的文章
[朱思强]的文章
必应学术
必应学术中相似的文章
[朱思强]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。