中文版 | English
题名

基于载银聚多巴胺纳米粒改性水凝胶的柔性传感器设计及应用

其他题名
DESIGN AND APPLICATION OF FLEXIBLE SENSOR BASED ON SILVER-LOADED POLYDOPAMINE NANOPARTICLES HYDROGEL
姓名
姓名拼音
LIU Moran
学号
12233276
学位类型
硕士
学位专业
0856 材料与化工
学科门类/专业学位类别
08 工学
导师
唐为
导师单位
中国科学院深圳先进技术研究院
论文答辩日期
2024-05-08
论文提交日期
2024-07-03
学位授予单位
南方科技大学
学位授予地点
深圳
摘要

柔性传感器指由可弯曲、拉伸、扭转的柔性材料制备的传感器,具有 优异的柔韧性和弯曲性。为保证其柔性与导电性,柔性传感器通常由柔性 基底与导电传感材料组成。尽管通过不断优化,一些具有高灵敏度、大应 变和稳定性能的柔性传感器被报道,但对于直接贴合皮肤及植入式柔性传 感器的应用而言,如何在保证器件良好柔性和传感特性基础上,提高器件 的生物相容性或赋予其生物学功能是其应用于生物医学、健康工程等领域 的发展趋势和关键。水凝胶作为一类三维交联高分子材料,因具有优异的 生物相容性特性,引起了柔性可穿戴领域的广泛关注。尽管水凝胶具有可 调的生物活性,但目前报道的水凝胶柔性器件大多存在力学性能不足、灵 敏度和稳定性不佳的问题。尤其是,针对具有生物活性的天然高分子材料, 如何在保证水凝胶器件良好拉伸/压缩性能的基础上,兼具高的灵敏度和响 应稳定性是难点。 综上,本课题提出构建载银聚多巴胺纳米材料复合的壳聚糖基水凝胶 器件:为实现优异的拉伸和抗压性能,合成了甲基丙烯酰化修饰壳聚糖, 利用自由基聚合构建其与丙烯酰胺的共聚交联网络,通过优化材料组成比 例,可获得具有优异力学性能的可拉伸/压缩柔性基底,其最大拉伸与压缩 的断裂强度分别为 12.4 kPa,252.2 kPa;进一步,通过多巴胺纳米颗粒与 硝酸银间原位氧化还原反应,制备了载银聚多巴胺纳米颗粒,通过掺杂载 银纳米粒,有效提升水凝胶器件的传感灵敏度。实验结果表明:本课题所 开发的载银聚多巴胺纳米粒改性水凝胶柔性传感器在 0-65%拉伸下达到 2.64 的灵敏度并具有 0.997 的高线性度;此外,作为压力传感器,在 0- 2.15 kPa 压力下灵敏度为 0.07 kPa -1,线性度可达 0.93,可稳定拉伸压缩 循环 500 次。不仅如此,细胞活性、溶血实验均证明本课题开发的水凝胶 器件具有良好的生物安全性,以及其基于聚多巴胺的高效抗氧化效应,通 过银协同聚多巴胺光热转换效应实现高效抗菌,抗菌率高达 90.19%。

关键词
语种
中文
培养类别
独立培养
入学年份
2022
学位授予年份
2024-07
参考文献列表

[1] IQBAL S M A, MAHGOUB I, DU E, et al. Advances in healthcare wearable devices[J]. npj Flexible Electronics, 2021, 5(1): 9.
[2] LU Y, YANG G, WANG S, et al. Stretchable graphene –hydrogel interfaces for wearable and implantable bioelectronics[J]. Nature Electronics, 2023, 7(1): 51-65.
[3] PARK K, YUK H, YANG M, et al. A biomimetic elastomeric robot skin using electrical impedance and acoustic tomography for tactile sensing[J]. Science Robotics, 2022, 7(67): eabm7187.
[4] YAN H, WANG Y, SHEN W, et al. Cable ‐ Driven Continuum Robot Perception Using Skin ‐ Like Hydrogel Sensors[J]. Advanced Functional Materials, 2022, 32(34): 2203241.
[5] YU Y, LI J, SOLOMON S A, et al. All-printed soft human-machine interface for robotic physicochemical sensing[J]. Science robotics, 2022, 7(67): eabn0495.
[6] WU M, PAN M, QIAO C, et al. Ultra stretchable, tough, elastic and transparent hydrogel skins integrated with intelligent sensing functions enabled by ma chine learning algorithms[J]. Chemical Engineering Journal, 2022, 450: 138212.
