[
[1] ZHAO H, YUAN Z Y. Progress and Perspectives for Solar-Driven Water Electrolysis to Produce Green Hydrogen[J]. Advanced Energy Materials, 2023, 13(16): 2300254.
[2] RASTGAR M, MORADI K, BURROUGHS C, et al. Harvesting Blue Energy Based on Salinity and Temperature Gradient: Challenges, Solutions, and Opportunities[J]. Chemical Reviews, 2023, 123(16): 10156-10205.
[3] ZHANG H, GAO Y, LIU X, et al. Long-Cycle-Life Cathode Materials for Sodium-Ion Batteries toward Large-Scale Energy Storage Systems[J]. Advanced Energy Materials, 2023, 13(23): 2300149.
[4] REN J-T, CHEN L, WANG H-Y, et al. Water electrolysis for hydrogen production: from hybrid systems to self-powered/catalyzed devices[J]. Energy & Environmental Science, 2024, 17(1): 49-113.
[5] HUANG Y, LI J. Key Challenges for Grid-Scale Lithium-Ion Battery Energy Storage[J]. Advanced Energy Materials, 2022, 12(48): 2202197.
[6] GOURLEY S W D, BROWN R, ADAMS B D, et al. Zinc-ion batteries for stationary energy storage[J]. Joule, 2023, 7(7): 1415-1436.
[7] LIU Y, CUI X, CAO Y, et al. Low-Cost H2/Na0.44MnO2 Gas Battery for Large-Scale Energy Storage[J]. ACS Energy Letters, 2023, 8(8): 3639-3645.
[8] YANG W, YANG Y, YANG H, et al. Regulating Water Activity for Rechargeable Zinc-Ion Batteries: Progress and Perspective[J]. ACS Energy Letters, 2022, 7(8): 2515-2530.
[9] FENG Y, ZHOU L, MA H, et al. Challenges and advances in wide-temperature rechargeable lithium batteries[J]. Energy & Environmental Science, 2022, 15(5): 1711-1759.
[10] ZHU Z, JIANG T, ALI M, et al. Rechargeable Batteries for Grid Scale Energy Storage[J]. Chemical Reviews, 2022, 122(22): 16610-16751.
[11] OLIVETTI E A, CEDER G, GAUSTAD G G, et al. Lithium-Ion Battery Supply Chain Considerations: Analysis of Potential Bottlenecks in Critical Metals[J]. Joule, 2017, 1(2): 229-243.
[12] MUñOZ M Á, SAUREL D, GóMEZ J L, et al. Na-Ion Batteries for Large Scale Applications: A Review on Anode Materials and Solid Electrolyte Interphase Formation[J]. Advanced Energy Materials, 2017, 7(20): 1700463.
[13] CHAYAMBUKA K, MULDER G, DANILOV D L, et al. From Li-Ion Batteries toward Na-Ion Chemistries: Challenges and Opportunities[J]. Advanced Energy Materials, 2020, 10(38).
[14] LARCHER D, TARASCON J M. Towards greener and more sustainable batteries for electrical energy storage[J]. Nature Chemistry, 2014, 7(1): 19-29.
[15] HAO Z, SHI X, YANG Z, et al. The Distance Between Phosphate-Based Polyanionic Compounds and Their Practical Application For Sodium-Ion Batteries[J]. Advanced Materials, 2023, 36(7): 2305135.
[16] GRITZNER G. Standard electrode potentials of M+|M couples in non-aqueous solvents (molecular liquids)[J]. Journal of Molecular Liquids, 2010, 156(1): 103-108.
[17] DENG J, LUO W B, CHOU S L, et al. Sodium-Ion Batteries: From Academic Research to Practical Commercialization[J]. Advanced Energy Materials, 2017, 8(4): 1701428.
[18] Experimental and computational advancement of cathode materials for futuristic sodium ion batteries[J]. Materials Today, 2023, DOI: 10.1016/j.mattod.2023.06.0137.
[19] PAN H, HU Y-S, CHEN L. Room-temperature stationary sodium-ion batteries for large-scale electric energy storage[J]. Energy & Environmental Science, 2013, 6(8): 2338-2360.
