中文版 | English
题名

基于液晶弹性体的多刺激响应软材料及其应用研究

其他题名
RESEARCH ON LIQUID CRYSTAL ELASTOMER-BASED MULTI-STIMULUS RESPONSIVE SOFT MATERIALS AND THEIR APPLICATIONS
姓名
姓名拼音
BAI Wenjie
学号
12132101
学位类型
硕士
学位专业
0809 电子科学与技术
学科门类/专业学位类别
08 工学
导师
罗丹
导师单位
电子与电气工程系
论文答辩日期
2024-05-10
论文提交日期
2024-07-03
学位授予单位
南方科技大学
学位授予地点
深圳
摘要

  机械致变色效应是材料的结构色受力的作用而变化,直观、便捷、高效的优点使其在软机械系统的形变检测中受到广泛研究,但当前仍面临检测精度较低、检测范围不足等方面的挑战。胆甾相液晶弹性体(Cholesteric Liquid Crystal Elastomer, CLCE)是一种柔性的一维光子晶体,具有明亮的结构颜色和优异的刺激响应能力,有望突破基于机械致变色效应的软光学传感器检测精度较低、形变检测范围不足的限制。

  本课题提出了一种光、磁双重响应的集成式CLCE器件,实现了更高精度、更大形变检测范围的光学传感。通过在LCE中掺入硬磁性颗粒钕铁硼NdFeB,结合剪纸技术,基于光诱导相变和结构化磁化,本课题实现了光、磁场驱动的LCE致动器;下一步通过各向异性消溶胀法制备了红、绿、蓝三种颜色的CLCE薄膜;集成CLCE薄膜与光、磁双重响应LCE,本课题建立了磁场作用下器件的弯曲角度(0-120°)与产生的结构色400-700 nm之间的映射关系,实现了能够检测基于弯曲形变的柔性结构色传感器件,具有0.468 nm/°(绿色CLCE)的检测精度。

  与目前基于机械致变色效应的检测方法相比,本课题提出的方法具有制备工艺简单、更高的检测精度、更大的形变检测范围的优势希望这种具有光、磁双重响应能力的集成式多功能CLCE器件能够为多功能智能系统的应用和发展提供新的技术思路。

关键词
语种
中文
培养类别
独立培养
入学年份
2021
学位授予年份
2024-05
参考文献列表

[1] APSITE I, SALEHI S, LONOV L. Materials for smart actuator systems[J]. Chemical Reviews, 2022, 122: 1349-1415.
[2] CHEN Y H, YANG J J, ZHANG X, et al. Light-driven bimorph soft actuators: Design, fabrication and properties[J]. Materials Horizons, 2021, 8: 728-757.
[3] CUI H Q, ZHAO Q L, ZHANG L, et al. Intelligent polymer-based bioinspired actuators: From monofunction to multifunction[J]. Advanced Intelligent Systems, 2020, 2: 2000138.
[4] HU L, ZHANG Q, LI X, et al. Stimuli-responsive polymers for sensing and actuation[J]. Materials Horizons, 2019, 6: 1774-1793.
[5] ILAMI M, BAGHERI H, AHMED R, et al. Materials, actuators and sensors for bioinspired robots[J]. Advanced Materials, 2021, 33: 2003139.
[6] JOCHUM F D, THEATO P. Temperature and light-responsive smart polymer materials[J]. Chemical Society Reviews, 2013, 42: 7468-7483.
[7] LIU J Q, GAO Y C, LEE Y J, et al. Responsive and foldable soft materials[J]. Trends in Chemistry, 2020, 2: 107-122.
[8] MA W T, LI B, JIANG L, et al. A Bioinspired electroactive colorable and additive manufactured photonic artificial muscle[J]. Soft Matter, 2022, 18: 1617-1627.
[9] NGUYEN V H, TABASSIAN R, OH S, et al. Stimuli-responsive MXene-based actuators[J]. Advanced Functional Materials, 2020, 30: 1909504
[10] ZHANG X, CHEN L F, LIM K H, et al. The pathway to intelligence: Using stimuli-responsive materials as building blocks for constructing smart and functional systems[J]. Advanced Materials, 2019, 31: 1804540.
[11] BISOYI H K, Li Q. Liquid crystals: Versatile self-organized smart soft materials[J]. Chemical Reviews, 2022, 122: 4887-4926.