[7] LIU J, WANG H, LIU T, et al. Multimodal Hydrogel ‐ Based Respiratory Monitoring System for Diagnosing Obstructive Sleep Apnea Syndrome[J]. Advanced Functional Materials, 2022, 32(40): 2204686.
[8] LI M, ZHANG Y, LIAN L, et al. Flexible Accelerated ‐ Wound ‐ Healing Antibacterial MXene ‐ Based Epidermic Sensor for Intelligent Wearable Human ‐ Machine Interaction[J]. Advanced Functional Materials, 2022, 32(47): 2208141.
[9] YAO X, ZHANG S, QIAN L, et al. Super Stretchable, Self ‐ Healing, Adhesive Ionic Conductive Hydrogels Based on Tailor ‐Made Ionic Liquid for High ‐ Performance Strain Sensors[J]. Advanced Functional Materials, 2022, 32(33): 2204565.
[10] LIU X, WU Z, JIANG D, et al. A highl y stretchable, sensing durability, transparent, and environmentally stable ion conducting hydrogel strain sensor built by interpenetrating Ca2+-SA and glycerol-PVA double physically cross-linked networks[J]. Advanced Composites and Hybrid Materials, 2022, 5(3): 1712-29.
[11] QIN Y, MO J, LIU Y, et al. Stretchable Triboelectric Self ‐Powered Sweat Sensor Fabricated from Self‐Healing Nanocellulose Hydrogels[J]. Advanced Functional Materials, 2022, 32(27): 2201846.
[12] ZHAO Y, LO C-Y, RUAN L, et al. Somatosensory actuator based on stretchable conductive photothermally responsive hydrogel[J]. Science Robotics, 2021, 6(53): eabd5483.
[13] SUN H, ZHAO Y, WANG C, et al. Ultra -Stretchable, durable and conductive hydrogel with hybrid double network as high performance strain sensor and stretchable triboelectric nanogenerator[J]. Nano Energy, 2020, 76 : 105035.
[14] WANG Y, LIU Y, HU N, et al. Highly stretchable and self-healable ionogels with multiple sensitivity towards compression, strain and moisture for s kininspired ionic sensors[J]. Science China Materials, 2022, 65(8): 2252 -61.
[15] QIAO Y, WANG Y, TIAN H, et al. Multilayer graphene epidermal electronic skin[J]. ACS nano, 2018, 12(9): 8839 -46.
[16] GUO Y, YIN F, LI Y, et al. Incorporating Wireless Strategies to Wearable Devices Enabled by a Photocurable Hydrogel for Monitoring Pressure Information[J]. Adv Mater, 2023, 35(29): e2300855.
[17] KIM Y-G, SONG J-H, HONG S, et al. Piezoelectric strain sensor with high sensitivity and high stretchability based on kirigami design cutting[J]. npj Flexible Electronics, 2022, 6(1): 52.
[18] CHEN J, WEN H, ZHANG G, et al. Multifunctional Conductive Hydrogel/Thermochromic Elastomer Hybrid Fibers with a Core -Shell Segmental Configuration for Wearable Strai n and Temperature Sensors[J]. ACS Appl Mater Interfaces, 2020, 12(6): 7565 -74.
[19] MIAO L, WAN J, SONG Y, et al. Skin -Inspired Humidity and Pressure Sensor with a Wrinkle -on-Sponge Structure[J]. ACS Appl Mater Interfaces, 2019, 11(42): 39219-27.
[20] SASIKUMAR R, KIM B, BHATTARAI R M. Dysprosium tungstate incorporated on exfoliated layered molybdenum disulfide -based a flexible and wearable piezoelectric nanogenerator for the dual purpose of selfpowered energy harvesting and a smart mask for human breath m onitoring[J]. Nano Energy, 2023, 118: 109024.
[21] PENG X, DONG K, NING C, et al. All ‐Nanofiber Self‐Powered Skin‐Interfaced Real‐Time Respiratory Monitoring System for Obstructive Sleep Apnea‐Hypopnea Syndrome Diagnosing[J]. Advanced Functional Materials, 2021, 31(34): 2103559.
[22] YE Z, LING Y, YANG M, et al. A Breathable, Reusable, and Zero -Power Smart Face Mask for Wireless Cough and Mask -Wearing Monitoring[J]. ACS Nano, 2022, 16(4): 5874-84.