[20] C. Delmas, C. Fouassier , P. Hagenmuller. Structural classification and properties of the layered oxides[J]. Physica B+C, 1980, 99(1-4): 81-85.
[21] B. G. SILBERNAGEL, WHITTINGHAM M S. The physical properties of the NaxTiS2 intercalation compounds: A synthetic and NMR study[J]. Materials Research Bulletin, 1976, 11: 29-36.
[22]D. A. Stevens1, J. R. Dahn. High Capacity Anode Materials for Rechargeable Sodium-Ion Batteries[J]. Journal of The Electrochemical Society, 2000, 147(4): 1271-1273.
[23] YABUUCHI N, HARA R, KAJIYAMA M, et al. New O2/P2-type Li-Excess Layered Manganese Oxides as Promising Multi-Functional Electrode Materials for Rechargeable Li/Na Batteries[J]. Advanced Energy Materials, 2014, 4(13): 1301453.
[24] HAN M H, GONZALO E, SINGH G, et al. A comprehensive review of sodium layered oxides: powerful cathodes for Na-ion batteries[J]. Energy & Environmental Science, 2015, 8(1): 81-102.
[25] OH S-M, MYUNG S-T, HASSOUN J, et al. Reversible NaFePO4 electrode for sodium secondary batteries[J]. Electrochemistry Communications, 2012, 22: 149-152.
[26] KIM H, PARK I, SEO D H, et al. New iron-based mixed-polyanion cathodes for lithium and sodium rechargeable batteries: combined first principles calculations and experimental study[J]. Journal of the American Chemical Society, 2012, 134(25): 10369-10372.
[27] CHEN C-Y, MATSUMOTO K, NOHIRA T, et al. Pyrophosphate Na2FeP2O7 as a low-cost and high-performance positive electrode material for sodium secondary batteries utilizing an inorganic ionic liquid[J]. Journal of Power Sources, 2014, 246: 783-787.
[28] WANG L, LU Y, LIU J, et al. A Superior Low-Cost Cathode for a Na-Ion Battery[J]. Angewandte Chemie International Edition, 2013, 52(7): 1964-1967.
[29] LEE H-W, WANG R Y, PASTA M, et al. Manganese hexacyanomanganate open framework as a high-capacity positive electrode material for sodium-ion batteries[J]. Nature Communications, 2014, 5(1): 5280.
[30] YOU Y, WU X-L, YIN Y-X, et al. High-quality Prussian blue crystals as superior cathode materials for room-temperature sodium-ion batteries[J]. Energy & Environmental Science, 2014, 7(5): 1643-1647.
[31] LI Y, YANG Z, XU S, et al. Air-Stable Copper-Based P2-Na7/9Cu2/9Fe1/9Mn2/3O2 as a New Positive Electrode Material for Sodium-Ion Batteries[J]. Advanced Science, 2-015, 2(6): 1500031.
[32] MU L, XU S, LI Y, et al. Prototype Sodium-Ion Batteries Using an Air-Stable and Co/Ni-Free O3-Layered Metal Oxide Cathode[J]. Advanced Materials, 2015, 27(43): 6928-6933.
[33] XU S-Y, WU X-Y, LI Y-M, et al. Novel copper redox-based cathode materials for room-temperature sodium-ion batteries[J]. Chinese Physics B, 2014, 23(11): 118202.
[34] GAO Y, ZHANG H, PENG J, et al. A 30-year overview of sodium-ion batteries[J]. Carbon Energy, 2024, DOI: doi.org/10.1002/cey2.464.
[35] ZUO W, XIAO Z, ZARRABEITIA M, et al. Guidelines for Air-Stable Lithium/Sodium Layered Oxide Cathodes[J]. ACS Materials Letters, 2022, 4(6): 1074-1086.
[36] LI X, LIANG L, SU M, et al. Multi-Level Modifications Enabling Chemomechanically Stable Ni-Rich O3-Layered Cathode toward Wide-Temperature-Tolerance Quasi-Solid-State Na-Ion Batteries[J]. Advanced Energy Materials, 2023, 13(9): 2203701.
[37] SONG T, WANG C, KANG L, et al. P3-Na0.45Ni0.2Mn0.8O2/Na2SeO4 Heterostructure Enabling Long-Life and High-Rate Sodium-Ion Batteries[J]. Advanced Energy Materials, 2023, 13(42): 2302393.