[12] JIANG J J, HAN L, GE F J, et al. Porous liquid-crystalline networks with hydrogel-like actuation and reconfigurable function[J]. Angewandte Chemie International Edition, 2022, 61: e202116689.
[13] ZHU C Z, LU Y, JIANG L X, et al. Liquid crystal soft actuators and robots toward mixed reality[J]. Advanced Functional Materials, 2021, 31: 2009835.
[14] WHITE T J, BROER D J. Programmable and adaptive mechanics with liquid crystal polymer networks and elastomers[J]. Nature Materials, 2015, 14: 1087-1098.
[15] GAO Q F, PAN P G, SHAN G R, et al. Bioinspired stimuli-responsive hydrogel with reversible switching and fluorescence behavior served as light-controlled soft actuators[J]. Macromolecular Materials and Engineering, 2021, 306: 2100379.
[16] MO K W, LIN J H, WEI P, et al. Bioinspired gradient hydrogel actuators with rewritable patterns and programmable shape deformation[J]. Journal of Materials Chemistry C, 2021, 9: 10295-10302.
[17] TANG L, WANG L, YANG X, et al. Poly(N-isopropylacrylamide)-based smart hydrogels: Design, properties and applications[J]. Progress in Materials Science, 2021, 115: 100702.
[18] WU B Y, LU H H, LE X X, et al. Recent progress in the shape deformation of polymeric hydrogels from memory to actuation[J]. Chemical Science, 2021, 12: 6472-6487.
[19] BEHL M, RAZZAQ M Y, LENDLEIN A. Multifunctional shape-memory polymers[J]. Advanced Materials, 2010, 22: 3388-3410.
[20] LIU X C, WU J Y, TANG Z L, et al. Photoreversible bond-based shape memory polyurethanes with light-induced self-healing, recyclability and 3D fluorescence encryption[J]. ACS Applied Materials and Interfaces, 2022, 14: 33829-33841.
[21] SHANG J J, LE X X, ZAHNG J W, et al. Trends in polymeric shape memory hydrogels and hydrogel actuators[J]. Polymer Chemistry, 2019, 10: 1036-1055.
[22] YANG J J, ZHAO W D, YANG Z, et al. Photonic shape memory polymer based on liquid crystalline blue phase films[J]. ACS Applied Materials and Interfaces, 2019, 11: 46124-46131.
[23] LIU J C, SHANG Y Y, LIU J, et al. Janus photochemical/photothermal azobenzene inverse opal actuator with shape self-recovery toward sophisticated motion[J]. ACS Applied Materials and Interfaces, 2022, 14: 1727-1739.
[24] DECROLY G, GANDOLFO G, DELCHAMBRE A, et al. A voxel-based approach for the generation of advanced kinematics at the microscale[J]. Advanced Intelligent Systems, 2023, 5: 2200394.
[25] HEBNER T S, BOWMAN R G A, DUFFY D, et al. Discontinuous metric programming in liquid crystalline elastomers[J]. ACS Applied Materials and Interfaces, 2023, 15: 11092-11098.
[26] LIU D Q, BROER D J. Liquid crystal polymer networks: Preparation, properties and application of films with patterned molecular alignment[J]. Langmuir, 2014, 30: 13499-13509.
[27] ZHAO T H, ZHANG Y L, FAN Y Y, et al. Light-modulated liquid crystal elastomer actuator with multimodal shape morphing and multifunction[J]. Journal of Materials Chemistry C, 2022, 10: 3796-3803.
[28] ZHAO Y Z, CHI Y D, HONG Y Y, et al. Twisting for soft intelligent autonomous robot in unstructured environments[J]. Proceedings of National Academy of Science of the United States of America, 2022, 119: e2200265119.
[29] WANG Y, WANG Z J, HE Q G, et al. Electrically controlled soft actuators with multiple and reprogrammable actuation modes[J]. Advanced Intelligent Systems, 2020, 2: 1900177.
[30] WANI O M, ZENG H, PRIIMAGI A. A Light-driven artificial flytrap[J]. Nature Communications, 2017, 8: 15546.
[31] XING H H, LI J, SHI Y, et al. Thermally driven photonic actuator based on silica opal photonic crystal with liquid crystal elastomer[J]. ACS Applied Materials and Interfaces, 2016, 8: 9440-9445.