[23] SHARMA P, HUI X, ZHOU J, et al. Wearable radio -frequency sensing of respiratory rate, respiratory volume, and heart rate[J]. NPJ Digit Med, 2020, 3: 98.
[24] SANG M, KANG K, ZHANG Y, et al. Ultrahigh Sensitive Au -Doped Silicon Nanomembrane Based Wearable Sensor Arrays for Continuous Skin Temperature Monitoring with High Precision[J]. Adv Mater, 2022, 34(4): e2105865.
[25] YU Y, NYEIN H Y Y, GAO W, et al. Flexible electrochemical bioelectronics: the rise of in situ bioanalysis[J]. Advanced materials, 2020, 32(15): 1902083.
[26] LI H, CHANG T, GAI Y, et al. Human joint enabled flexible self-sustainable sweat sensors[J]. Nano Energy, 2022, 92: 106786.
[27] GAO Y, YU L, YEO J C, et al. Flexible Hybrid Sensors for Health Monitoring: Materials and Mechanisms to Render Wearability[J]. Adv Mater, 2020, 32(15): e1902133.
[28] MA C, WANG M, UZABAKIRIHO P C, et al. High Sensitivity, Broad Working Range, Comfortable, and Biofriendly Wearable Strain Sensor for Electronic Skin[J]. Advanced Materials Technologies, 2022, 7(8) : 2200106.
[29] NGUYEN T, DINH T, PHAN H-P, et al. Advances in ultrasensitive piezoresistive sensors: from conventional to flexible and stretchable applications[J]. Materials Horizons, 2021, 8(8): 2123 -50.
[30] HWANG J, KIM Y, YANG H, et al. Fabrication of hierarchically porous structured PDMS composites and their application as a flexible capacitive pressure sensor[J]. Composites Part B: Engineering, 2021, 211 : 108607.
[31] JI B, ZHOU Q, HU B, et al. Bio‐inspired hybrid dielectric for capacitive and triboelectric tactile sensors with high sensitivity and ultr awide linearity range[J]. Advanced Materials, 2021, 33(27): 2100859.
[32] LIU Y, ZHAO L, AVILA R, et al. Epidermal electronics for respiration monitoring via thermo-sensitive measuring[J]. Materials Today Physics, 2020, 13: 100199.
[33] ZHANG X, ZHENG C, LI Y, et al. Magnetically Levitated Flexible Vibration Sensors with Surficial Micropyramid Arrays for Magnetism Enhancement[J]. ACS Appl Mater Interfaces, 2022, 14(33): 37916 -25.
[34] YANG L, WANG H, YUAN W, et al. Wearable Pressure Sensors Based on MXene/Tissue Papers for Wireless Human Health Monitoring[J]. ACS Appl Mater Interfaces, 2021, 13(50): 60531 -43.
[35] ZANG Y, ZHANG F, DI C-A, et al. Advances of flexible pressure sensors toward artificial intelligence and health care applications[J]. Materials Horizons, 2015, 2(2): 140-56.
[36] KIM Y R, KIM M P, PARK J, et al. Binary Spiky/Spherical Nanoparticle Films with Hierarchical Micro/Nanostructures for High -Performance Flexible Pressure Sensors[J]. ACS Appl Mater Interfaces, 2020, 12(52): 58403 -11.
[37] YANG N, LIU H, YIN X, et al. Flexible pressure sensor decorated with MXene and reduced graphene oxide composites for motion detection, information transmission, and pressure sensing performance[J]. ACS Applied Materials & Interfaces, 2022, 14(40): 45978 -87.
[38] MAHARJAN P, BHATTA T, SALAUDDIN M, et al. A human skin -inspired self-powered flex sensor with thermally embossed microstructured triboelectric layers for sign language interpretation[J]. Nano Energy, 2020, 76: 105071.
[39] TAO L-Q, ZHANG K-N, TIAN H, et al. Graphene-paper pressure sensor for detecting human motions[J]. ACS nano, 2017, 11(9): 8790 -5.
[40] JEON S, LIM S-C, TRUNG T Q, et al. Flexible multimodal sensors for electronic skin: Principle, materials, device, array architecture, and data acquisition method[J]. Proceedings of the IEEE, 2019, 107(10): 2065 -83.
[41] YU Y, ZHENG G, DAI K, et al. Hollow-porous fibers for intrinsically thermally insulating textiles and wearable electronics with ultrahigh working sensitivity[J]. Mater Horiz, 2021, 8(3): 1037-46.