[38] JO J H, KIM H J, CHOI J U, et al. Facilitating sustainable oxygen-redox chemistry for P3-type cathode materials for sodium-ion batteries[J]. Energy Storage Materials, 2022, 46: 329-343.
[39] CAO X, SUN J, CHANG Z, et al. Enabling Long-Term Cycling Stability Within Layered Li-Rich Cathode Materials by O2/O3-Type Biphasic Design Strategy[J]. Advanced Functional Materials, 2022, 32(39): 2205199.
[40] LIU Y F, HAN K, PENG D N, et al. Layered oxide cathodes for sodium-ion batteries: From air stability, interface chemistry to phase transition[J]. InfoMat, 2023, 5(6).
[41] GREY C P, TARASCON J M. Sustainability and in situ monitoring in battery development[J]. Nature Materials, 2016, 16(1): 45-56.
[42] CAI T, CAI M, MU J, et al. High-Entropy Layered Oxide Cathode Enabling High-Rate for Solid-State Sodium-Ion Batteries[J]. Nano-Micro Letters, 2023, 16(1): 10.
[43] WANG Y, ZHAO X, JIN J, et al. Boosting the Reversibility and Kinetics of Anionic Redox Chemistry in Sodium-Ion Oxide Cathodes via Reductive Coupling Mechanism[J]. Journal of the American Chemical Society, 2023, 145(41): 22708-22719.
[44] GONZALO E, ZARRABEITIA M, DREWETT N E, et al. Sodium manganese-rich layered oxides: Potential candidates as positive electrode for Sodium-ion batteries[J]. Energy Storage Materials, 2021, 34: 682-707.
[45] J. Parant, C. Fouassier, P. Hagenmuller, et al. Sur quelques nouvelles phases de formule NaxMnO2 (x ⩽ 1)[J]. Journal of Solid State Chemistry, 1971, 3(1): 1-11.
[46] MA X, CHEN H, CEDER G. Electrochemical Properties of Monoclinic NaMnO2[J]. Journal of The Electrochemical Society, 2011, 158(12): A1307-A1312.
[47] BILLAUD J, CLEMENT R J, ARMSTRONG A R, et al. beta-NaMnO2: a high-performance cathode for sodium-ion batteries[J]. Journal of the American Chemical Society, 2014, 136(49): 17243-17248.
[48] CHEN X, WANG Y, WIADEREK K, et al. Super Charge Separation and High Voltage Phase in NaxMnO2[J]. Advanced Functional Materials, 2018, 28(50): 1805105.
[49] LIU S, WAN J, OU M, et al. Regulating Na Occupation in P2-Type Layered Oxide Cathode for All-Climate Sodium-Ion Batteries[J]. Advanced Energy Materials, 2023, 13(11): 2203521.
[50] YABUUCHI N, KUBOTA K, DAHBI M, et al. Research Development on Sodium-Ion Batteries[J]. Chemical Reviews, 2014, 114(23): 11636-11682.
[51] CLAUDE D, CLAUDE F , PAUL H , et al. Influence de l'environnement de l'ion alcalin sur sa mobilite dans les structures a feuillets Ax(LxM1−x)O2[J]. Materials Research Bulletin, 1979, 14(3): 329-335.
[52] ROGER M, MORRIS D J P, TENNANT D A, et al. Patterning of sodium ions and the control of electrons in sodium cobaltate[J]. Nature, 2007, 445(7128): 631-634.
[53] LUONG H D, DINH V A, MOMIDA H, et al. Insight into the diffusion mechanism of sodium ion-polaron complexes in orthorhombic P2 layered cathode oxide NaxMnO2[J]. Phys Chem Chem Phys, 2020, 22(32): 18219-18228.
[54] WANG Q C, SHADIKE Z, LI X L, et al. Tuning Sodium Occupancy Sites in P2-Layered Cathode Material for Enhancing Electrochemical Performance[J]. Advanced Energy Materials, 2021, 11(13).
[55] YAO H-R, LV W-J, YUAN X-G, et al. New insights to build Na+/vacancy disordering for high-performance P2-type layered oxide cathodes[J]. Nano Energy, 2022, 97: 107207.