[32] POSADA S H, NAVARRO C M, BERMUDEZ P O, et al. Magneto-responsive liquid crystalline elastomer nanocomposites as potential candidates for dynamic cell culture substrates[J]. Materials Science and Engineering: C, 2016, 65: 369-378.
[33] WANG Y C, LIU J Q, YANG S. Multi-functional liquid crystal elastomer composites[J]. Applied Physics Reviews, 2022, 9: 011301.
[34] SITTI M, WIERSMA D S. Pros and cons: Magnetic versus optical microrobots[J]. Advanced Materials, 2020, 32: 1906766.
[35] KAISER A, WINKLER M, KRAUSE S, et al. Magnetoactive liquid crystal elastomer nanocomposites[J]. Journal of Materials Chemistry, 2009, 19: 538-543.
[36] HU W Q, LUM G Z, MASTRANGELI M, et al. Small-scale soft bodied robot with multimodal locomotion[J]. Nature, 2018, 554: 81-85.
[37] ZHANG J C, GUO Y B, SOON R H, et al. Liquid crystal elastomer-based magnetic composite films for reconfigurable shape-morphing soft miniature machines[J]. Advanced Materials, 2021, 33: 2006191.
[38] KAUR B, KAUR N, KUMAR S. Colorimetric metal ion sensors-a comprehensive review of the years 2011-2016[J]. Coordination Chemistry Reviews, 2018, 358: 13-69.
[39] TANG L H, LI J H. Plasmon-based colorimetric nanosensors for ultrasensitive molecular diagnostics[J]. ACS Sensors, 2017, 2: 857-875.
[40] FENZL C, HIRSCH T, WOLFBEIS O S. Photonic crystals for chemical sensing and biosensing[J]. Angewandte Chemie International Edition, 2014, 53: 3318-3335.
[41] LEE J H, FAN B S, SAMDIN T D, et al. Phage-based structural color sensors and their pattern recognition sensing system[J]. ACS Nano, 2017, 11: 3632-3641.
[42] OH J W, CHUNG W J, HEO K, et al. Biomimetic virus-based colourimetric sensors[J]. Nature Communications, 2014, 5: 3043.
[43] QIN M, SUN M, BAI R B, et al. Bioinspired hydrogel interferometer for adaptive coloration and chemical sensing[J]. Advanced Materials, 2018, 30: 1800468.
[44] BORISOV S M, WOLFBEIS O S. Optical biosensors[J]. Chemical Reviews, 2008, 108: 423-461.
[45] ZHOU X, LEE S Y, XU Z C, et al. Recent progress on the development of chemosensors for gases[J]. Chemical Reviews, 2015, 11: 7944-8000.
[46] LEHMANN O Z. Antisoiling dust-repellent laminat sheet[J]. Physics Chemistry, 1889, 4: 462-472.
[47] 王良御, 廖松生. 液晶化学[M]. 北京, 科学出版社, 1988.
[48] GENNES P G D. Possibilites offertes par la reticulation de polymers en presence d’un cristal liquid[J]. Physics Letters A, 1969, 28: 725-726.
[49] FINKELMANN H, KOCK H J, REHAGE G. Investigations on liquid crystalline polysiloxanes, liquid crystalline elastomers - A new type of liquid crystalline material[J]. Macromolecular Rapid Communications, 1981, 2: 317-322.
[50] HERBERT K M, FOWLER H E, MCCRACKEN J M, et al. Synthesis and alignment of liquid crystalline elastomers[J]. Nature Reviews Materials, 2022, 7: 23-38.
[51] 罗丹. 液晶光子学[M]. 北京, 电子工业出版社, 2018.
[52] XIA Y, CEDILLO-SERVIN G, KAMIEN R D, et al. Guided folding of nematic liquid crystal elastomer sheets into 3D via patterned 1D microchannels[J]. Advanced Materials, 2016, 28: 9637-9643.
[53] YOU R, KANG S, LEE C, et al. Programmable liquid crystal defect arrays via electric field modulation for mechanically functional liquid crystal networks[J]. ACS Applied Materials and Interfaces, 2021, 13: 36253-36261.
[54] WHITE T J, BROER D J. Programmable and adaptive mechanics with liquid crystal polymer networks and elastomers[J]. Nature Materials, 2015, 14: 1087-1098.
