中文版 | English
题名

金属有机框架内CO2水合物生成特性研究

其他题名
STUDY ON THE FORMATION CHARACTERISTICS OF CO2 HYDRATE WITHIN METAL-ORGANIC FRAMEWORKS
姓名
姓名拼音
LONG Hao
学号
12232937
学位类型
硕士
学位专业
0856 材料与化工
学科门类/专业学位类别
08 工学
导师
王朋飞
导师单位
前沿与交叉科学研究院
论文答辩日期
2024-05-09
论文提交日期
2024-07-04
学位授予单位
南方科技大学
学位授予地点
深圳
摘要

CO2 大量排放引起的全球气候变暖问题已经威胁到人类的生存与发展, 力争在 2030 年前实现“碳达峰”、2060 年前实现“碳中和”是我国应对气 候问题的重大战略决策。采用 CO2 捕集与封存技术(CO2 capture and storage,CCS)是实现碳中和的重要手段。水合物法 CO2 捕集是一种具有 发展潜力的碳捕集技术,但是该技术仍面临水合物生成热力学条件苛刻、 捕集效率低等问题。金属有机框架(metal-organic frameworks,MOFs)因其具有较大的比表面积和孔隙度,被认为可以促进水合物生成并提高 CO2 捕集效率。但是目前 MOFs 种类繁多,不同类型 MOFs 内 CO2 水合物生成特性尚不清晰,因此有必要开展 MOFs 内 CO2 水合物生成特性的实验 研究,为提高水合物法 CO2 捕集效率提供理论和数据支持。

首先,本研究制备了 1,3,5-均苯三羧酸铜(HKUST-1)和 2-甲基咪唑锌盐(ZIF-8)两种具有不同润湿性的 MOFs 材料,并表征了其晶体结构、孔隙尺寸、粒径分布及表面形貌等基本物性;然后开展了 MOFs 材料中CO2 水合物生成的热力学特性研究,分析了 CO2 水合物在两种 MOFs 材料内的相平衡特性,探究了水饱和度、温度和压力对两种 MOFs 材料中 CO2水合物相平衡特性的影响;最后开展了水合物生成条件下 MOFs 材料稳定性研究,揭示了 CO2 水合物生成与分解过程对两种 MOFs 材料晶体结构、孔隙尺寸、粒径分布及表面形貌的影响规律,评估了两种 MOFs 材料的稳定性。主要研究结果如下:

(1)在具有亲水性的 HKUST-1 体系中,HKUST-1 的纳米限域效应对CO2 水合物和冰的生成具有抑制作用,在 190%水饱和度体系中相同压力下 CO2 水合物相平衡温度降低了 2 ℃,在 200%水饱和度体系中降低了 4 ℃。 在-12 ℃时,冰的融点降低了 9 ℃。在水饱和度为 150%-200%的范围内,存在一个最佳水饱和度,使得 HKUST-1 中 CO2 水合物的生成量最大,同时冰的生成量最少,可以有效地提高水合物的转化率。当水饱和度达到 190% 时,增大气体压力至 2.8 MPa 后,在-12 ℃条件下没有冰生成。这表明在高水饱和度的 HKUST-1 体系中,可以通过增大气体压力来提高水合物转化率。

(2)在具有疏水性的 ZIF-8 体系中,ZIF-8 的疏水性孔隙对 CO2 水合物和冰的生长都表现出抑制作用,通过改变水饱和度、降低温度和增加压力均没有促进 CO2 水合物生成。

(3)在水合物生成条件下,HKUST-1 稳定性降低并发生水解,水解后晶体表面出现缺陷阻碍了孔隙与外界环境的连通,同时水解后的产物出现团聚现象减小了比表面积,不利于 CO2 水合物生成。