[56] KUMAKURA S, TAHARA Y, KUBOTA K, et al. Sodium and Manganese Stoichiometry of P2-Type Na2/3MnO2[J]. Angewandte Chemie International Edition, 2016, 55(41): 12760-12763.
[57] LIU X, ZUO W, ZHENG B, et al. P2-Na0.67AlxMn1-xO2: Cost-Effective, Stable and High-Rate Sodium Electrodes by Suppressing Phase Transitions and Enhancing Sodium Cation Mobility[J]. Angewandte Chemie International Edition, 2019, 58(50): 18086-18095.
[58] GAO X, CHEN J, LIU H, et al. Copper-substituted NaxMO2 (M=Fe, Mn) cathodes for sodium ion batteries: Enhanced cycling stability through suppression of Mn(III) formation[J]. Chemical Engineering Journal, 2021, 406.
[59] LIU H, GAO X, CHEN J, et al. Cu-substitution P2-Na0.66Mn1-xCuxO2 sodium-ion cathode with enhanced interlayer stability[J]. Journal of Energy Chemistry, 2022, 75: 478-485.
[60] ZUO W, QIU J, LIU X, et al. Highly-stable P2-Na0.67MnO2 electrode enabled by lattice tailoring and surface engineering[J]. Energy Storage Materials, 2020, 26: 503-512.
[61] JIANG H, QIAN G, LIU R, et al. Effects of elemental doping on phase transitions of manganese-based layered oxides for sodium-ion batteries[J]. Science China Materials, 2023, 66(12): 4542-4549.
[62] WANG C, LIU L, ZHAO S, et al. Tuning local chemistry of P2 layered-oxide cathode for high energy and long cycles of sodium-ion battery[J]. Nature Communications, 2021, 12(1): 2256.
[63] MA C, ALVARADO J, XU J, et al. Exploring Oxygen Activity in the High Energy P2-Type Na0.78Ni0.23Mn0.69O2 Cathode Material for Na-Ion Batteries[J]. Journal of the American Chemical Society, 2017, 139(13): 4835-4845.
[64] WANG P F, YOU Y, YIN Y X, et al. Suppressing the P2-O2 Phase Transition of Na0.67Mn0.67Ni0.33O2 by Magnesium Substitution for Improved Sodium-Ion Batteries[J]. Angewandte Chemie International Edition, 2016, 55(26): 7445-7449.
[65] ZUO W, REN F, LI Q, et al. Insights of the anionic redox in P2–Na0.67Ni0.33Mn0.67O2[J]. Nano Energy, 2020, 78: 105285.
[66] CHENG Z, ZHAO B, GUO Y J, et al. Mitigating the Large-Volume Phase Transition of P2-Type Cathodes by Synergetic Effect of Multiple Ions for Improved Sodium-Ion Batteries[J]. Advanced Energy Materials, 2022, 12(14): 2103461.
[67] ROUXEL J. Anion–Cation Redox Competition and the Formation of New Compounds in Highly Covalent Systems[J]. Chemistry – A European Journal, 2006, 2(9): 1053-1059.
[68] SUN L, WU Z, HOU M, et al. Unraveling and suppressing the voltage decay of high-capacity cathode materials for sodium-ion batteries[J]. Energy & Environmental Science, 2024, 17(1): 210-218.
[69] SEO D H, LEE J, URBAN A, et al. The structural and chemical origin of the oxygen redox activity in layered and cation-disordered Li-excess cathode materials[J]. Nature Chemistry, 2016, 8(7): 692-697.
[70] LAI Y, XIE H, LI P, et al. Ion-Migration Mechanism: An Overall Understanding of Anionic Redox Activity in Metal Oxide Cathodes of Li/Na-Ion Batteries[J]. Advanced Materials, 2022, 34(47): 2206039.
[71] OKUBO M, YAMADA A. Molecular Orbital Principles of Oxygen-Redox Battery Electrodes[J]. ACS Applied Materials & Interfaces, 2017, 9(42): 36463-36472.
[72] ZAANEN J, SAWATZKY G A, ALLEN J W. Band gaps and electronic structure of transition-metal compounds[J]. Physical Review Letters, 1985, 55(4): 418-421.
