[1] LI A R, WANG J, BAO B P. High-efficiency CO2 capture and separation based on hydrate technology: A review [J]. Greenh Gases, 2019, 9(2): 175 -93.
[2] OLAJIRE A A. CO2 capture and separation technologies for end -of-pipe applications - A review [J]. Energy, 2010, 35(6): 2610 -28.
[3] KHATTAK S I, AHMAD M. The cyclical impact of innovation in green and sustainable technologies on carbon dioxide emissions in OECD economies [J]. Environmental Science and Pollution Research, 2022, 29(22): 33809 -25.
[4] LI L, ZHAO N, WEI W, et al. A review of research progress on CO 2 capture, storage, and utilization in Chinese Academy of Sciences [J]. Fuel, 2013, 108: 112-30.
[5] PINTO J T D, MISTAGE O, BILOTTA P, et al. Road -rail intermodal freight transport as a strategy for climate change mitigation [J]. Environ Dev, 2018, 25: 100-10.
[6] BODEN T A A A, ROBERT J. AND MARLAND, G. Global, Regional, and National Fossil-Fuel CO2 Emissions (1751 - 2009) (V. 2012) [J]. United States: N p, 2012.
[7] RITCHIE H, ROSADO P, ROSER M. CO₂ and Greenhouse Gas Emissions [J]. Our World in Data.
[8] HANDOGO R. Carbon Capture and Storage System Using Pinch Design Method [J]. MATEC Web of Conferences, 2018, 156: 03005.
[9] BAUGH L S. "carbon capture and storage" [J]. Encyclopedia Britannica, 2023.
[10] AARON D, TSOURIS C. Separation of CO2 from flue gas: A review [J]. Sep Sci Technol, 2005, 40(1-3): 321-48.
[11] DASHTI H, YEW L Z, LOU X. Recent advances in gas hydrate -based CO2capture [J]. J Nat Gas Sci Eng, 2015, 23: 195 -207.
[12] HESTER K C, HUO Z, BALLARD A L, et al. Thermal expansivity for sI and sII clathrate hydrates [J]. J Phys Chem B, 2007, 111(30): 8830 -5.
[13] SLOAN E D. Fundamental principles and applications of natural gas hydrates [J]. Nature, 2003, 426(6964): 353 -9.
[14] STROBEL T A, HESTER K C, KOH C A, et al. Properties of the clathrates of hydrogen and developments in their applicability for hydrogen storage [J]. Chem Phys Lett, 2009, 478(4-6): 97-109.
[15] SUN D, ENGLEZOS P. Storage of CO2 in a partially water saturated porous medium at gas hydrate formation conditions [J]. Int J Greenh Gas Con, 2014, 25: 1-8.
[16] BACHU S. Sequestration of CO2 in geological media: criteria and approach for site selection in response to climate change [J]. Energ Convers Manage, 2000, 41(9): 953-70.
[17] SUN Q, KANG Y T. Review on CO2 hydrate formation/dissociation and its cold energy application [J]. Renew Sust Energ Rev, 2016, 62: 478 -94.
[18] XIA Z M, ZHAO Q, CHEN Z Y, et al. Review of methods and applications for promoting gas hydrate formation process [J]. J Nat Gas Sci Eng, 2022, 101.
[19] 徐刚,徐纯刚,王敏,等.水合物法分离 CO2 工艺研究进展 [J].新能源进展, 2021, 9(02): 126-32.
[20] WANG L, DOU M, WANG Y, et al. A Review of the Effect of Porous Media on Gas Hydrate Formation [J]. ACS Omega, 2022, 7(38): 33666 -79.
[21] CASCO M E, REY F, JORDá J L, et al. Paving the way for methane hydrate formation on metal-organic frameworks (MOFs) [J]. Chemical Science, 2016, 7(6): 3658-66.
[22] CASCO M E, SILVESTRE-ALBERO J, RAMíREZ-CUESTA A J, et al. Methane hydrate formation in confined nanospace can surpass nature [J]. Nature Communications, 2015, 6.
[23] SAYARI A, BELMABKHOUT Y. Stabilization of Amine -Containing CO2Adsorbents: Dramatic Effect of Water Vapor [J]. J Am Chem Soc, 2010, 132(18): 6312-+.
[24] BURTCH N C, JASUJA H, WALTON K S. Water Stability and Adsorption in Metal-Organic Frameworks [J]. Chem Rev, 2014, 114(20): 10575 -612.
[25] KARRA J R, GRABICKA B E, HUANG Y G, et al. Adsorption study of CO 2 , CH4 , N2 , and H2O on an interwoven copper carboxylate metal-organic framework (MOF-14) [J]. J Colloid Interf Sci, 2013, 392: 331 -6.
