[1] Yang J C, Mun J, Kwon S Y, et al. Electronic skin: recent progress and futureprospects for skin-attachable devices for health monitoring, robotics, andprosthetics[J]. Advanced Materials, 2019, 31(48): 1904765.
[2] Wang L, Jiang K, Shen G. Wearable, implantable, and interventional medicaldevices based on smart electronic skins[J]. Advanced Materials Technologies,2021, 6(6): 2100107
[3] Kim H, Kwon Y T, Lim H R, et al. Recent advances in wearable sensors andintegrated functional devices for virtual and augmented reality applications[J].Advanced Functional Materials, 2020, 31(39): 2005692
[4] Pyo S, Lee J, Bae K, et al. Recent progress in flexible tactile sensors for humaninteractive systems: from sensors to advanced applications[J]. AdvancedMaterials, 2021, 33(47): 2005902
[5] Zhang S, Chhetry A, Zahed M A, et al. On-skin ultrathin and stretchablemultifunctional sensor for smart healthcare wearables[J]. npj Flexible Electronics,2022, 6(1): 1-12.
[6] Zhang H, He R, Niu Y, et al. Graphene-enabled wearable sensors for healthcaremonitoring[J]. Biosensors and Bioelectronics, 2022, 197: 113777.
[7] Shen Z, Liu F, Huang S, et al. Progress of flexible strain sensors for physiologicalsignal monitoring[J]. Biosensors and Bioelectronics, 2022, 211: 114298.
[8] Park C, Kim M S, Kim H H, et al. Stretchable conductive nanocomposites andtheir applications in wearable devices[J]. Applied Physics Reviews, 2022, 9(2):021312.
[9] Li S, Xiao X, Hu J, et al. Recent advances of carbon-based flexible strain sensorsin physiological signal monitoring[J]. ACS Applied Electronic Materials, 2020,2(8): 2282-2300.
[10] Amjadi M, Kyung K-U, Park I, et al. Stretchable, skin-mountable, and wearablestrain sensors and their potential applications: a review[J]. Advanced FunctionalMaterials, 2016, 26(11): 1678-1698.
[11] Liu H, Gao H, Hu G. Highly sensitive natural rubber/pristine graphene strainsensor prepared by a simple method[J]. Composites Part B: Engineering, 2019,171: 138-145.
[12] Luo Z, Li X, Li Q, et al. In situ dynamic manipulation of graphene strain sensorwith drastically sensing performance enhancement[J]. Advanced ElectronicMaterials, 2020, 6(6): 2000269.
[13] Chao M, Wang Y, Ma D, et al. Wearable MXene nanocomposites-based strainsensor with tile-like stacked hierarchical microstructure for broad-rangeultrasensitive sensing[J]. Nano Energy, 2020, 78: 105187.
[14] Chu Z, Jiao W, Huang Y, et al. Superhydrophobic gradient wrinkle strain sensorwith ultra-high sensitivity and broad strain range for motion monitoring[J].Journal of Materials Chemistry A, 2021, 9(15): 9634-9643.
[15] Amjadi M, Turan M, Clementson C P, et al. Parallel microcracks-basedultrasensitive and highly stretchable strain sensors[J]. ACS Applied Materials &Interfaces, 2016, 8(8): 5618-5626.
[16] Souri H, Bhattacharyya D. Highly sensitive, stretchable and wearable strainsensors using fragmented conductive cotton fabric[J]. Journal of MaterialsChemistry C, 2018, 6(39): 10524-10531.
[17] Zheng Q, Lee J, Shen X, et al. Graphene-based wearable piezoresistive physicalsensors[J]. Materials Today, 2020, 36: 158-179.
[18] Zhao J, Zhang G, Shi D. Review of graphene-based strain sensors[J]. ChinesePhysics B, 2013, 22(5): 057701.
