[1] WADHWA A, BHARDWAJ A, VERMA V S. A review on brain tumor segmentation of MRI images[J]. Magnetic resonance imaging, 2019, 61: 247-259.
[2] TIWARI A, SRIVASTAVA S, PANT M. Brain tumor segmentation and classification from magnetic resonance images: Review of selected methods from 2014 to 2019[J]. Pattern recognitionletters, 2020, 131: 244-260.
[3] MILLER K D, OSTROM Q T, KRUCHKO C, et al. Brain and other central nervous system tumor statistics, 2021[J]. CA: a cancer journal for clinicians, 2021, 71(5): 381-406.
[4] DAS S, NAYAK G K, SABA L, et al. An artificial intelligence framework and its bias for brain tumor segmentation: A narrative review[J]. Computers in biology and medicine, 2022, 143: 105273.
[5] RAO C S, KARUNAKARA K. A comprehensive review on brain tumor segmentation and classification of MRI images[J]. Multimedia Tools and Applications, 2021, 80(12): 17611-17643.
[6] MENZE B H, JAKAB A, BAUER S, et al. The multimodal brain tumor image segmentation benchmark (BRATS)[J]. IEEE transactions on medical imaging, 2014, 34(10): 1993-2024.
[7] AGRAVAT R R, RAVAL M S. A survey and analysis on automated glioma brain tumor segmentation and overall patient survival prediction[J]. Archives of Computational Methods in Engineering, 2021, 28(5): 4117-4152.
[8] ZHANG W, WU Y, YANG B, et al. Overview of multi-modal brain tumor mr image segmentation[C]//Healthcare: Vol. 9. MDPI, 2021: 1051.
[9] WANG C, XU J, YANG L, et al. Prevalence and risk factors of chronic obstructive pulmonary disease in China (the China Pulmonary Health [CPH] study): a national cross-sectional study[J]. The Lancet, 2018, 391(10131): 1706-1717.
[10] NAKANO Y, MURO S, SAKAI H, et al. Computed tomographic measurements of airway dimensions and emphysema in smokers: correlation with lung function[J]. American journal of respiratory and critical care medicine, 2000, 162(3): 1102-1108.
[11] BERGER P, PEROT V, DESBARATS P, et al. Airway wall thickness in cigarette smokers: quantitative thin-section CT assessment[J]. Radiology, 2005, 235(3): 1055-1064.
[12] UKIL S, SONKA M, REINHARDT J M. Automatic segmentation of pulmonary fissures in X-ray CT images using anatomic guidance[C]//Medical Imaging 2006: Image Processing: Vol.6144. SPIE, 2006: 213-223.
[13] MORI K, NAKADA Y, KITASAKA T, et al. Lung lobe and segmental lobe extraction from 3D chest CT datasets based on figure decomposition and Voronoi division[C]//Medical Imaging 2008: Image Processing: Vol. 6914. SPIE, 2008: 1452-1463.
[14] DAVIDSON W, BAI T R. Lung structural changes in chronic obstructive pulmonary diseases[J]. Current Drug Targets-Inflammation & Allergy, 2005, 4(6): 643-649.
[15] VAN RIKXOORT E M, VAN GINNEKEN B. Automated segmentation of pulmonary structures in thoracic computed tomography scans: a review[J]. Physics in Medicine & Biology, 2013, 58(17): R187.
[16] SLUIMER I, SCHILHAM A, PROKOP M, et al. Computer analysis of computed tomography scans of the lung: a survey[J]. IEEE transactions on medical imaging, 2006, 25(4): 385-405.
[17] LI X, TAN W, LIU P, et al. Classification of COVID-19 chest CT images based on ensemble deep learning[J]. Journal of healthcare engineering, 2021, 2021.
[18] TAN W, YUAN Y, CHEN A, et al. An approach for pulmonary vascular extraction from chest CT images[J]. Journal of healthcare engineering, 2019, 2019.
[19] PETERSEN J, NIELSEN M, LO P, et al. Optimal surface segmentation using flow lines to quantify airway abnormalities in chronic obstructive pulmonary disease[J]. Medical image analysis, 2014, 18(3): 531-541.
[20] YU K C, GIBBS J D, GRAHAM M W, et al. Image-based reporting for bronchoscopy[J]. Journal of digital imaging, 2010, 23: 39-50.
[21] TAN W, LIU P, LI X, et al. Segmentation of lung airways based on deep learning methods[J]. IET Image Processing, 2022, 16(5): 1444-1456.