[26] FURUKAWA H, GANDARA F, ZHANG Y B, et al. Water Adsorption in Porous Metal-Organic Frameworks and Related Materials [J]. J Am Chem Soc, 2014, 136(11): 4369-81.
[27] KANG I J, KHAN N A, HAQUE E, et al. Chemical and Thermal Stability of Isotypic Metal-Organic Frameworks: Effect of Metal Ions [J]. Chem-Eur J, 2011, 17(23): 6437-42.
[28] CYCHOSZ K A, MATZGER A J. Water Stability of Microporous Coordination Polymers and the Adsorption of Pharmaceuticals from Water [J]. Langmuir, 2010, 26(22): 17198-202.
[29] LOW J J, BENIN A I, JAKUBCZAK P, et al. Virtual High Throughput Screening Confirmed Experimentally: Porous Coordination Polymer Hydration [J]. J Am Chem Soc, 2009, 131(43): 15834 -42.
[30] FAUZIAH C A, AL-YASERI A Z, BELOBORODOV R, et al. Carbon Dioxide/Brine, Nitrogen/Brine, and Oil/Brine Wettability of Montmorillonite, Illite, and Kaolinite at Elevated Pressure and Temperature [J]. Energ Fuel, 2019, 33(1): 441-8.
[31] PARK K S, NI Z, COTE A P, et al. Exceptional chemical and thermal stability of zeolitic imidazolate frameworks [J]. Proc Natl Acad Sci U S A, 2006, 103(27): 10186-91.
[32] WANG P, TENG Y, ZHU J, et al. Review on the synergistic effect between metal–organic frameworks and gas hydrates for CH4 storage and CO 2separation applications [J]. Renewable and Sustainable Energy Reviews, 2022, 167: 112807.
[33] MORRIS W, STEVENS C J, TAYLOR R E, et al. NMR and X -ray Study Revealing the Rigidity of Zeolitic Imidazolate Frameworks [J]. The Journal of Physical Chemistry C, 2012, 116(24): 13307 -12.
[34] ALVAREZ E, GUILLOU N, MARTINEAU C, et al. The Structure of the Aluminum Fumarate Metal–Organic Framework A520 [J]. Angewandte Chemie International Edition, 2015, 54(12): 3664 -8.
[35] AHMED A, HODGSON N, BARROW M, et al. Macroporous metal-organic framework microparticles with improved liquid phase separation [J]. Journal of Materials Chemistry A, 2014, 2(24): 9085 -90.
[36] VOLKRINGER C, POPOV D, LOISEAU T, et al. Synthesis, Single -Crystal X ray Microdiffraction, and NMR Characterizations of the Giant Pore Metal -Organic Framework Aluminum Trimesate MIL-100 [J]. Chemistry of Materials, 2009, 21(24): 5695-7.
[37] LEBEDEV O I, MILLANGE F, SERRE C, et al. First Direct Imaging of Giant Pores of the Metal−Organic Framework MIL-101 [J]. Chemistry of Materials, 2005, 17(26): 6525-7.
[38] TOWSIF ABTAB S M, ALEZI D, BHATT P M, et al. Reticular Chemistry in Action: A Hydrolytically Stable MOF Capturing Twice Its Weight in Adsorbed Water [J]. Chem, 2018, 4(1): 94 -105.
[39] ABDULHALIM R G, BHATT P M, BELMABKHOUT Y, et al. A Fine -Tuned Metal-Organic Framework for Autonomous Indoor Moisture Control [J]. Journal of the American Chemical Society, 2017, 139(31): 10715 -22.
[40] LI Z-J, JU Y, LU H, et al. Boosting the Iodine Adsorption and Radioresistance of Th-UiO-66 MOFs via Aromatic Substitution [J]. Chemistry – A European Journal, 2021, 27(4): 1286-91.
[41] KWON H T, JEONG H K, LEE A S, et al. Heteroepitaxially Grown Zeolitic Imidazolate Framework Membranes with Unprecedented Propylene/Propane Separation Performances [J]. Journal of the American Chemical Society, 2015, 137(38): 12304-11.
[42] MU L, LIU B, LIU H, et al. A novel method to improve the gas storage capacity of ZIF-8 [J]. Journal of Materials Chemistry, 2012, 22(24): 12246 -52.
[43] KIM D, AHN Y H, LEE H. Phase Equilibria of CO 2 and CH4 Hydrates in Intergranular Meso/Macro Pores of MIL-53 Metal Organic Framework [J]. Journal of Chemical and Engineering Data, 2015, 60(7): 2178 -85.