(4)在纯水环境下,ZIF-8 具有较高的稳定性。但是在 CO2 水合物生成条件下 CO2 溶解导致的酸性环境使 ZIF-8 的稳定性变差,且部分 ZIF-8晶体与 CO2 反应形成了碳酸锌氢氧化物。此外,与纯水环境相比,ZIF-8 在酸性含水环境下更容易发生团聚,导致 ZIF-8 的比表面积和微孔孔容降低。

本研究分析了金属有机框架内 CO2 水合物生成特性,探究了金属有机 框架的润湿性、水饱和度、温度和压力等因素对 CO2 水合物生成特性的影响机理,评估了水合物生成条件下 MOFs 材料的稳定性,为 MOFs 材料在水合物法 CO2 捕集技术中的应用提供了重要理论和数据支持。

 

其他摘要

Global climate warming caused by massive CO2 emissions has threatened human survival and development. Striving to achieve "carbon peak" before 2030 and "carbon neutrality" before 2060 is a major strategic decision for my country to deal with climate issues. The use of CO2 capture and storage (CCS) technology is an important means to achieve carbon neutrality. Hydrate CO2 capture is a carbon capture technology with development potential, but this technology still faces problems such as harsh thermodynamic conditions for hydrate formation and low capture efficiency. Metal-organic frameworks (MOFs) are believed to promote hydrate formation and improve CO2 capture efficiency because of their large specific surface area and porosity. However, there are currently many types of MOFs, and the characteristics of CO2 hydrate formation in different types of MOFs are not yet clear. Therefore, it is necessary to study the characteristics of CO2 hydrate formation in MOFs to provide theoretical and data support for improvin g the CO2 capture efficiency of the hydrate method.

First, this study prepared two MOFs materials with different wettability, HKUST-1 and ZIF-8, and characterized their basic physical properties such as crystal structure, pore size, particle size distribution and surface morphology; then, the MOFs materials were developed Study on the thermodynamic characteristics of CO2 hydrate formation, analyze the phase equilibrium characteristics of CO2 hydrate in two MOFs materials, and explore the effects of water saturation, temperature and pressure on the phase equilibrium characteristics of CO2 hydrate in two MOFs materials; Finally, a study on the stability of MOFs materials under hydrate formation conditions was carried out, revealing the influence of the CO2 hydrate formation and decomposition process on the crystal structure, pore size, particle size distribution and surface morphology of the two MOFs materials, and evaluating the two MOFs Material stability.Below are key research findings:

(1) In the hydrophilic HKUST-1 system, the nano-restricted domain effect of HKUST-1 inhibited the generation of CO2 hydrate and ice, and the phase equilibrium temperatures of CO2 hydrate were reduced by 2 ℃ at the same pressure in the 190% water-saturated system and by 4 ℃ in the 200% water-saturated system. At -12 ℃, the melting point of ice was reduced by 9 ℃. In the range of 150%-200% water saturation, there exists an optimal water saturation degree, which makes the maximum generation of CO2 hydrate in HKUST-1 and at the same time the minimum generation f ice, which can effectively improve the conversion rate of hydrate. When the water saturation reached 190%, no ice was generated at -12 ℃ after increasing the gas pressure to 2.8 MPa. This indicates that the hydrate conversion rate can be improved by increasing the gas pressure in the HKUST-1 system with high water saturation.

(2) In the hydrophobic ZIF-8 system, the hydrophobic pores of ZIF-8 show an inhibitory effect on the growth of CO2 hydrate and ice, and CO2 is not promoted by changing the water saturation, lowering the temperature, and increasing the pressure. Hydrate formation.

(3) Under the conditions of hydrate formation, the stability of HKUST-1 decreases and hydrolysis occurs. After hydrolysis, defects appear on the crystal surface, which hinders the connection between the

pores and the external environment. At the same time, the agglomeration of the hydrolyzed products reduces the specific surface area and does not Conducive to the formation of CO2 hydrate.