[55] WARNER M, TERENTJEV. Liquid crystal elastomers[M]. Oxford: Oxford University Press, 2009.
[56] WARNER M, BLADON P, TERENTJEV E M. “Soft elasticity” - deformation without resistance in liquid crystal elastomers[J]. Journal de Physique Archives, 1994, 4: 93-102.
[57] BUGUIN A, LI M H, SIBERZAN P, et al. Micro-actuators: When artificial muscles made of nematic liquid crystal elastomers meet soft lithography[J]. Journal of the American Chemical Society, 2006, 128: 1088-1089.
[58] LI M H, KELLER P, LI B, et al. Light-driven side-on nematic elastomer actuators[J]. Advanced Materials, 2003, 15: 569-572.
[59] LI M H, KELLER P. Artificial muscles based on liquid crystal elastomers[J]. Philosophical Transactions of The Royal Society, 2006, 364: 2763-2777.
[60] TAJBAKHSH A R, TERENTJEV E M. Spontaneous thermal expansion of nematic elastomers[J]. The European Physical E, 2001, 6: 181-188.
[61] OHM C, BREHMER M, ZENTEL R. Liquid crystalline elastomers as actuators and sensors[J]. Advanced Materials, 2010, 22: 3366-3387.
[62] FINKELMANN H, KIM S T, MUHORAY P, et al. Tunable mirrorless lasing in cholesteric liquid crystalline elastomers[J]. Advanced Materials, 2001, 13: 1069-1072.
[63] SCHURING H, STANNARIUS R, TOLKSDORF C, et al. Liquid crystal elastomer balloons[J]. Macromolecules, 2001, 34: 3962-3972.
[64] DISCH S, FINKELMANN H, RINGSDORF H, et al. A simple and versatile synthetic route for the preparation of main-chain, liquid-crystalline elastomers[J]. Macromolecules, 2000, 33: 7724-7729.
[65] MITCHELL G R, DAVIS F J, ASHMAN A. Structural studies of side-chain liquid crystal polymers and elastomers[J]. Polymer, 1987, 28: 639-647.
[66] WU G L, JIANG Y, XU D, et al. Thermoresponsive inverse opal films fabricated with liquid-crystal elastomers and nematic liquid crystals[J]. Langmuir, 2011, 27, 1505-1509.
[67] ZENG H, WANI O M, WASYLCZYK P, et al. Light-driven, caterpillar-inspired miniature inching robot[J]. Macromolecular Rapid Communications, 2017, 39: 1700224.
[68] CHENG Y C, LU H C, LEE X, et al. Kirigami-based light-induced shape-morphing and locomotion[J]. Advanced Materials, 2020, 32: 1906233.
[69] TIAN H M, WANG Z J, CHEN Y L, et al. Polydopamine-coated main-chain liquid crystal elastomer as optically driven artificial muscle[J]. ACS Applied Materials and Interfaces, 2018, 10: 8307-8316.
[70] GELEBART A H, VANTOMME G, MEIJER V, et al. Mastering the photothermal effect in liquid crystal networks: A general approach for self-sustained mechanical oscillators[J]. Advanced Materials, 2017, 29: 1606712.
[71] LIU L, LIU M H, DENG L L, et al. Near-Infrared chromophore functionalized soft actuator with ultrafast photoresponsive speed and superior mechanical property[J]. Journal of the American Chemical Society, 2017, 139: 11333-11336.
[72] KOTIKIAN A, McMahan C, DAVIDSON E, et al. Untethered soft robotic matter with passive control of shape morphing and propulsion[J]. Science Robotics, 2019, 4: aax7044.
[73] BRANNUM M T, STEELE A M, VENETOS M C, et al. Light control with liquid crystalline elastomers[J]. Advanced Optical Materials, 2019, 7: 1801683.
[74] GUIN T, SETTLE M J, KOWALSKI B A, et al. Layered liquid crystal elastomer actuators[J]. Nature Communications, 2018, 9: 2531.
[75] TURIV T, KRIEGER J, BABAKHANOVA G, et al. Topology control of human fibroblast cells monolayer by liquid crystal elastomer[J]. Science Advances, 2020, 6: aaz6485.
[76] KIM Y, PARADA G A, LIU S D, et al. Ferromagnetic soft continuum robots[J]. Science Robotics, 2019, 4: aax7329.
