中文版 | English
题名

面向抓取作业的旋翼飞行机械臂控制系统研究

其他题名
RESEARCH ON THE CONTROL SYSTEM OF AERIAL MANIPULATOR AIMED AT GRASPING OPERATIONS
姓名
姓名拼音
LIN Huaxing
学号
12132543
学位类型
硕士
学位专业
0809 电子科学与技术
学科门类/专业学位类别
08 工学
导师
周翊民
导师单位
中国科学院深圳先进技术研究院
论文答辩日期
2024-05-09
论文提交日期
2024-07-04
学位授予单位
南方科技大学
学位授予地点
深圳
摘要

旋翼无人机具有灵活机动、定点悬停和垂直起降等优势,在航拍、农业植保、电力巡检等领域中发挥着至关重要的作用。在旋翼无人机上加装多自由机械臂的旋翼飞行机械臂系统,更是具备了空中抓取、接触式空中作业等能力,实现了从被动观察到主动干预的转变,极大地扩展了旋翼无人机的应用场景。然而外部环境、内部机械臂等干扰都会极大地影响飞行机械臂系统的控制精度,因而本文设计了自适应反步控制策略以及分数阶终端滑模控制策略,实现旋翼飞行机械臂系统的高精度稳定控制,本文的主要内容如下:
(1)根据 D-H 准则、牛顿-欧拉方程和拉格朗日-欧拉方程等方法对旋翼飞行机械臂系统进行简化推导,研究其内部结构和工作机理,建立无人机、机械臂以及旋翼飞行机械臂的运动学和动力学模型,分析系统的运动和受力情况,深入理解了其行为特征和性能表现。
(2)采用了分离式控制的策略,将系统分解为外环位置控制和内环姿态控制两个部分。内环控制结合自适应法和反步法,减少抓取过程中质量突变对系统的影响。同时为了应对机械臂运动导致的力矩干扰、质心偏移干扰以及外部环境扰动,还设计了一种改进的超螺旋扩展状态观测器,并通过仿真和实验验证了控制算法的有效性和系统稳定性。
(3)采用集中式控制策略设计控制器,以应对机械臂与无人机动力学耦合及外部环境干扰对系统稳定性的影响,控制器由分数阶滑模面、快速终端滑模面、自适应律和基于 RBF 神经网络的干扰估计器等组成,以确保系统在动态不确定性和外部干扰下实现精准操纵任务,并通过 Lyapunov理论和实物飞行实验证明了系统的稳定性。

关键词
语种
中文
培养类别
独立培养
入学年份
2021
学位授予年份
2024-07
参考文献列表

[1] J. Guan, X. Yang, V. C. Lee, et al. Full field-of-view pavement stereo reconstruction underdynamic traffic conditions: Incorporating heightadaptive vehicle detection and multi-view oc clusion optimization[J]. Automation in Construction, 2022, 144(10465): 1-27.
[2] C. Wang, Y. Liu, Z. Zhang, et al. Spray performance evaluation of a sixrotor unmanned aerialvehicle sprayer for pesticide application using an orchard operation mode in apple orchards[J].Pest Management Science, 2022, 78(6): 2449-2466.
[3] J. Zhong and Y. Zhang and J. Wang, et al. Unmanned aerial vehicle flight data anomaly de tection and recovery prediction based on spatio-temporal correlation[J]. IEEE Transactions onReliability, 2021, 71(1): 457-468.
[4] Albers A and Trautmann S and Howard T, et al. Semi-autonomous flying robot for physicalinteraction with environment[C]. 2010 IEEE Conference on Robotics, Automation and Mecha tronics , 2010: 441-446.
[5] Mellinger D and Lindsey Q and Shomin M, et al. Design, modeling, estimation and control foraerial grasping and manipulation[C]. 2011 IEEE/RSJ International Conference on IntelligentRobots and Systems , 2011: 2668-2673.
[6] Marconi L and Naldi R and Gentili L. Modelling and control of a flying robot interacting withthe environment[J]. Automatica, 2011, 47(12): 2571-2583.