(4) In pure water environment, ZIF-8 has high stability. However, the acidic environment caused by the dissolution of CO2 under the conditions of CO2 hydrate formation worsens the stability of ZIF -8, and some ZIF-8 crystals react with CO2 to form zinc carbonate hydroxide. In addition, compared with a pure water environment, ZIF -8 is more likely to agglomerate in an acidic aqueous environment, resulting in a reduction in the specific surface area and micropore volume of ZIF -8.

  This study analyzes the CO2 hydrate formation characteristics within the metal-organic framework, explores the influence mechanism of factors such as the wettability, water saturation, temperature and pressure of the metal-organic framework on the CO2 hydrate formation characteristics, and evaluates the conditions under which hydrates are generated. The stability of MOFs materials provides important theoretical and data support for the application of MOFs materials in hydrate CO2 capture technology.

 

关键词
其他关键词
语种
中文
培养类别
独立培养
入学年份
2022
学位授予年份
2024-06
参考文献列表

[1] LI A R, WANG J, BAO B P. High-efficiency CO2 capture and separation based on hydrate technology: A review [J]. Greenh Gases, 2019, 9(2): 175 -93.
[2] OLAJIRE A A. CO2 capture and separation technologies for end -of-pipe applications - A review [J]. Energy, 2010, 35(6): 2610 -28.
[3] KHATTAK S I, AHMAD M. The cyclical impact of innovation in green and sustainable technologies on carbon dioxide emissions in OECD economies [J]. Environmental Science and Pollution Research, 2022, 29(22): 33809 -25.
[4] LI L, ZHAO N, WEI W, et al. A review of research progress on CO 2 capture, storage, and utilization in Chinese Academy of Sciences [J]. Fuel, 2013, 108: 112-30.
[5] PINTO J T D, MISTAGE O, BILOTTA P, et al. Road -rail intermodal freight transport as a strategy for climate change mitigation [J]. Environ Dev, 2018, 25: 100-10.
[6] BODEN T A A A, ROBERT J. AND MARLAND, G. Global, Regional, and National Fossil-Fuel CO2 Emissions (1751 - 2009) (V. 2012) [J]. United States: N p, 2012.
[7] RITCHIE H, ROSADO P, ROSER M. CO₂ and Greenhouse Gas Emissions [J]. Our World in Data.
[8] HANDOGO R. Carbon Capture and Storage System Using Pinch Design Method [J]. MATEC Web of Conferences, 2018, 156: 03005.
[9] BAUGH L S. "carbon capture and storage" [J]. Encyclopedia Britannica, 2023.
[10] AARON D, TSOURIS C. Separation of CO2 from flue gas: A review [J]. Sep Sci Technol, 2005, 40(1-3): 321-48.
[11] DASHTI H, YEW L Z, LOU X. Recent advances in gas hydrate -based CO2capture [J]. J Nat Gas Sci Eng, 2015, 23: 195 -207.
[12] HESTER K C, HUO Z, BALLARD A L, et al. Thermal expansivity for sI and sII clathrate hydrates [J]. J Phys Chem B, 2007, 111(30): 8830 -5.
[13] SLOAN E D. Fundamental principles and applications of natural gas hydrates [J]. Nature, 2003, 426(6964): 353 -9.
[14] STROBEL T A, HESTER K C, KOH C A, et al. Properties of the clathrates of hydrogen and developments in their applicability for hydrogen storage [J]. Chem Phys Lett, 2009, 478(4-6): 97-109.
[15] SUN D, ENGLEZOS P. Storage of CO2 in a partially water saturated porous medium at gas hydrate formation conditions [J]. Int J Greenh Gas Con, 2014, 25: 1-8.