[77] KIM Y, YUK H, ZHAO R K, et al. Printing ferromagnetic domains for untethered fast-transforming soft materials[J]. Nature, 2018, 558: 274-279.
[78] YANG L, ZHANG T S, TAN R, et al. Functionalized spiral-rolling millirobot for upstream swimming in blood vessel[J]. Advanced Science, 2022, 9: 2200342.
[79] WU S, HU W Q, ZE Q J, et al. Multifunctional magnetic soft composites: A review[J]. Multifunctional Materials, 2020, 3: 042003.
[80] SONG H M, KIM J C, HONG J H, et al. Magnetic and transparent composites by linking liquid crystals to ferrite nanoparticles through covalent networks[J]. Advanced Functional Materials, 2007, 17: 2070-2076.
[81] GARCIA-MARQUEZ A, DEMORTIERE A, HEINRICH B, et al. Iron oxide nanoparticle-containing main-chain liquid crystalline elastomer: towards soft magnetoactive networks[J]. Journal of Materials Chemistry, 2011, 21: 8994- 8996.
[82] HABERL J M,SANCHEZ‐FERRER A,MIHUT A M,et al. Liquid‐crystalline elastomer‐nanoparticle hybrids with reversible switch of magnetic memory[J]. Advanced Materials, 2013, 25: 1787-1791.
[83] DITTER D, BLUMLER P, KLOCKNER B, et al. Microfluidic synthesis of liquid crystalline elastomer particle transport systems which can be remote‐controlled magnetically[J]. Advanced Functional Materials, 2019, 29: 1902454.
[84] CMOK L, VILFAN M, GYERGYEK S, et al. Magnetic polydomain liquid crystal elastomers-synthesis and characterization[J]. Liquid Crystal, 2021, 48: 1815-1826.
[85] 储达. 刺激响应型液晶弹性体的制备及其性能研究[D]. 江苏: 东南大学化学学科硕士学位论文, 2021.
[86] ZHANG J C, GUO Y B, HU W Q, et al. Wirelessly actuated thermo- and magneto-responsive soft bimorph materials with programmable shape-morphing[J]. Advanced Materials, 2021, 33: 2100336.
[87] CUNHA M P D, FOELEN Y, ENGELS T A P, et al. On untethered, dual magneto- and photoresponsive liquid crystal bilayer actuators showing bending and rotating motion[J]. Advanced Optical Materials, 2019, 7: 1801604.
[88] PILZ DA CUNHA M, FOELEN Y, VAN RAAK R J H, et al. An untethered magnetic- and light-responsive rotary gripper: Shedding light on photoresponsive liquid crystal actuators[J]. Advanced Optical Materials, 2019, 7: 1801643.
[89] WANG K F, WANG B L, ZHENG L. Dual photo- and magneto-responses of layered beams composed of liquid crystal elastomers and magnetic responsive elastomers[J]. Acta Mechanica, 2023, 234: 4095-4110.
[90] JIANG J, MA Y R, CHENG R D, et al. A porous multi-stimuli-responsive liquid crystal elastomer actuator enabled by MOF loading[J]. Advanced Functional Materials, 2024, 34: 2313625.
[91] MARTINEZ A M, MCBRIDE M K, WHITE T J, et al. Reconfigurable and spatially programmable chameleon skin-like material utilizing light responsive covalent adaptable cholesteric liquid crystal elastomers[J]. Advanced Functional Materials, 2020, 30: 2003150.
[92] ZHANG P, SHI X Y, SCHENNING A P H J, et al. A patterned mechanochromic photonic polymer for reversible image reveal[J]. Advanced Material Interfaces, 2020, 7: 1901878.
[93] BRANNUM M T, STEELE A M, VENETOS M C, et al. Light control with liquid crystalline elastomers[J]. Advanced Optical Materials, 2019, 7: 1801683.
[94] 任天淇, 郭金宝. 胆甾相液晶弹性体的研究进展[J]. 液晶与显示, 2023, 38: 1615-1630.
[95] KIM S T, FINKELMANN H. Cholesteric liquid single-crystal elastomers(LSCE) obtained by the anisotropic deswelling method[J]. Macromolecular Rapid Communications, 2001, 22: 429-433.