[22] KER J, WANG L, RAO J, et al. Deep learning applications in medical image analysis[J]. Ieee Access, 2017, 6: 9375-9389.
[23] LONG J, SHELHAMER E, DARRELL T. Fully convolutional networks for semantic segmentation[C]//Proceedings of the IEEE conference on computer vision and pattern recognition. 2015: 3431-3440.
[24] KRIZHEVSKY A, SUTSKEVER I, HINTON G E. Imagenet classification with deep convolutional neural networks[J]. Advances in neural information processing systems, 2012, 25.
[25] RONNEBERGER O, FISCHER P, BROX T. U-net: Convolutional networks for biomedical image segmentation[C]//Medical image computing and computer-assisted intervention–MICCAI 2015: 18th international conference, Munich, Germany, October 5-9, 2015, proceedings, part III 18. Springer, 2015: 234-241.
[26] CHEN L C, PAPANDREOU G, KOKKINOS I, et al. Semantic image segmentation with deep convolutional nets and fully connected crfs[A]. 2014.
[27] ZHOU Z, RAHMAN SIDDIQUEE M M, TAJBAKHSH N, et al. Unet++: A nested u-net architecture for medical image segmentation[C]//Deep Learning in Medical Image Analysis and Multimodal Learning for Clinical Decision Support: 4th International Workshop, DLMIA 2018, and 8th International Workshop, ML-CDS 2018, Held in Conjunction with MICCAI 2018, Granada, Spain, September 20, 2018, Proceedings 4. Springer, 2018: 3-11.
[28] CHEN J, LU Y, YU Q, et al. Transunet: Transformers make strong encoders for medical image segmentation[A]. 2021.
[29] CAO H, WANG Y, CHEN J, et al. Swin-unet: Unet-like pure transformer for medical image segmentation[C]//European conference on computer vision. Springer, 2022: 205-218.
[30] KIRILLOV A, MINTUN E, RAVI N, et al. Segment anything[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision. 2023: 4015-4026.
[31] CHEN L C, PAPANDREOU G, KOKKINOS I, et al. Deeplab: Semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected crfs[J]. IEEE transactions on pattern analysis and machine intelligence, 2017, 40(4): 834-848.
[32] CHEN L C, PAPANDREOU G, SCHROFF F, et al. Rethinking atrous convolution for semantic image segmentation[A]. 2017.
[33] CHEN L C, ZHU Y, PAPANDREOU G, et al. Encoder-decoder with atrous separable convolution for semantic image segmentation[C]//Proceedings of the European conference on computer vision (ECCV). 2018: 801-818.
[34] YU F, KOLTUN V. Multi-scale context aggregation by dilated convolutions[A]. 2015.
[35] LI C, TAN Y, CHEN W, et al. Attention unet++: A nested attention-aware u-net for liver ct image segmentation[C]//2020 IEEE international conference on image processing (ICIP). IEEE, 2020: 345-349.
[36] HUANG G, LIU Z, VAN DER MAATEN L, et al. Densely connected convolutional networks[C]//Proceedings of the IEEE conference on computer vision and pattern recognition. 2017: 4700-4708.
[37] CARION N, MASSA F, SYNNAEVE G, et al. End-to-end object detection with transformers[C]//European conference on computer vision. Springer, 2020: 213-229.
[38] LIU Z, LIN Y, CAO Y, et al. Swin transformer: Hierarchical vision transformer using shifted windows[C]//Proceedings of the IEEE/CVF international conference on computer vision. 2021: 10012-10022.
[39] DOSOVITSKIY A, BEYER L, KOLESNIKOV A, et al. An image is worth 16x16 words: Transformers for image recognition at scale[A]. 2020.
[40] HE K, CHEN X, XIE S, et al. Masked autoencoders are scalable vision learners[C]//Proceedings of the IEEE/CVF conference on computer vision and pattern recognition. 2022: 16000-16009.
[41] RADFORD A, KIM J W, HALLACY C, et al. Learning transferable visual models from natural language supervision[C]//International conference on machine learning. PMLR, 2021: 8748-8763.
[42] VASWANI A, SHAZEER N, PARMAR N, et al. Attention is all you need[J]. Advances in neural information processing systems, 2017, 30.
[43] ZHOU T, RUAN S, HU H. A literature survey of MR-based brain tumor segmentation with missing modalities[J]. Computerized Medical Imaging and Graphics, 2023, 104: 102167.