[16] BACHU S. Sequestration of CO2 in geological media: criteria and approach for site selection in response to climate change [J]. Energ Convers Manage, 2000, 41(9): 953-70.
[17] SUN Q, KANG Y T. Review on CO2 hydrate formation/dissociation and its cold energy application [J]. Renew Sust Energ Rev, 2016, 62: 478 -94.
[18] XIA Z M, ZHAO Q, CHEN Z Y, et al. Review of methods and applications for promoting gas hydrate formation process [J]. J Nat Gas Sci Eng, 2022, 101.
[19] 徐刚,徐纯刚,王敏,等.水合物法分离 CO2 工艺研究进展 [J].新能源进展, 2021, 9(02): 126-32.
[20] WANG L, DOU M, WANG Y, et al. A Review of the Effect of Porous Media on Gas Hydrate Formation [J]. ACS Omega, 2022, 7(38): 33666 -79.
[21] CASCO M E, REY F, JORDá J L, et al. Paving the way for methane hydrate formation on metal-organic frameworks (MOFs) [J]. Chemical Science, 2016, 7(6): 3658-66.
[22] CASCO M E, SILVESTRE-ALBERO J, RAMíREZ-CUESTA A J, et al. Methane hydrate formation in confined nanospace can surpass nature [J]. Nature Communications, 2015, 6.
[23] SAYARI A, BELMABKHOUT Y. Stabilization of Amine -Containing CO2Adsorbents: Dramatic Effect of Water Vapor [J]. J Am Chem Soc, 2010, 132(18): 6312-+.
[24] BURTCH N C, JASUJA H, WALTON K S. Water Stability and Adsorption in Metal-Organic Frameworks [J]. Chem Rev, 2014, 114(20): 10575 -612.
[25] KARRA J R, GRABICKA B E, HUANG Y G, et al. Adsorption study of CO 2 , CH4 , N2 , and H2O on an interwoven copper carboxylate metal-organic framework (MOF-14) [J]. J Colloid Interf Sci, 2013, 392: 331 -6.
[26] FURUKAWA H, GANDARA F, ZHANG Y B, et al. Water Adsorption in Porous Metal-Organic Frameworks and Related Materials [J]. J Am Chem Soc, 2014, 136(11): 4369-81.
[27] KANG I J, KHAN N A, HAQUE E, et al. Chemical and Thermal Stability of Isotypic Metal-Organic Frameworks: Effect of Metal Ions [J]. Chem-Eur J, 2011, 17(23): 6437-42.
[28] CYCHOSZ K A, MATZGER A J. Water Stability of Microporous Coordination Polymers and the Adsorption of Pharmaceuticals from Water [J]. Langmuir, 2010, 26(22): 17198-202.
[29] LOW J J, BENIN A I, JAKUBCZAK P, et al. Virtual High Throughput Screening Confirmed Experimentally: Porous Coordination Polymer Hydration [J]. J Am Chem Soc, 2009, 131(43): 15834 -42.
[30] FAUZIAH C A, AL-YASERI A Z, BELOBORODOV R, et al. Carbon Dioxide/Brine, Nitrogen/Brine, and Oil/Brine Wettability of Montmorillonite, Illite, and Kaolinite at Elevated Pressure and Temperature [J]. Energ Fuel, 2019, 33(1): 441-8.
[31] PARK K S, NI Z, COTE A P, et al. Exceptional chemical and thermal stability of zeolitic imidazolate frameworks [J]. Proc Natl Acad Sci U S A, 2006, 103(27): 10186-91.
[32] WANG P, TENG Y, ZHU J, et al. Review on the synergistic effect between metal–organic frameworks and gas hydrates for CH4 storage and CO 2separation applications [J]. Renewable and Sustainable Energy Reviews, 2022, 167: 112807.
[33] MORRIS W, STEVENS C J, TAYLOR R E, et al. NMR and X -ray Study Revealing the Rigidity of Zeolitic Imidazolate Frameworks [J]. The Journal of Physical Chemistry C, 2012, 116(24): 13307 -12.