[73] ASSAT G, TARASCON J-M. Fundamental understanding and practical challenges of anionic redox activity in Li-ion batteries[J]. Nature Energy, 2018, 3(5): 373-386.
[74] LI F, LIU R, LIU J, et al. Voltage Hysteresis in Transition Metal Oxide Cathodes for Li/Na-Ion Batteries[J]. Advanced Functional Materials, 2023, 33(28): 2300602.
[75] ZUO W, YANG Y. Synthesis, Structure, Electrochemical Mechanisms, and Atmospheric Stability of Mn-Based Layered Oxide Cathodes for Sodium Ion Batteries[J]. Accounts of Materials Research, 2022, 3(7): 709-720.
[76] HOUSE R A, MAITRA U, PéREZ-OSORIO M A, et al. Superstructure control of first-cycle voltage hysteresis in oxygen-redox cathodes[J]. Nature, 2019, 577(7791): 502-508.
[77] BOIVIN E, HOUSE R A, PéREZ-OSORIO M A, et al. Bulk O2 formation and Mg displacement explain O-redox in Na0.67Mn0.72Mg0.28O2[J]. Joule, 2021, 5(5): 1267-1280.
[78] EUM D, KIM B, SONG J-H, et al. Coupling structural evolution and oxygen-redox electrochemistry in layered transition metal oxides[J]. Nature Materials, 2022, 21(6): 664-672.
[79] WANG P-F, YOU Y, YIN Y-X, et al. An O3-type NaNi0.5Mn0.5O2cathode for sodium-ion batteries with improved rate performance and cycling stability[J]. Journal of Materials Chemistry A, 2016, 4(45): 17660-17664.
[80] 赵成龙. 钠离子电池层状氧化物电极材料的合成设计与性能研究[D].中国科学院大学(中国科学院物理研究所), 2015.
[81] CUI Z, MANTHIRAM A. Thermal Stability and Outgassing Behaviors of High‐nickel Cathodes in Lithium-ion Batteries[J]. Angewandte Chemie International Edition, 2023, 62(43): e202307243.
[82] KIM E J, MA L A, DUDA L C, et al. Oxygen Redox Activity through a Reductive Coupling Mechanism in the P3-Type Nickel-Doped Sodium Manganese Oxide[J]. ACS Applied Energy Materials, 2019, 3(1): 184-191.
[83] CHENG C, LI S, LIU T, et al. Elucidation of Anionic and Cationic Redox Reactions in a Prototype Sodium-Layered Oxide Cathode[J]. ACS Applied Materials & Interfaces, 2019, 11(44): 41304-41312.
[84] XIA X, LIU T, CHENG C, et al. Suppressing the Dynamic Oxygen Evolution of Sodium Layered Cathodes through Synergistic Surface Dielectric Polarization and Bulk Site-Selective Co-Doping[J]. Advance Materials, 2023, 35(8): e2209556.
[85] SHEN Q, LIU Y, ZHAO X, et al. Transition-Metal Vacancy Manufacturing and Sodium‐Site Doping Enable a High-Performance Layered Oxide Cathode through Cationic and Anionic Redox Chemistry[J]. Advanced Functional Materials, 2021, 31(51): 2106923.
[86] SHEN Q, LIU Y, ZHAO X, et al. Unexpectedly High Cycling Stability Induced by a High Charge Cut-Off Voltage of Layered Sodium Oxide Cathodes[J]. Advanced Energy Materials, 2022, 13(6): 2203216.
[87] CHENG C, HU H, YUAN C, et al. Precisely modulating the structural stability and redox potential of sodium layered cathodes through the synergetic effect of co-doping strategy[J]. Energy Storage Materials, 2022, 52: 10-18.
[88] SHI Y, LI S, GAO A, et al. Probing the Structural Transition Kinetics and Charge Compensation of the P2-Na0.78Al0.05Ni0.33Mn0.60O2 Cathode for Sodium Ion Batteries[J]. ACS Applied Materials & Interfaces, 2019, 11(27): 24122-24131.