[7] Fumagalli M and Naldi R and Macchelli A, et al. Developing an aerial manipulator prototype:Physical interaction with the environment[J]. IEEE Robotics & Automation Magazine, 2014,21(3): 41-50.
[8] Pounds P E I and Bersak D R and Dollar A M. Stability of small-scale UAV helicopters andquadrotors with added payload mass under PID control[J]. Autonomous Robots, 2012, 33:129-142.
[9] Pounds P E I and Bersak D R and Dollar A M. Grasping from the air: Hovering captureand load stability[C]. 2011 IEEE International Conference on Robotics and Automation, 2011:2491-2498.
[10] Ollero A and Heredia G and Franchi A, et al. The aeroarms project: Aerial robots with advancedmanipulation capabilities for inspection and maintenance[J]. IEEE Robotics & AutomationMagazine, 2018, 25(4): 12-23.
[11] Paneque J L and Martinez-de Dios J R, A O. Multi-sensor 6-dof localization for aerial robotsin complex GNSS-denied environments[C]. 2019 IEEE/RSJ International Conference on Intel ligent Robots and Systems (IROS) , 2019: 1978-1984.
[12] Caballero A and Suarez A and Real F, et al. First experimental results on motion planning fortransportation in aerial long-reach manipulators with two arms[C]. 2018 IEEE/RSJ InternationalConference on Intelligent Robots and Systems (IROS) , 2018: 8471-8477.55￾￾￾￾￾￾￾￾￾￾￾￾参考文献
[13] Yang H and Lee D. Dynamics and control of quadrotor with robotic manipulator[C]. 2014 IEEEInternational Conference on Robotics and Automation (ICRA) , 2014: 5544-5549.
[14] Zhang G and He Y and Dai B, et al. Grasp a moving target from the air: System & controlof an aerial manipulator[C]. 2018 IEEE International Conference on Robotics and Automation(ICRA) , 2018: 1681-1687.
[15] Jafarinasab M and Sirouspour S and Dyer E. Model-based motion control of a robotic manip ulator with a flying multirotor base[J]. IEEE/ASME Transactions on Mechatronics, 2019, 24(5): 2328-2340.
[16] Zhang G and He Y and Dai B, et al. Robust control of an aerial manipulator based on a variableinertia parameters model[J]. IEEE Transactions on Industrial Electronics, 2019, 67(11): 9515-9525.
[17] Hua H and Fang Y and Zhang X, et al. Auto-tuning nonlinear PID-type controller for rotorcraft based aggressive transportation[J]. Mechanical Systems and Signal Processing, 2020, 145(106858):1-14 .
[18] Liu Y C and Huang C Y. DDPG-based adaptive robust tracking control for aerial manipulatorswith decoupling approach[J]. IEEE Transactions on Cybernetics, 2021, 52(8): 8258-8271.
[19] Cao H and Wu Y and Wang L. Adaptive NN motion control and predictive coordinate planningfor aerial manipulators[J]. Aerospace Science and Technology, 2022, 126: 107607.
[20] P. Pounds and D. Bersak and A. Dollar. Grasping from the air: Hovering capture and loadstability[C]. IEEE International Conference on Robotics and Automation , 2011: 2491-2498.
[21] D. Mellinger and Q. Lindsey and M. Shomin, et al. Design, modeling, estimation and control foraerial grasping and manipulation[C]. IEEE/RSJ International Conference on Intelligent Robotsand Systems , 2011: 2668-2673.
[22] F. Ruggiero and J. Cacace and H. Sadeghian, et al. Impedance control of vtol uavs with amomentum-based external generalized forces estimator[C]. IEEE International Conference onRobotics and Automation (ICRA) , 2014: 2093-2099.
[23] H. Lee and S. Kim and H. J. Kim. Control of an aerial manipulator using on-line parameterestimator for an unknown payload[C]. IEEE International Conference on Automation Scienceand Engineering (CASE) , 2015: 316-321.