[96] KIZHAKIDATHAZHATH R, GENG Y, CHARNI C, et al. Facile anisotropic deswelling method for realizing large-area cholesteric liquid crystal elastomers with uniform structural color and broad-range mechanochromic response[J]. Advanced Functional Materials, 2020, 30: 1909537.
[97] ZHANG P, ZHOU G F, DE HAAN L T, et al. 4D chiral photonic actuators with switchable hyper-reflectivity[J]. Advanced Functional Materials, 2021, 31: 2007887.
[98] HISANO K, KIMURA S, KU K, et al. Mechano-optical sensors fabricated with multilayered liquid crystal elastomers exhibiting tunable deformation recovery[J]. Advanced Functional Materials, 2021, 31: 2104702.
[99] NAM S, WANG D H, KWON C, et al. Biomimetic multicolor-separating photonic skin using electrically stretchable chiral photonic elastomers[J]. Advanced Materials, 2023, 35: 2302456.
[100] KWON C, NAM S, HAN S H, et al. Optical characteristics of stretchable chiral liquid crystal elastomer under multiaxial stretching[J]. Advanced Functional Materials, 2023, 33: 2304506.
[101] BELMONTE A, USSEMBAYEV Y Y, BUS T, et al. Dual light and temperature responsive micrometer-sized structural color actuators[J]. Small, 2020, 16: 1905219.
[102] SOL J A H P, DOUMA R F, SCHENNING A P H J, et al. 4D printed light-responsive patterned liquid crystal elastomer actuators using a single structural color ink[J]. Advanced Materials Technologies, 2023, 8: 2200970.
[103] ZHANG Y S, JIANG S A, LIN J D, et al. Bio-inspired design of active photo-mechano-chemically dual-responsive photonic film based on cholesteric liquid crystal elastomers[J]. Journal of Materials Chemistry C, 2020, 8: 5517-5524.
[104] SHIN J H, NAM S, HAN S H, et al. Matrix-driving stretchable structural colors in multi-pixels operation using chiral liquid crystal elastomers[J]. Advanced Materials Technologies, 2023 8: 2370136.
[105] PICOT O T, DAI M, BILLPTI E, et al. A real time optical strain sensor based on a cholesteric liquid crystal network[J]. Royal Society of Chemistry Advances, 2013, 3: 18794-18798.
[106] MA J Z, YANG Y Z, VALENZUELA C, et al. Mechanochromic, shape-programmable and self-healable cholesteric liquid crystal elastomers enabled by dynamic covalent boronic ester bonds[J]. Angewandte Chemie International Edition, 2022, 61: e202116219.
[107] GENG Y, KIZHAKIDATHAZHATH R, LAGERWALL J P F. Robust cholesteric liquid crystal elastomer fibres for mechanochromic textiles[J]. Nature Materials, 2022, 21: 1441-1447.
[108] HAN S H, LIM S I, RYU K H, et al. Chiroptical 3D actuators for smart sensors[J]. Advanced Functional Materials, 2023, 33: 2210680.
[109] PUJOL-VILA F, GUELL-GRAU P, NOGUES J, et al. Soft optomechanical systems for sensing, modulation, and actuation[J]. Advanced Functional Materials, 2023, 33: 2213109.
[110] KINOSHITA S, YOSHIOKA S, MIYAZAKI J. Physics of structural colors[J]. Reports on Progress in Physics, 2008, 71: 076401.
[111] NAZIRIZADEH Y, KARROCK T, GERKEN M. Visual device for pressure measurement using photonic crystal slabs[J]. Optics Letters, 2012, 37: 3081-3083.
[112] GUELL-GRAU P, ESCUDERO P, PERDIKOS F G, et al. Mechanochromic detection for soft opto-magnetic actuators[J]. ACS Applied Materials and Interfaces, 2021, 13: 47871-47881.
[113] PUJOL-VILA F, ESCUDERO P, GUELL-GRAU P, et al. Direct color observation of light-driven molecular conformation-induced stress[J]. Small, 2022, 6: 2101283.
[114] QUAN Y J, KIM Y G, KIM M S, et al. Stretchable biaxial and shear strain sensors using diffractive structural colors[J]. ACS Nano, 2020, 14: 5392-5399.
[115] ESCUDERO P, YESTE J, PASCUAL-IZARRA C, et al. Color tunable pressure sensors based on polymer nanostructured membranes for optofluidic applications[J]. Scientific Reports, 2019, 9: 3259.