[34] ALVAREZ E, GUILLOU N, MARTINEAU C, et al. The Structure of the Aluminum Fumarate Metal–Organic Framework A520 [J]. Angewandte Chemie International Edition, 2015, 54(12): 3664 -8.
[35] AHMED A, HODGSON N, BARROW M, et al. Macroporous metal-organic framework microparticles with improved liquid phase separation [J]. Journal of Materials Chemistry A, 2014, 2(24): 9085 -90.
[36] VOLKRINGER C, POPOV D, LOISEAU T, et al. Synthesis, Single -Crystal X ray Microdiffraction, and NMR Characterizations of the Giant Pore Metal -Organic Framework Aluminum Trimesate MIL-100 [J]. Chemistry of Materials, 2009, 21(24): 5695-7.
[37] LEBEDEV O I, MILLANGE F, SERRE C, et al. First Direct Imaging of Giant Pores of the Metal−Organic Framework MIL-101 [J]. Chemistry of Materials, 2005, 17(26): 6525-7.
[38] TOWSIF ABTAB S M, ALEZI D, BHATT P M, et al. Reticular Chemistry in Action: A Hydrolytically Stable MOF Capturing Twice Its Weight in Adsorbed Water [J]. Chem, 2018, 4(1): 94 -105.
[39] ABDULHALIM R G, BHATT P M, BELMABKHOUT Y, et al. A Fine -Tuned Metal-Organic Framework for Autonomous Indoor Moisture Control [J]. Journal of the American Chemical Society, 2017, 139(31): 10715 -22.
[40] LI Z-J, JU Y, LU H, et al. Boosting the Iodine Adsorption and Radioresistance of Th-UiO-66 MOFs via Aromatic Substitution [J]. Chemistry – A European Journal, 2021, 27(4): 1286-91.
[41] KWON H T, JEONG H K, LEE A S, et al. Heteroepitaxially Grown Zeolitic Imidazolate Framework Membranes with Unprecedented Propylene/Propane Separation Performances [J]. Journal of the American Chemical Society, 2015, 137(38): 12304-11.
[42] MU L, LIU B, LIU H, et al. A novel method to improve the gas storage capacity of ZIF-8 [J]. Journal of Materials Chemistry, 2012, 22(24): 12246 -52.
[43] KIM D, AHN Y H, LEE H. Phase Equilibria of CO 2 and CH4 Hydrates in Intergranular Meso/Macro Pores of MIL-53 Metal Organic Framework [J]. Journal of Chemical and Engineering Data, 2015, 60(7): 2178 -85.
[44] KIM D, LIM H K, RO H, et al. Unexpected carbon dioxide inclusion in water saturated pores of metal-organic frameworks with potential for highly selective capture of CO2 [J]. Chemistry - A European Journal, 2015, 21(3): 1125-9.
[45] LIU H, ZHAN S, GUO P, et al. Understanding the characteristic of methane hydrate equilibrium in materials and its potential application [J]. Chem Eng J, 2018, 349: 775-81.
[46] HE Z, ZHANG K, JIANG J. Formation of CH4 Hydrate in a Mesoporous Metal-Organic Framework MIL-101: Mechanistic Insights from Microsecond Molecular Dynamics Simulations [J]. Journal of Physical Chemistry Letters, 2019: 7002-8.
[47] CUADRADO-COLLADOS C, MOUCHAHAM G, DAEMEN L, et al. Quest for an Optimal Methane Hydrate Formation in the Pores of Hydrolytically Stable Metal-Organic Frameworks [J]. Journal of the American Chemical Society, 2020, 142(31): 13391-7.
[48] DENNING S, MAJID A A A, LUCERO J M, et al. Metal-Organic Framework HKUST-1 Promotes Methane Hydrate Formation for Improved Gas Storage Capacity [J]. ACS Applied Materials and Interfaces, 2020, 12(47): 53510 -8.
[49] LEE D, JEOUNG S, MOON H R, et al. Recoverable and recyclable gas hydrate inhibitors based on magnetic nanoparticle -decorated metal–organic frameworks [J]. Chemical Engineering Journal, 2020, 401.