[89] JIN J, LIU Y, SHEN Q, et al. Unveiling the Complementary Manganese and Oxygen Redox Chemistry for Stabilizing the Sodium-Ion Storage Behaviors of Layered Oxide Cathodes[J]. Advanced Functional Materials, 2022, 32(29): 2203424.
[90] LEE D H, XU J, MENG Y S. An advanced cathode for Na-ion batteries with high rate and excellent structural stability[J]. Phys Chem Chem Phys, 2013, 15(9): 3304-3312.
[91] CAI C, LI X, HU P, et al. Comprehensively Strengthened Metal-Oxygen Bonds for Reversible Anionic Redox Reaction[J]. Advanced Functional Materials, 2023, 33(24): 2215155.
[92] XU X, HU S, PAN Q, et al. Enhancing Structure Stability by Mg/Cr Co-Doped for High-Voltage Sodium-Ion Batteries[J]. Small, 2023, 20(12): e2307377.
[93] ZHONG X-B, HE C, GAO F, et al. In situ Raman spectroscopy reveals the mechanism of titanium substitution in P2–Na2/3Ni1/3Mn2/3O2: Cathode materials for sodium batteries[J]. Journal of Energy Chemistry, 2021, 53: 323-328.
[94] PENG B, SUN Z, ZHAO L, et al. Dual-Manipulation on P2-Na0.67Ni0.33Mn0.67O2 Layered Cathode toward Sodium-Ion Full Cell with Record Operating Voltage Beyond 3.5 V[J]. Energy Storage Materials, 2021, 35: 620-629.
[95] JIN J, LIU Y, PANG X, et al. A comprehensive understanding of the anionic redox chemistry in layered oxide cathodes for sodium-ion batteries[J]. Science China Chemistry, 2020, 64(3): 385-402.
[96] XU H, GUO S, ZHOU H. Review on anionic redox in sodium-ion batteries[J]. Journal of Materials Chemistry A, 2019, 7(41): 23662-23678.
[97] SINGH P, DIXIT M. Opportunities and Challenges in the Development of Layered Positive Electrode Materials for High-Energy Sodium Ion Batteries: A Computational Perspective[J]. Langmuir, 2023, 39(1): 28-36.
[98] BASSEY E N, REEVES P J, JONES M A, et al. Structural Origins of Voltage Hysteresis in the Na-Ion Cathode P2–Na0.67[Mg0.28Mn0.72]O2: A Combined Spectroscopic and Density Functional Theory Study[J]. Chemistry of Materials, 2021, 33(13): 4890-4906.
[99] HUANG Y, ZHU Y, NIE A, et al. Enabling Anionic Redox Stability of P2-Na5/6Li1/4Mn3/4O2 by Mg Substitution[J]. Advance Materials, 2022, 34(9): e2105404.
[100]RONG X, XIAO D, LI Q, et al. Boosting reversible anionic redox reaction with Li/Cu dual honeycomb centers[J]. eScience, 2023, 3(5): 100159.
[101]KIM H-J, VORONINA N, KöSTER K, et al. Synergetic impact of dual substitution on anionic–Cationic activity of P2-type sodium manganese oxide[J]. Energy Storage Materials, 2024, 66.
[102]JIN J, LIU Y, ZHAO X, et al. Annealing in Argon Universally Upgrades the Na-Storage Performance of Mn-Based Layered Oxide Cathodes by Creating Bulk Oxygen Vacancies[J]. Angew Chem Int Ed Engl, 2023, 62(15): e202219230.
[103]FU F, LIU X, FU X, et al. Entropy and crystal-facet modulation of P2-type layered cathodes for long-lasting sodium-based batteries[J]. Nature Communications, 2022, 13(1): 2826.
[104]JI H, JI W, XUE H, et al. Synergistic activation of anionic redox via cosubstitution to construct high-capacity layered oxide cathode materials for sodium-ion batteries[J]. Science Bulletin, 2023, 68(1): 65-76.
[105]SAXENA S, BADOLE M, VASAVAN H N, et al. Deciphering the role of optimal P2/O3 phase fraction in enhanced cyclability and specific capacity of layered oxide cathodes[J]. Chemical Engineering Journal, 2024, 485(1): 149921.