[44] KIM D, LIM H K, RO H, et al. Unexpected carbon dioxide inclusion in water saturated pores of metal-organic frameworks with potential for highly selective capture of CO2 [J]. Chemistry - A European Journal, 2015, 21(3): 1125-9.
[45] LIU H, ZHAN S, GUO P, et al. Understanding the characteristic of methane hydrate equilibrium in materials and its potential application [J]. Chem Eng J, 2018, 349: 775-81.
[46] HE Z, ZHANG K, JIANG J. Formation of CH4 Hydrate in a Mesoporous Metal-Organic Framework MIL-101: Mechanistic Insights from Microsecond Molecular Dynamics Simulations [J]. Journal of Physical Chemistry Letters, 2019: 7002-8.
[47] CUADRADO-COLLADOS C, MOUCHAHAM G, DAEMEN L, et al. Quest for an Optimal Methane Hydrate Formation in the Pores of Hydrolytically Stable Metal-Organic Frameworks [J]. Journal of the American Chemical Society, 2020, 142(31): 13391-7.
[48] DENNING S, MAJID A A A, LUCERO J M, et al. Metal-Organic Framework HKUST-1 Promotes Methane Hydrate Formation for Improved Gas Storage Capacity [J]. ACS Applied Materials and Interfaces, 2020, 12(47): 53510 -8.
[49] LEE D, JEOUNG S, MOON H R, et al. Recoverable and recyclable gas hydrate inhibitors based on magnetic nanoparticle -decorated metal–organic frameworks [J]. Chemical Engineering Journal, 2020, 401.
[50] DENNING S, MAJID A A A, LUCERO J M, et al. Methane Hydrate Growth Promoted by Microporous Zeolitic Imidazolate Frameworks ZIF -8 and ZIF-67 for Enhanced Methane Storage [J]. ACS Sustainable Chemistry and Engineering, 2021, 9(27): 9001-10.
[51] WANG Z, DUAN J, CHEN S, et al. Molecular insights into hybrid CH4 physisorption-hydrate growth in hydrophobic metal–organic framework ZIF-8: Implications for CH4 storage [J]. Chemical Engineering Journal, 2022, 430.
[52] PANDEY JS O Q, VON SOLMS N. Enhanced CH4 hydrate formation using hybrid MOF plus promoter system [J]. Abstract from Thermal Analysis and Calorimetry 2021.
[53] LIU H, ZHAN S Y, GUO P, et al. Understanding the characteristic of methane hydrate equilibrium in materials and its potential application [J]. Chem Eng J, 2018, 349: 775-81.
[54] CUADRADO-COLLADOS C, MOUCHAHAM G, DAEMEN L, et al. Quest for an Optimal Methane Hydrate Formation in the Pores of Hydrolytically Stable Metal-Organic Frameworks [J]. J Am Chem Soc, 2020, 142(31): 13391 -7.
[55] LEE D, JEOUNG S, MOON H R, et al. Recoverable and recyclable gas hydrate inhibitors based on magnetic nanoparticle -decorated metal–organic frameworks [J]. Chem Eng J, 2020, 401: 126081.
[56] KIM D, KIM D W, LIM H K, et al. Intercalation of Gas Molecules in Graphene Oxide Inter layer: The Role of Water [J]. J Phys Chem C, 2014, 118(20): 11142-8.
[57] CASCO G, JOHNSON J L, TAYLOR T M, et al. Controlling Listeria monocytogenes Scott A on Surfaces of Fully Cooked Turkey Deli Product Using Organic Acid-Containing Marinades as Postlethality Dips [J]. International Journal of Food Science, 2015, 2015: 157026.
[58] GUTT C, ASMUSSEN B, PRESS W, et al. Quantum rotations in natural methane-clathrates from the Pacific sea -floor [J]. Europhysics Letters, 1999, 48(3): 269-75.
[59] LUCERO J, ELSAIDI S K, ANDERSON R, et al. Time Dependent Structural Evolution of Porous Organic Cage CC3 [J]. Crystal Growth & Design, 2018, 18(2): 921-7.
[60] DOMáN A, CZAKKEL O, PORCAR L, et al. Role of water molecules in the decomposition of HKUST-1: Evidence from adsorption, thermoanalytical, X -ray and neutron scattering measurements [J]. Applied Surface Science, 2019, 480: 138-47.
[61] 张英,马蕊英,赵亮,等.金属有机骨架材料 HKUST-1 的制备及其甲烷吸附性能 [J].石油化工, 2017, 46(7): 884-7.