[50] DENNING S, MAJID A A A, LUCERO J M, et al. Methane Hydrate Growth Promoted by Microporous Zeolitic Imidazolate Frameworks ZIF -8 and ZIF-67 for Enhanced Methane Storage [J]. ACS Sustainable Chemistry and Engineering, 2021, 9(27): 9001-10.
[51] WANG Z, DUAN J, CHEN S, et al. Molecular insights into hybrid CH4 physisorption-hydrate growth in hydrophobic metal–organic framework ZIF-8: Implications for CH4 storage [J]. Chemical Engineering Journal, 2022, 430.
[52] PANDEY JS O Q, VON SOLMS N. Enhanced CH4 hydrate formation using hybrid MOF plus promoter system [J]. Abstract from Thermal Analysis and Calorimetry 2021.
[53] LIU H, ZHAN S Y, GUO P, et al. Understanding the characteristic of methane hydrate equilibrium in materials and its potential application [J]. Chem Eng J, 2018, 349: 775-81.
[54] CUADRADO-COLLADOS C, MOUCHAHAM G, DAEMEN L, et al. Quest for an Optimal Methane Hydrate Formation in the Pores of Hydrolytically Stable Metal-Organic Frameworks [J]. J Am Chem Soc, 2020, 142(31): 13391 -7.
[55] LEE D, JEOUNG S, MOON H R, et al. Recoverable and recyclable gas hydrate inhibitors based on magnetic nanoparticle -decorated metal–organic frameworks [J]. Chem Eng J, 2020, 401: 126081.
[56] KIM D, KIM D W, LIM H K, et al. Intercalation of Gas Molecules in Graphene Oxide Inter layer: The Role of Water [J]. J Phys Chem C, 2014, 118(20): 11142-8.
[57] CASCO G, JOHNSON J L, TAYLOR T M, et al. Controlling Listeria monocytogenes Scott A on Surfaces of Fully Cooked Turkey Deli Product Using Organic Acid-Containing Marinades as Postlethality Dips [J]. International Journal of Food Science, 2015, 2015: 157026.
[58] GUTT C, ASMUSSEN B, PRESS W, et al. Quantum rotations in natural methane-clathrates from the Pacific sea -floor [J]. Europhysics Letters, 1999, 48(3): 269-75.
[59] LUCERO J, ELSAIDI S K, ANDERSON R, et al. Time Dependent Structural Evolution of Porous Organic Cage CC3 [J]. Crystal Growth & Design, 2018, 18(2): 921-7.
[60] DOMáN A, CZAKKEL O, PORCAR L, et al. Role of water molecules in the decomposition of HKUST-1: Evidence from adsorption, thermoanalytical, X -ray and neutron scattering measurements [J]. Applied Surface Science, 2019, 480: 138-47.
[61] 张英,马蕊英,赵亮,等.金属有机骨架材料 HKUST-1 的制备及其甲烷吸附性能 [J].石油化工, 2017, 46(7): 884-7.
[62] JEONG N C, SAMANTA B, LEE C Y, et al. Coordination -Chemistry Control of Proton Conductivity in the Iconic Metal –Organic Framework Material HKUST-1 [J]. Journal of the American Chemical Society, 2012, 134(1): 51 -4.
[63] 刘明明,吕文苗,史秀锋,等.不同方法合成的沸石咪唑酯骨架结构材料(ZIF-8)的表征和催化性能 [J].无机化学学报, 2014, 30(3): 6.
[64] VENNA S R, JASINSKI J B, CARREON M A. Structural Evolution of Zeolitic Imidazolate Framework-8 [J]. Journal of the American Chemical Society, 2010, 132(51): 18030-3.
[65] LIYAN N, RUINIAN H, GUI-LING N, et al. Nano/Micro HKUST-1 Fabricated by Coordination Modulation Method at Room Temperature [J]. Chemical Research in Chinese Universities, 2012, 28: 555 -8.
[66] LI G, LIU D, XIE Y. Study on thermal properties of TBAB–THF hydrate mixture for cold storage by DSC [J]. Journal of Thermal Analysis and Calorimetry, 2010, 102(2): 819 -26.