[44] ISLAM M, WIJETHILAKE N, REN H. Glioblastoma multiforme prognosis: MRI missing modality generation, segmentation and radiogenomic survival prediction[J]. Computerized Medical Imaging and Graphics, 2021, 91: 101906.
[45] MIRZA M, OSINDERO S. Conditional generative adversarial nets[A]. 2014.
[46] ZHOU T, CANU S, VERA P, et al. Feature-enhanced generation and multi-modality fusion based deep neural network for brain tumor segmentation with missing MR modalities[J]. Neurocomputing, 2021, 466: 102-112.
[47] CHEN C, DOU Q, JIN Y, et al. Robust multimodal brain tumor segmentation via feature disentanglement and gated fusion[C]//Medical Image Computing and Computer Assisted Intervention–MICCAI 2019: 22nd International Conference, Shenzhen, China, October 13–17, 2019, Proceedings, Part III 22. Springer, 2019: 447-456.
[48] HAVAEI M, GUIZARD N, CHAPADOS N, et al. Hemis: Hetero-modal image segmentation[C]//Medical Image Computing and Computer-Assisted Intervention–MICCAI 2016: 19th International Conference, Athens, Greece, October 17-21, 2016, Proceedings, Part II 19. Springer,2016: 469-477.
[49] LECUN Y, BOTTOU L, BENGIO Y, et al. Gradient-based learning applied to document recognition[J]. Proceedings of the IEEE, 1998, 86(11): 2278-2324.
[50] CHARTSIAS A, JOYCE T, GIUFFRIDA M V, et al. Multimodal MR synthesis via modalityinvariant latent representation[J]. IEEE transactions on medical imaging, 2017, 37(3): 803-814.
[51] DING Y, YU X, YANG Y. RFNet: Region-aware fusion network for incomplete multi-modal brain tumor segmentation[C]//Proceedings of the IEEE/CVF international conference on computer vision. 2021: 3975-3984.
[52] AZAD R, KHOSRAVI N, MERHOF D. SMU-Net: Style matching U-Net for brain tumor segmentation with missing modalities[C]//International Conference on Medical Imaging with Deep Learning. PMLR, 2022: 48-62.
[53] ZHANG Y, HE N, YANG J, et al. mmformer: Multimodal medical transformer for incomplete multimodal learning of brain tumor segmentation[C]//International Conference on Medical Image Computing and Computer-Assisted Intervention. Springer, 2022: 107-117.
[54] HINTON G, VINYALS O, DEAN J. Distilling the knowledge in a neural network[A]. 2015.
[55] HU M, MAILLARD M, ZHANG Y, et al. Knowledge distillation from multi-modal to mono-modal segmentation networks[C]//Medical Image Computing and Computer Assisted Intervention–MICCAI 2020: 23rd International Conference, Lima, Peru, October 4–8, 2020, Proceedings, Part I 23. Springer, 2020: 772-781.
[56] LOPEZ-PAZ D, BOTTOU L, SCHÖLKOPF B, et al. Unifying distillation and privileged information[A]. 2015.
[57] WANG Y, ZHANG Y, LIU Y, et al. ACN: adversarial co-training network for brain tumor segmentation with missing modalities[C]//Medical Image Computing and Computer Assisted Intervention–MICCAI 2021: 24th International Conference, Strasbourg, France, September 27–October 1, 2021, Proceedings, Part VII 24. Springer, 2021: 410-420.
[58] SHEN Y, GAO M. Brain tumor segmentation on MRI with missing modalities[C]//Information Processing in Medical Imaging: 26th International Conference, IPMI 2019, Hong Kong, China, June 2–7, 2019, Proceedings 26. Springer, 2019: 417-428.
[59] LIU H, WEI D, LU D, et al. M3AE: Multimodal representation learning for brain tumor segmentation with missing modalities[C]//Proceedings of the AAAI Conference on Artificial Intelligence: Vol. 37. 2023: 1657-1665.
[60] GOODFELLOW I, POUGET-ABADIE J, MIRZA M, et al. Generative adversarial nets[J]. Advances in neural information processing systems, 2014, 27.
[61] GOU J, YU B, MAYBANK S J, et al. Knowledge distillation: A survey[J]. International Journal of Computer Vision, 2021, 129(6): 1789-1819.
[62] ÇIÇEK Ö, ABDULKADIR A, LIENKAMP S S, et al. 3D U-Net: learning dense volumetric segmentation from sparse annotation[C]//Medical Image Computing and Computer-Assisted Intervention–MICCAI 2016: 19th International Conference, Athens, Greece, October 17-21, 2016, Proceedings, Part II 19. Springer, 2016: 424-432.