[106]KIM B, SONG J-H, EUM D, et al. A theoretical framework for oxygen redox chemistry for sustainable batteries[J]. Nature Sustainability, 2022, 5(8): 708-716.
[107]ZHAO C, YAO Z, WANG J, et al. Ti Substitution Facilitating Oxygen Oxidation in Na2/3Mg1/3Ti1/6Mn1/2O2 Cathode[J]. Chem, 2019, 5(11): 2913-2925.
[108]CAO X, LI X, QIAO Y, et al. Restraining Oxygen Loss and Suppressing Structural Distortion in a Newly Ti-Substituted Layered Oxide P2-Na0.66Li0.22Ti0.15Mn0.63O2[J]. ACS Energy Letters, 2019, 4(10): 2409-2417.
[109]CAO M-H, LI R-Y, LIN S-Y, et al. Oxygen redox chemistry in P2-Na0.6Li0.11Fe0.27Mn0.62O2 cathode for high-energy Na-ion batteries[J]. Journal of Materials Chemistry A, 2021, 9(48): 27651-27659.
[110]TAPIA-RUIZ N, SOARES C, SOMERVILLE J W, et al. P2-Na2/3Mg1/4Mn7/12Co1/6O2 cathode material based on oxygen redox activity with improved first-cycle voltage hysteresis[J]. Journal of Power Sources, 2021, 506: 230104.
[111]LIU J, QI R, ZUO C, et al. Inherent inhibition of oxygen loss by regulating superstructural motifs in anionic redox cathodes[J]. Nano Energy, 2021, 88: 106252.
[112]CHEN C, ZHAO C, LIU H, et al. Mitigating the Formation of Tetrahedral Zn in Layered Oxides Enables Reversible Lattice Oxygen Redox Triggering by the Na–O–Zn Configuration[J]. ACS Nano, 2023, 17(12): 11406-11413.
[113]LU H, CHU S, TIAN J, et al. Ultra-High-Energy Density in Layered Sodium-Ion Battery Cathodes through Balancing Lattice-Oxygen Activity and Reversibility[J]. Advanced Functional Materials, 2023, 34(2): 2305470.
[114]YOON G H, KOO S, PARK S J, et al. Enabling Stable and Nonhysteretic Oxygen Redox Capacity in Li-Excess Na Layered Oxides[J]. Advanced Energy Materials, 2022, 12(11): 2103384.
[115]CAO X, LI H, QIAO Y, et al. Triggering and Stabilizing Oxygen Redox Chemistry in Layered Li[Na1/3Ru2/3]O2 Enabled by Stable Li–O–Na Configuration[J]. ACS Energy Letters, 2022, 7(7): 2349-2356.
[116]HOUSE R A, MAITRA U, JIN L, et al. What Triggers Oxygen Loss in Oxygen Redox Cathode Materials?[J]. Chemistry of Materials, 2019, 31(9): 3293-3300.
[117]LIU S, WANG B, ZHANG X, et al. Reviving the lithium-manganese-based layered oxide cathodes for lithium-ion batteries[J]. Matter, 2021, 4(5): 1511-1527.
[118]WANG P-F, JIN T, ZHANG J, et al. Elucidation of the Jahn-Teller effect in a pair of sodium isomer[J]. Nano Energy, 2020, 77: 105167.
[119]JIN J, LIU Y, ZHAO X, et al. Annealing in Argon Universally Upgrades the Na-Storage Performance of Mn-Based Layered Oxide Cathodes by Creating Bulk Oxygen Vacancies[J]. Angewandte Chemie International Edition, 2023, 62(15): e202219230.
[120]WAN G, DOU W, ZHU H, et al. Empowering higher energy sodium-ion battery cathode by oxygen chemistry[J]. Interdisciplinary Materials, 2023, 2(3): 416-422.
[121]ZHANG Y, HU A, XIA D, et al. Operando characterization and regulation of metal dissolution and redeposition dynamics near battery electrode surface[J]. Nature Nanotechnol, 2023, 18(7): 790-797.
[122]LI X, XU J, LI H, et al. Synergetic Anion-Cation Redox Ensures a Highly Stable Layered Cathode for Sodium-Ion Batteries[J]. Advance Science, 2022, 9(16): e2105280.
修改评论