[116] LOPEZ C. Materials aspects of photonic crystals[J]. Advanced Materials, 2003, 15: 1679-1704.
[117] ZHANG R, WANG Q, ZHENG X. Flexible mechanochromic photonic crystals: routes to visual sensors and their mechanical properties[J]. Journal of Materials Chemistry C, 2018, 6: 3181-3199.
[118] HOWELL I R, LI C, COLELLA N S, et al. Strain-tunable one dimensional photonic crystals based on Zirconium dioxide/slide-ring elastomer nanocomposites for mechanochromic sensing[J]. ACS Applied Materials and Interfaces, 2015, 7: 3641-3646.
[119] LU T W, WU C C, LEE P T. 1D photonic crystal strain sensors[J]. ACS Photonic, 2018, 5: 2767-2772.
[120] FUDOUZI H, XIA Y. Photonic papers and inks: Color writing with colorless materials[J]. Advanced Materials, 2003, 15: 892-896.
[121] VOGEL N, GOERRES S, LANDFESTER K, et al. A convenient method to produce close- and non-close-packed monolayers using direct assembly at the air-water interfaces and subsequent plasma-induced size reduction[J]. Macromolecular Chemistry and Physics, 2011, 212: 1719-1734.
[122] WEISSMAN J M, SUNKARA H B, TSE A S, et al. Thermally switchable periodicities and diffraction from mesoscopically ordered materials[J]. Science, 1996, 274: 959-963.
[123] YANG D P, YE S Y, GE J P. From metastable colloidal crystalline arrays to fast responsive nechanochromic photonic gels: An organic gel for deformation-based display panels[J]. Advanced Functional Materials, 2014, 24: 3197-3205.
[124] JUREWICZ I, KING A A K, SHANKER R, et al. Mechanochromic and thermochromic sensors based on graphene infused polymer opals[J]. Advanced Functional Materials, 2020, 30: 2002473.
[125] YAKACKI C M, SAED M, NAIR D P, et al. Tailorable and programmable liquid-crystalline elastomers using a two-stage thiol-acrylate reaction[J]. Royal Society of Chemistry Advances, 2015, 5: 18997-19001.
[126] LATORRE M, RINALDI C. Applications of magnetic nanoparticles in medicine: Magnetic fluid hyperthermia[J]. Puerto Rico Health Science Journal. 2009, 28: 227-38.
[127] TAY Z W, CHANDRASEKHARAN P, CHIU-LAM A, et al. Magnetic particle imaging-guided heating in vivo using gradient fields for arbitrary localization of magnetic hyperthermia therapy[J]. ACS Nano, 2018, 12: 3699-3713.
[128] MOROS M, IDIAGO-LOPEZ J, ASIN L, et al. Triggering antitumoural drug release and gene expression by magnetic hyperthermia[J]. Advanced Drug Delivery Reviews, 2019, 138: 326-343.
[129] PETRUSKA A J, NELSON B J. Minimum bounds on the number of electromagnets required for remote magnetic manipulation[J]. The Institute of Electrical and Electronics Engineers Transactions on Robotics, 2015, 31: 714-722.
[130] YANG Z X, YANG H J, CAO Y F, et al. Magnetically actuated continuum medical robots: A review[J]. Advanced Intelligent Systems, 2023, 5: 2200416.
[131] JILES D. Introduction to magnetism and magnetic materials[M]. Boca Raton: CRC Press, 2015.
[132] ZHANG J C, SOON R H, WEI Z H, et al. Liquid metal-elastomer composites with dual-energy transmission mode for multifunctional miniature untethered magnetic robots[J]. Advanced Science, 2022, 9: 2203730.

所在学位评定分委会
电子科学与技术
国内图书分类号
O63
来源库
人工提交
成果类型学位论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/778933
专题工学院_电子与电气工程系
推荐引用方式
GB/T 7714
白文杰. 基于液晶弹性体的多刺激响应软材料及其应用研究[D]. 深圳. 南方科技大学,2024.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
12132101-白文杰-电子与电气工程(5996KB)----限制开放--请求全文
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[白文杰]的文章
百度学术
百度学术中相似的文章
[白文杰]的文章
必应学术
必应学术中相似的文章
[白文杰]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。