[24] J. Geng and J. W. Langelaan. Mass and center of mass location estimation for a multi-lift slungload[C]. AIAA SciTech 2020 Forum, 2020: 1-19.
[25] N. Koksal and H. An and B. Fidan. Backstepping-based adaptive control of a quadrotor uavwith guaranteed tracking performance[J]. ISA Transactions, 2020, 105: 98-110.
[26] S. Dai and T. Lee and D. S. Bernstein. Adaptive control of a quadrotor uav transporting a cable suspended load with unknown mass[C]. 53rd IEEE Conference on Decision and Control , 2014:6149-6154.
[27] B. Xian and S. Wang and S. Yang. Nonlinear adaptive control for an unmanned aerial payloadtransportation system: theory and experimental validation[J]. Nonlinear Dynamics, 2019, 98:1745-1760.56参考文献
[28] X. Liang and Y. Fang and N. Sun, et al. Adaptive nonlinear hierarchical control for a rotorcrafttransporting a cable-suspended payload[J]. IEEE Transactions on Systems, Man, and Cyber netics: Systems, 2019, 51(7): 4171-4182.
[29] G. Yu and W. Xie and D. Cabecinhas, et al. Adaptive control with unknown mass estimationfor a quadrotor-slung-load system[J]. ISA Transactions, 2023, 133: 412-423.
[30] Liang J and Chen Y and Wu Y, et al. Adaptive prescribed performance control of unmannedaerial manipulator with disturbances[J]. IEEE Transactions on Automation Science and Engi neering, 2022, 20(3): 1804-1814.
[31] S. Kim and S. Choi and H. Kim, et al. Robust control of an equipment-added multirotor usingdisturbance observer[J]. IEEE Transactions on Control Systems Technology, 2017, 26(4): 1524-1531.
[32] G. Zhang and Y. He and B. Dai, et al. Robust control of an aerial manipulator based on avariable inertia parameters model[J]. IEEE Transactions on Industrial Electronics, 2019, 67(11): 9515-9525.
[33] Y. Yang and J. Liu and Z. Li, et al. Nonlinear disturbance observer based adaptive backsteppingcontrol for trajectory tracking of aerial parallel manipulator[C]. The 46th Annual Conferenceof the IEEE Industrial Electronics Society , 2020: 4776-4781.
[34] C. Zhiyuan and L. Yanyang and S. Yanhua, et al. Fuzzy sliding mode control for rotorcraftaerial manipulator with extended state observer[C]. Chinese Automation Congress (CAC) ,2020: 1710-1714.
[35] H. Cao and Y. Li and C. Liu, et al. ESO-based robust and high-precision tracking control foraerial manipulation[J]. IEEE Transactions on Automation Science and Engineering, 2023: 1-17.
[36] W. Cai and J. She and M. Wu, et al. Disturbance suppression for quadrotor UAV using sliding mode-observer-based equivalent-input-disturbance approach[J]. ISA Transactions, 2019, 92:286-297.
[37] D. Shi and Z. Wu and W. Chou. Super-twisting extended state observer and sliding modecontroller for quadrotor UAV attitude system in presence of wind gust and actuator faults[J].Electronics, 2018, 7(8): 1-21.
[38] Kim S and Seo H and Choi S, et al. Vision-guided aerial manipulation using a multirotor witha robotic arm[J]. IEEE/ASME Transactions On Mechatronics, 2016, 21(4): 1912-1923.
[39] Yilmaz E and Zaki H and Unel M. Nonlinear adaptive control of an aerial manipulation system[C]. 2019 18th European Control Conference (ECC) , 2019: 3916-3921.
[40] Samadikhoshkho Z and Ghorbani S and Janabi-Sharifi F. Coupled dynamic modeling and con trol of aerial continuum manipulation systems[J]. Applied Sciences, 2021, 11(19): 9108.
[41] Lai N and Chen Y and Liang J, et al. An onboard-eye-to-hand visual servo and task coordinationcontrol for aerial manipulator based on a spherical model[J]. Mechatronics, 2022, 82: 102724.