[63] QIN Y, CHEN M, ZHENG H, et al. AirwayNet: A Voxel-Connectivity Aware Approach for Accurate Airway Segmentation Using Convolutional Neural Networks[C]//SHEN D, LIU T, PETERS T M, et al. Medical Image Computing and Computer Assisted Intervention – MICCAI 2019. Cham: Springer International Publishing, 2019: 212-220.
[64] JUAREZ A G, TIDDENS H A W M, DE BRUIJNE M. Automatic Airway Segmentation in chest CT using Convolutional Neural Networks[J/OL]. CoRR, 2018, abs/1808.04576. http://arxiv.org/abs/1808.04576.
[65] HUANG X, CHOI K S, LIANG S, et al. Frequency Domain Channel-wise Attack to CNN Classifiers in Motor Imagery Brain-Computer Interfaces[J/OL]. IEEE Transactions on Biomedical Engineering, 2023: 1-12. DOI: 10.1109/TBME.2023.3344295.
[66] DING G, WU Y, JIN J, et al. Towards A Relation Extractor Nested U-Architecture for Accurate Pulmonary Airway Segmentation in CT Images[C/OL]//ICCCV ’22: Proceedings of the 5th International Conference on Control and Computer Vision. New York, NY, USA: Association for Computing Machinery, 2022: 29–35. https://doi.org/10.1145/3561613.3561618.
[67] WU Y, ZHANG M, YU W, et al. LTSP: long-term slice propagation for accurate airway segmentation[J/OL]. International Journal of Computer Assisted Radiology and Surgery, 2022, 17(5): 857-865. https://doi.org/10.1007/s11548-022-02582-7.
[68] ZHENG H, QIN Y, GU Y, et al. Alleviating Class-Wise Gradient Imbalance for Pulmonary Airway Segmentation[J/OL]. IEEE Transactions on Medical Imaging, 2021, 40(9): 2452-2462. DOI: 10.1109/TMI.2021.3078828.
[69] ZHENG H, QIN Y, GU Y, et al. Refined Local-Imbalance-Based Weight for Airway Segmentation in CT[C/OL]//Medical Image Computing and Computer Assisted Intervention – MICCAI 2021: 24th International Conference, Strasbourg, France, September 27–October 1, 2021, Proceedings, Part I. Berlin, Heidelberg: Springer-Verlag, 2021: 410–419. https://doi.org/10.1007/978-3-030-87193-2_39. DOI: 10.1007/978-3-030-87193-2_39.
[70] GARCIA-UCEDA A, SELVAN R, SAGHIR Z, et al. Automatic airway segmentation from computed tomography using robust and efficient 3-D convolutional neural networks[J/OL]. Scientific Reports, 2021, 11(1): 16001. https://doi.org/10.1038/s41598-021-95364-1.
[71] WANG L, GUO D, WANG G, et al. Annotation-Efficient Learning for Medical Image Segmentation Based on Noisy Pseudo Labels and Adversarial Learning[J/OL]. IEEE Transactions on Medical Imaging, 2021, 40(10): 2795-2807. DOI: 10.1109/TMI.2020.3047807.
[72] YANG L, QI L, FENG L, et al. Revisiting Weak-to-Strong Consistency in Semi-Supervised Semantic Segmentation: abs/2208.09910[A]. 2022.
[73] LUO X, HU M, SONG T, et al. Semi-Supervised Medical Image Segmentation via Cross Teaching between CNN and Transformer[C/OL]//KONUKOGLU E, MENZE B, VENKATARAMAN A, et al. Proceedings of Machine Learning Research: Vol. 172 Proceedings of The 5th International Conference on Medical Imaging with Deep Learning. PMLR, 2022: 820-833. https://proceedings.mlr.press/v172/luo22b.html.
[74] BASAK H, BHATTACHARYA R, HUSSAIN R, et al. An Embarrassingly Simple Consistency Regularization Method for Semi-Supervised Medical Image Segmentation: abs/2202.00677[A]. 2022.
[75] YANG L, ZHUO W, QI L, et al. St++: Make self-training work better for semi-supervised semantic segmentation[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2022: 4268-4277.
[76] DEVLIN J, CHANG M W, LEE K, et al. Bert: Pre-training of deep bidirectional transformers for language understanding[A]. 2018.