[62] JEONG N C, SAMANTA B, LEE C Y, et al. Coordination -Chemistry Control of Proton Conductivity in the Iconic Metal –Organic Framework Material HKUST-1 [J]. Journal of the American Chemical Society, 2012, 134(1): 51 -4.
[63] 刘明明,吕文苗,史秀锋,等.不同方法合成的沸石咪唑酯骨架结构材料(ZIF-8)的表征和催化性能 [J].无机化学学报, 2014, 30(3): 6.
[64] VENNA S R, JASINSKI J B, CARREON M A. Structural Evolution of Zeolitic Imidazolate Framework-8 [J]. Journal of the American Chemical Society, 2010, 132(51): 18030-3.
[65] LIYAN N, RUINIAN H, GUI-LING N, et al. Nano/Micro HKUST-1 Fabricated by Coordination Modulation Method at Room Temperature [J]. Chemical Research in Chinese Universities, 2012, 28: 555 -8.
[66] LI G, LIU D, XIE Y. Study on thermal properties of TBAB–THF hydrate mixture for cold storage by DSC [J]. Journal of Thermal Analysis and Calorimetry, 2010, 102(2): 819 -26.
[67] DAVIES S R, HESTER K C, LACHANCE J W, et al. Studies of hydrate nucleation with high pressure differential scanning calorimetry [J]. Chemical Engineering Science, 2009, 64(2): 370 -5.
[68] KIM D, LIM H K, RO H, et al. Unexpected carbon dioxide inclusion in water saturated pores of metal-organic frameworks with potential for highly selective capture of CO2 [J]. Chemistry, 2015, 21(3): 1125 -9.
[69] DENG J, JIANG H, LIU Y, et al. Effect of ZIF-8 on Methane Hydrate Growth Kinetics in Oil–Water Systems [J]. Industrial & Engineering Chemistry Research, 2024, 63(6): 2632-41.
[70] LV X, BAI B, LIANG S, et al. Study on the growth kinetics of methane hydrate in pure water system containing ZIF -8 [J]. RSC Advances, 2022, 12(33): 21203-12.
[71] MARINHAS S, DELAHAYE A, FOURNAISON L, et al. Modelling of the available latent heat of a CO2 hydrate slurry in an experimental loop applied to secondary refrigeration [J]. Chemical Engineering and Processing: Process Intensification, 2006, 45(3): 184 -92.
[72] YOUSSEF Z, DELAHAYE A, HUANG L, et al. State of the art on phase change material slurries [J]. Energy Conversion and Management, 2013, 65: 120-32.
[73] ITO H, GIBO A, SHIRAISHI S, et al. Renewed Measurements of Carbon Dioxide Hydrate Phase Equilibrium [J]. International Journal of Thermophysics, 2023, 44(8): 128.
[74] DENNING S, MAJID A A A, LUCERO J M, et al. Metal –Organic Framework HKUST-1 Promotes Methane Hydrate Formation for Improved Gas Storage Capacity [J]. ACS Applied Materials & Interfaces, 2020, 12(47): 53510 -8.
[75] DENNING S, MAJID A A A, KOH C A. Stability and Growth of Methane Hydrates in Confined Media for Carbon Sequestration [J]. The Journal of Physical Chemistry C, 2022, 126(28): 11800 -9.
[76] DECOSTE J B, PETERSON G W, SMITH M W, et al. Enhanced Stability of Cu-BTC MOF via Perfluorohexane Plasma -Enhanced Chemical Vapor Deposition [J]. Journal of the American Chemical Society, 2012, 134(3): 1486-9.
[77] MAJANO G, MARTIN O, HAMMES M, et al. Solvent-Mediated Reconstruction of the Metal–Organic Framework HKUST-1 (Cu3(BTC)2) [J]. Advanced Functional Materials, 2014, 24(25): 3855 -65.
[78] ÁLVAREZ J R, SáNCHEZ-GONZáLEZ E, PéREZ E, et al. Structure stability of HKUST-1 towards water and ethanol and their effect on its CO 2 capture properties [J]. Dalton Transactions, 2017, 46(28): 9192 -200.
[79] LIU H, GUO P, REGUEIRA T, et al. Irreversible Change of the Pore Structure of ZIF-8 in Carbon Dioxide Capture with Water Coexistence [J]. The Journal of Physical Chemistry C, 2016, 120(24): 13287 -94.
[80] ZHANG S, FORTIER H, DAHN J R. Characterization of zinc carbonate hydroxides synthesized by precipitation from zinc acetate and potassium carbonate solutions [J]. Materials Research Bulletin, 2004, 39(12): 1939 -48.
修改评论