[42] YANG S, LI C, CHEN X, et al. Facile Fabrication of High -Performance Pen Ink-Decorated Textile Strain Sensors for Human Motion Detection[J]. ACS Appl Mater Interfaces, 2020, 12(17): 19874 -81.
[43] YIN J, WANG S, TAT T, et al. Motion artefact management for soft bioelectronics[J]. Nature Reviews Bioengineering, 2024: 1 -18.
[44] HE S, HONG Y, LIAO M, et al. Flexible sensors based on assembled carbon nanotubes[J]. Aggregate, 2021, 2(6): e143.
[45] ZHU L, ZHOU X, LIU Y, et al. Highly Sensitive, Ultrastretchable Strain Sensors Prepared by Pumping Hybrid Fillers of Carbon Nanotubes/Cellulose Nanocrystal into Electrospun Polyurethane Membranes[J]. ACS Applied Materials & Interfaces, 2019, 11(13): 12968 -77.
[46] SLOBODIAN P, DANOVA R, OLEJNIK R, et al. Multifunctional flexible and stretchable polyurethane/carbon nanotube strain sensor for human breath monitoring[J]. Polymers for Advanced Technologies, 2019, 30(7): 1891 -8.
[47] ZHAO L, QIANG F, DAI S W, et al. Construction of sandwich -like porous structure of graphene -coated foam composites for ultrasensitive and flexible pressure sensors[J]. Nanoscale, 2019, 11(21): 10229 -38.
[48] LI B, LUO J, HUANG X, et al. A highly stretchable, super-hydrophobic strain sensor based on polydopamine and graph ene reinforced nanofiber composite for human motion monitoring[J]. Composites Part B: Engineering, 2020, 181: 107580.
[49] ZOU Q, HE K, OU-YANG J, et al. Highly sensitive and durable sea -urchinshaped silver nanoparticles strain sensors for human -activity monitoring[J]. ACS Applied Materials & Interfaces, 2021, 13(12): 14479 -88.
[50] YI J, XIANYU Y. Gold Nanomaterials ‐Implemented Wearable Sensors for Healthcare Applications[J]. Advanced Functional Materials, 2022, 32(19): 2113012.
[51] ZHOU H, GUO K, MA S, et al. A triple-layer structure flexible sensor based on nano-sintered silver for power electronics with high temperature resistance and high thermal conductivity[J]. Chemical Engineering Journal, 2022, 432: 134431.
[52] WANG J, ZHONG Y, DAI S, et al. Ag Nanowire/CPDMS Dual Conductive Layer Dome-Based Flexible Pressure Sensor with High Sensitivity and a Wide Linear Range[J]. ACS Applied Nano Materials, 2022, 5(9): 13227 -35.
[53] LIU X, MIAO J, FAN Q, et al. Recent progress on smart fiber and textile based wearable strain sensors: materials, fabrications and applications[J]. Advanced Fiber Materials, 2022, 4(3): 361 -89.
[54] JIN T, PAN Y, JEON G J, et al. Ultrathin Nanofibrous Membranes Containing Insulating Microbeads for Highly Sensitive Flexible Pressure S ensors[J]. ACS Appl Mater Interfaces, 2020, 12(11): 13348 -59.
[55] ZHU M, LI J, YU J, et al. Superstable and Intrinsically Self-Healing Fibrous Membrane with Bionic Confined Protective Structure for Breathable Electronic Skin[J]. Angew Chem Int Ed Engl, 20 22, 61(22): e202200226.
[56] LING Y, AN T, YAP L W, et al. Disruptive, Soft, Wearable Sensors[J]. Adv Mater, 2020, 32(18): e1904664.
[57] ZHAO C, WANG Y, TANG G, et al. Ionic flexible sensors: mechanisms, materials, structures, and applications[J]. Advanced Functional Materials, 2022, 32(17): 2110417.
[58] ZHAO B, BAI Z, LV H, et al. Self-Healing Liquid Metal Magnetic Hydrogels for Smart Feedback Sensors and High -Performance Electromagnetic Shielding[J]. Nanomicro Lett, 2023, 15(1): 79.
[59] YOO J Y, OH S, SHALISH W, et al. Wireless broadband acousto -mechanical sensing system for continuous physiological monitoring[J]. Nat Med, 2023, 29(12): 3137-48.