[77] XIE Z, ZHANG Z, CAO Y, et al. Simmim: A simple framework for masked image modeling[C]//Proceedings of the IEEE/CVF conference on computer vision and pattern recognition. 2022: 9653-9663.
[78] WOO S, DEBNATH S, HU R, et al. Convnext v2: Co-designing and scaling convnets with masked autoencoders[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2023: 16133-16142.
[79] HE K, ZHANG X, REN S, et al. Deep residual learning for image recognition[C]//Proceedings of the IEEE conference on computer vision and pattern recognition. 2016: 770-778.
[80] WU Y, HE K. Group normalization[C]//Proceedings of the European conference on computer vision (ECCV). 2018: 3-19.
[81] PASZKE A, GROSS S, MASSA F, et al. Pytorch: An imperative style, high-performance deep learning library[J]. Advances in neural information processing systems, 2019, 32.
[82] KINGMA D P, BA J. Adam: A method for stochastic optimization[A]. 2014.
[83] LOSHCHILOV I, HUTTER F. Sgdr: Stochastic gradient descent with warm restarts[A]. 2016.
[84] ARMATO III S G, MCLENNAN G, BIDAUT L, et al. The lung image database consortium (LIDC) and image database resource initiative (IDRI): a completed reference database of lung nodules on CT scans[J]. Medical physics, 2011, 38(2): 915-931.
[85] LO P, VAN GINNEKEN B, REINHARDT J M, et al. Extraction of airways from CT (EXACT’09)[J]. IEEE Transactions on Medical Imaging, 2012, 31(11): 2093-2107.
[86] GEIRHOS R, TEMME C R, RAUBER J, et al. ImageNet-trained CNNs are biased towards texture; increasing shape bias improves accuracy and robustness[A]. 2019.
[87] SUN J, DARBEHANI F, ZAIDI M, et al. Saunet: Shape attentive u-net for interpretable medical image segmentation[C]//Medical Image Computing and Computer Assisted Intervention–MICCAI 2020: 23rd International Conference, Lima, Peru, October 4–8, 2020, Proceedings, Part IV 23. Springer, 2020: 797-806.
[88] QIN Y, ZHENG H, GU Y, et al. Learning Tubule-Sensitive CNNs for Pulmonary Airway and Artery-Vein Segmentation in CT[J/OL]. IEEE Transactions on Medical Imaging, 2021, 40(6): 1603-1617. DOI: 10.1109/TMI.2021.3062280.
[89] YUSHKEVICH P A, PIVEN J, HAZLETT H C, et al. User-guided 3D active contour segmentation of anatomical structures: significantly improved efficiency and reliability[J]. Neuroimage, 2006, 31(3): 1116-1128.
[90] MILLETARI F, NAVAB N, AHMADI S A. V-Net: Fully Convolutional Neural Networks for Volumetric Medical Image Segmentation[C/OL]//2016 Fourth International Conference on 3D Vision (3DV). 2016: 565-571. DOI: 10.1109/3DV.2016.79.
[91] TARVAINEN A, VALPOLA H. Mean teachers are better role models: Weight-averaged consistency targets improve semi-supervised deep learning results[J]. Advances in neural information processing systems, 2017, 30.
[92] WANG C, HAYASHI Y, ODA M, et al. Tubular Structure Segmentation Using Spatial Fully Connected Network with Radial Distance Loss for 3D Medical Images[C/OL]//Medical Image Computing and Computer Assisted Intervention –MICCAI 2019: 22nd International Conference, Shenzhen, China, October 13–17, 2019, Proceedings, Part VI. Berlin, Heidelberg: Springer-Verlag, 2019: 348–356. https://doi.org/10.1007/978-3-030-32226-7_39. DOI: 10.1007/978-3-030-32226-7_39.
[93] GARCIA-UCEDA JUAREZ A, SELVAN R, SAGHIR Z, et al. A Joint 3D UNet-Graph Neural Network-Based Method for Airway Segmentation from Chest CTs[C/OL]//Machine Learning in Medical Imaging: 10th International Workshop, MLMI 2019, Held in Conjunction with MICCAI 2019, Shenzhen, China, October 13, 2019, Proceedings. Berlin, Heidelberg: Springer-Verlag, 2019: 583–591. https://doi.org/10.1007/978-3-030-32692-0_67. DOI: 10.1007/978-3-030-32692-0_67.
[94] JIN D, XU Z, HARRISON A P, et al. 3D Convolutional Neural Networks with Graph Refinement for Airway Segmentation Using Incomplete Data Labels[C]//MLMI@MICCAI. 2017.
修改评论