[42] Xu M and Hu A and Wang H. Image-based visual impedance force control for contact aerialmanipulation[J]. IEEE Transactions on Automation Science and Engineering, 2022, 20(1):518-527.57参考文献
[43] Hu A and Xu M and Wang H, et al. Vision-based impedance control of an aerial manipulatorusing a nonlinear observer[J]. IEEE Transactions on Automation Science and Engineering,2022, 20(2): 1441-1451.
[44] Lai N and Chen Y and Liang J and others, et al. Image dynamics-based visual servo control forunmanned aerial manipulator with a virtual camera[J]. IEEE/ASME Transactions on Mecha tronics, 2022, 27(6): 5264-5274.
[45] Zhang Z and Chen Y and Wu Y, et al. Gliding grasping analysis and hybrid force/positioncontrol for unmanned aerial manipulator system[J]. ISA Transactions, 2022, 126: 377-387.
[46] Zhang Z and Chen Y and Wu Y, et al. Hybrid force/position control for switchable unmannedaerial manipulator between free flight and contact operation[Early Access]. IEEE Transactionson Automation Science and Engineering, 2023: 1-15. DOI: 10.1109/TASE.2023.3294254.
[47] Ouyang Z and Mei R and Liu Z, et al. Control of an aerial manipulator using a quadrotor with areplaceable robotic arm[C]. 2021 IEEE International Conference on Robotics and Automation(ICRA) , 2021: 153-159.
[48] Yavari M and Gupta K and Mehrandezh M. Interleaved Predictive Control and Planning for anUnmanned Aerial Manipulator With On-The-Fly Rapid Re-Planning in Unknown Environments[J]. IEEE Transactions on Automation Science and Engineering, 2022, 20(3): 1690-1705.
[49] Ye W and Zhang P and Chang H. A data-driven optimal time-delayed control approach and itsapplication to aerial manipulators[J]. Control Engineering Practice, 2024, 142: 105754.
[50] Liang J and Chen Y and Wu Y, et al. Active physical interaction control for aerial manipulatorbased on external wrench estimation[J]. IEEE/ASME Transactions on Mechatronics, 2023, 28(5): 2774-2785.
[51] Zhang Z and Chen Y and Wu Y, et al. Hybrid Force/Position Control of Multi-Mobile Ma nipulators for Cooperative Operation Without Force Measurements[J]. IEEE Transactions onCircuits and Systems I: Regular Papers, 2024, 71(1): 397-410.
[52] Zhang Z and Chen Y and Wu Y, et al. Adaptive sliding-mode disturbance observer-based finite time control for unmanned aerial manipulator with prescribed performance[J]. IEEE Transac tions on Cybernetics, 2022, 53(5): 3263-3276.
[53] Xu W and Cao L and Peng B, et al. Adaptive nonsingular fast terminal sliding mode control ofaerial manipulation based on nonlinear disturbance observer[J]. Drones, 2023, 7(2): 88.
[54] Ding L and Zhu G and Li Y, et al. Cable-Driven Unmanned Aerial Manipulator Systems forWater Sampling: Design, Modeling, and Control[J]. Drones, 2023, 7(7): 450.
[56] PX4 Autopilot User Guide[EB/OL]. https://docs.px4.io/main/zh/index.html.
[57] Jetson TX2[EB/OL]. https://www.nvidia.cn/autonomous-machines/embedded-systems/jetson tx2/.

所在学位评定分委会
电子科学与技术
国内图书分类号
TP242.3
来源库
人工提交
成果类型学位论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/778957
专题中国科学院深圳理工大学(筹)联合培养
推荐引用方式
GB/T 7714
林铧星. 面向抓取作业的旋翼飞行机械臂控制系统研究[D]. 深圳. 南方科技大学,2024.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
面向抓取作业的旋翼飞行机械臂.pdf(16169KB)----限制开放--请求全文
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[林铧星]的文章
百度学术
百度学术中相似的文章
[林铧星]的文章
必应学术
必应学术中相似的文章
[林铧星]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。