[60] QU X, LIU J, WANG S, et al. Photothermal regulated multi-perceptive poly(ionic liquids) hydrogel sensor for bioelectronics[J]. Chemical Engineering Journal, 2023, 453 : 139785.
[61] ZHANG Y, XU Z, YUAN Y, et al. Flexible Antiswelling Photothermal ‐Therapy MXene Hydrogel‐Based Epidermal Sensor for Intelligent Human –Machine Interfacing[J]. Advanced Functional Materials, 2023, 33(21): 2300299.
[62] HU L, CHEE P L, SUGIARTO S, et al. Hydrogel‐based flexible electronics [J]. Advanced Materials, 2023, 35(14): 2205326.
[63] WANG Z, WEI H, HUANG Y, et al. Naturally sourced hydrogels: emerging fundamental materials for next-generation healthcare sensing[J]. Chem Soc Rev, 2023, 52(9): 2992 -3034.
[64] FU Y J, SHI Y F, WANG L Y, et al. All-Natural Immunomodulatory Bioadhesive Hydrogel Promotes Angiogenesis and Diabetic Wound Healing by Regulating Macrophage Heterogeneity[J]. Adv Sci (Weinh), 2023, 10(13): e2206771.
[65] KIM J-N, LEE J, LEE H, et al. Stretchable and self-healable catecholchitosan-diatom hydrogel for triboelectric generator and self-powered tremor sensor targeting at Parkinson diseas e[J]. Nano Energy, 2021, 82: 105705.
[66] ZHAO X, CHEN X, YUK H, et al. Soft Materials by Design: Unconventional Polymer Networks Give Extreme Properties[J]. Chem Rev, 2021, 121(8): 4309-72.
[67] TREACY N J, CLERKIN S, DAVIS J L, et al. Growth and differentiation of human induced pluripotent stem cell (hiPSC)-derived kidney organoids using fully synthetic peptide hydrogels[J]. Bioact Mater, 2023, 21: 142 -56.
[68] AHMADIAN M, JAYMAND M. Interpenetrating polymer network hydrogels for removal of synthe tic dyes: A comprehensive review[J]. Coordination Chemistry Reviews, 2023, 486 : 215152.
[69] LI G, HUANG K, DENG J, et al. Highly conducting and stretchable double‐network hydrogel for soft bioelectronics[J]. Advanced Materials, 2022, 34(15): 2200261.
[70] NIU W, TIAN Q, LIU Z, et al. Solvent-Free and Skin-Like Supramolecular Ion-Conductive Elastomers with Versatile Processability for Multifunctional Ionic Tattoos and On -Skin Bioelectronics[J]. Adv Mater, 2023, 35(39): e2304157.
[71] JIN R, XU J, DUAN L, et al. Chitosan-driven skin-attachable hydrogel sensors toward human motion and physiological signal monitoring[J]. Carbohydr Polym, 2021, 268: 118240.
[72] HU L, CHEE P L, SUGIARTO S, et al. Hydrogel-Based Flexible Electronics [J]. Adv Mater, 2023, 35(14): e2205326.
[73] YU J Y, MOON S E, KIM J H, et al. Ultrasensitive and Highly Stretchable Multiple-Crosslinked Ionic Hydrogel Sensors with Long -Term Stability[J]. Nanomicro Lett, 2023, 15(1): 51.
[74] YI F-L, MENG F-C, LI Y-Q, et al. Highly stretchable CNT Fiber/PAAm hydrogel composite simultaneously serving as strain sensor and supercapacitor[J]. Composites Part B: Engineering, 2020, 198 : 108246.
[75] YU J, FENG Y, SUN D, et al. Highly Conductive and Mechanically Robust Cellulose Nanocomposite Hydrogels with Antifreezing and Antidehydration Performances for Flexible Humidity Sensors[J]. ACS Appl Mater Interfaces, 2022, 14(8): 10886-97.
[76] LUO Y, LI J, DING Q, et al. Functionalized Hydrogel-Based Wearable Gas and Humidity Sensors[J]. Nanomic ro Lett, 2023, 15(1): 136.
[77] RAHMANI P, SHOJAEI A. A review on the features, performance and potential applications of hydrogel-based wearable strain/pressure sensors[J]. Adv Colloid Interface Sci, 2021, 298: 102553.
[78] CHENG W, ZENG X, CHEN H, et al. Versatile Polydopamine Platforms: Synthesis and Promising Applications for Surface Modification and Advanced Nanomedicine[J]. ACS Nano, 2019, 13(8): 8537 -65.