[67] DAVIES S R, HESTER K C, LACHANCE J W, et al. Studies of hydrate nucleation with high pressure differential scanning calorimetry [J]. Chemical Engineering Science, 2009, 64(2): 370 -5.
[68] KIM D, LIM H K, RO H, et al. Unexpected carbon dioxide inclusion in water saturated pores of metal-organic frameworks with potential for highly selective capture of CO2 [J]. Chemistry, 2015, 21(3): 1125 -9.
[69] DENG J, JIANG H, LIU Y, et al. Effect of ZIF-8 on Methane Hydrate Growth Kinetics in Oil–Water Systems [J]. Industrial & Engineering Chemistry Research, 2024, 63(6): 2632-41.
[70] LV X, BAI B, LIANG S, et al. Study on the growth kinetics of methane hydrate in pure water system containing ZIF -8 [J]. RSC Advances, 2022, 12(33): 21203-12.
[71] MARINHAS S, DELAHAYE A, FOURNAISON L, et al. Modelling of the available latent heat of a CO2 hydrate slurry in an experimental loop applied to secondary refrigeration [J]. Chemical Engineering and Processing: Process Intensification, 2006, 45(3): 184 -92.
[72] YOUSSEF Z, DELAHAYE A, HUANG L, et al. State of the art on phase change material slurries [J]. Energy Conversion and Management, 2013, 65: 120-32.
[73] ITO H, GIBO A, SHIRAISHI S, et al. Renewed Measurements of Carbon Dioxide Hydrate Phase Equilibrium [J]. International Journal of Thermophysics, 2023, 44(8): 128.
[74] DENNING S, MAJID A A A, LUCERO J M, et al. Metal –Organic Framework HKUST-1 Promotes Methane Hydrate Formation for Improved Gas Storage Capacity [J]. ACS Applied Materials & Interfaces, 2020, 12(47): 53510 -8.
[75] DENNING S, MAJID A A A, KOH C A. Stability and Growth of Methane Hydrates in Confined Media for Carbon Sequestration [J]. The Journal of Physical Chemistry C, 2022, 126(28): 11800 -9.
[76] DECOSTE J B, PETERSON G W, SMITH M W, et al. Enhanced Stability of Cu-BTC MOF via Perfluorohexane Plasma -Enhanced Chemical Vapor Deposition [J]. Journal of the American Chemical Society, 2012, 134(3): 1486-9.
[77] MAJANO G, MARTIN O, HAMMES M, et al. Solvent-Mediated Reconstruction of the Metal–Organic Framework HKUST-1 (Cu3(BTC)2) [J]. Advanced Functional Materials, 2014, 24(25): 3855 -65.
[78] ÁLVAREZ J R, SáNCHEZ-GONZáLEZ E, PéREZ E, et al. Structure stability of HKUST-1 towards water and ethanol and their effect on its CO 2 capture properties [J]. Dalton Transactions, 2017, 46(28): 9192 -200.
[79] LIU H, GUO P, REGUEIRA T, et al. Irreversible Change of the Pore Structure of ZIF-8 in Carbon Dioxide Capture with Water Coexistence [J]. The Journal of Physical Chemistry C, 2016, 120(24): 13287 -94.
[80] ZHANG S, FORTIER H, DAHN J R. Characterization of zinc carbonate hydroxides synthesized by precipitation from zinc acetate and potassium carbonate solutions [J]. Materials Research Bulletin, 2004, 39(12): 1939 -48.

所在学位评定分委会
物理学
国内图书分类号
X701
来源库
人工提交
成果类型学位论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/778959
专题理学院_物理系
推荐引用方式
GB/T 7714
龙昊. 金属有机框架内CO2水合物生成特性研究[D]. 深圳. 南方科技大学,2024.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
12232937-龙昊-物理系.pdf(6699KB)----限制开放--请求全文
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[龙昊]的文章
百度学术
百度学术中相似的文章
[龙昊]的文章
必应学术
必应学术中相似的文章
[龙昊]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。