[79] XIONG X, CHEN Y, WANG Z, et al. Polymerizable rotaxane hydrogels for three-dimensional printing fabrication of wearable sensors[J]. Nat Commun, 2023, 14(1): 1331.
[80] LIU Z, ZHU T, WANG J, et al. Functionalized Fiber-Based Strain Sensors: Pathway to Next-Generation Wearable Electronics[J]. Nano -Micro Letters, 2022, 14(1): 61.
[81] ZHAO F, SHI Y, PAN L, et al. Multifunctional Nanostructured Conductive Polymer Gels: Synthesis, Properties, and Applications[J]. Acc Chem Res, 2017, 50(7): 1734-43.
[82] SUN X, YAO F, LI J. Nanocomposite hydrogel-based strain and pressure sensors: a review[J]. Journal o f Materials Chemistry A, 2020, 8(36): 18605 -23.
[83] LIU R, WANG T, LI G, et al. Self ‐ Reinforced Hydrogel ‐ Based Skin ‐Contactable Flexible Electronics for Multimodal Electrophysiological Signal Monitoring and Emergency Alarming System[J]. Advanced Functiona l Materials, 2023, 33(24): 2214917.
[84] ZARGARZADEH M, SILVA A S, NUNES C, et al. Self-glucose feeding hydrogels by enzyme empowered degradation for 3D cell culture[J]. Materials Horizons, 2022, 9(2): 694 -707.
[85] XU C, GUAN S, XU J, et al. Preparation, characterization and antioxidant activity of protocatechuic acid grafted carboxymethyl chitosan and its hydrogel[J]. Carbohydrate Polymers, 2021, 252: 117210.
[86] JIANG Y, TROTSYUK A A, NIU S, et al. Wireless, closed -loop, smart bandage with integrated sensors and stimulators for advanced wound care and accelerated healing[J]. Nature Biotechnology, 2022, 41(5): 652-62.
[87] HASHEM M, AL KHERAIF A A, FOUAD H. Design and development of wireless wearable bio -tooth sensor for monitoring of tooth fracture and i ts bio metabolic components[J]. Computer Communications, 2020, 150: 278 -85.
[88] LEE H, CHOI T K, LEE Y B, et al. A graphene -based electrochemical device with thermoresponsive microneedles for diabetes monitoring and therapy[J]. Nature nanotechnology, 2016, 11(6): 566-72.
[89] HAN L, LIANG W, XIE Q, et al. Health Monitoring via Heart, Breath, and Korotkoff Sounds by Wearable Piezoelectret Patches[J]. Adv Sci (Weinh), 2023, 10(28): e2301180.
[90] LI X, HE L, LI Y, et al. Healable, Degradable, and Conductive MXene Nanocomposite Hydrogel for Multifunctional Epidermal Sensors[J]. ACS Nano, 2021, 15(4): 7765-73.
[91] CHEN H, HUANG J, LIU J, et al. High toughness multifunctional organic hydrogels for flexible strain and temperature sensor[J]. Journal of Materials Chemistry A, 2021, 9(40): 23243-55.
[92] ZHAO Y, ZHANG B, YAO B, et al. Hierarchically Structured Stretchable Conductive Hydrogels for High -Performance Wearable Strain Sensors and Supercapacitors[J]. Matter, 2020, 3(4): 1196 -210.
[93] ZAISS M M, JOYCE WU H-J, MAURO D, et al. The gut–joint axis in rheumatoid arthritis[J]. Nature Reviews Rheumatology, 2021, 17(4): 224 -37.
[94] SAEED U, SHAH S Y, ZAHID A, et al. Wireless channel modelling for identifying six types of respiratory patterns with sdr sensing and deep multilayer perceptron[J]. IEEE Sensors Journal, 2021, 21(18): 20833 -40.

所在学位评定分委会
材料与化工
国内图书分类号
TP212
来源库
人工提交
成果类型学位论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/778940
专题中国科学院深圳理工大学(筹)联合培养
推荐引用方式
GB/T 7714
刘茉苒. 基于载银聚多巴胺纳米粒改性水凝胶的柔性传感器设计及应用[D]. 深圳. 南方科技大学,2024.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
12233276-刘茉苒-中国科学院深圳(4717KB)----限制开放--请求全文
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[刘茉苒]的文章
百度学术
百度学术中相似的文章
[刘茉苒]的文章
必应学术
必应学术中相似的文章
[刘茉苒]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。