[19] Ji J, Zhang C, Yang S, et al. High sensitivity and a wide sensing range flexiblestrain sensor based on the V-groove/wrinkles hierarchical array[J]. ACS AppliedMaterials & Interfaces, 2022, 14(20): 24059-24066.
[20] Amjadi M, Pichitpajongkit A, Lee S, et al. Highly stretchable and sensitive strainsensor based on silver nanowire-elastomer nanocomposite[J]. ACS Nano, 2014,8(5): 5154-5163.
[21] Xu S, Rezvanian O, Peters K, et al. The viability and limitations of percolationtheory in modeling the electrical behavior of carbon nanotube-polymercomposites[J]. Nanotechnology, 2013, 24(15): 155706.
[22] Lou Z, Wang L, Shen G. Recent advances in smart wearable sensing systems[J].Advanced Materials Technologies, 2018, 3(12): 1800444.
[23] Seyedin S, Zhang P, Naebe M, et al. Textile strain sensors: a review of thefabrication technologies, performance evaluation and applications[J]. MaterialsHorizons, 2018, 6(2): 219-249.
[24] Lu Y, Biswas M C, Guo Z, et al. Recent developments in bio-monitoring viaadvanced polymer nanocomposite-based wearable strain sensors[J]. Biosensorsand Bioelectronics, 2019, 123: 167-177.
[25] Chen J W, Yu Q L, Cui X H, et al. An overview of stretchable strain sensors fromconductive polymer nanocomposites[J]. Journal of Materials Chemistry C, 2019,7(38): 11710-11730.
[26] Liu C, Han S, Xu H, et al. Multifunctional highly sensitive multiscale stretchablestrain sensor based on a graphene/glycerol-KCl synergistic conductive network[J].ACS Applied Materials & Interfaces, 2018, 10(37): 31716-31724.
[27] He Y, Wu D, Zhou M, et al. Wearable strain sensors based on a porouspolydimethylsiloxane hybrid with carbon nanotubes and graphene[J]. ACSApplied Materials & Interfaces, 2021, 13(13): 15572-15583.
[28] Zhou J, Xu X, Xin Y, et al. Coaxial thermoplastic elastomer-wrapped carbonnanotube fibers for deformable and wearable strain sensors[J]. AdvancedFunctional Materials, 2018, 28(16): 1705591.
[29] Liang B, Lin Z, Chen W, et al. Ultra-stretchable and highly sensitive strain sensorbased on gradient structure carbon nanotubes[J]. Nanoscale, 2018, 10(28): 13599-13606.
[30] Wang Y, Hao J, Huang Z, et al. Flexible electrically resistive-type strain sensorsbased on reduced graphene oxide-decorated electrospun polymer fibrous mats forhuman motion monitoring[J]. Carbon, 2018, 126: 360-371.
[31] Qiao Y, Wang Y, Tian H, et al. Multilayer graphene epidermal electronic skin[J].ACS Nano, 2018, 12(9): 8839-8846.
[32] Chen Y, Liu S, Hong G, et al. Nano-optomechanical resonators for sensitivepressure sensing[J]. ACS Applied Materials & Interfaces, 2022, 14(34): 39211-39219
[33] Mohammad Haniff M A, Muhammad Hafiz S, Wahid K A, et al. Piezoresistiveeffects in controllable defective HFTCVD graphene-based flexible pressuresensor[J]. Scientific Reports, 2015, 5: 14751.
[34] Hassan J Z, Raza A, Din Babar Z U, et al. 2D material-based sensing devices: anupdate[J]. Journal of Materials Chemistry A, 2023, 11(12): 6016-6063.
[35] Li Z, Li H, Wu Z, et al. Advances in designs and mechanisms of semiconductingmetal oxide nanostructures for high-precision gas sensors operated at roomtemperature[J]. Materials Horizons, 2018, 6(3): 470-506.
[36] Kim H-J, Lee J-H. Highly sensitive and selective gas sensors using p-type oxidesemiconductors: Overview[J]. Sensors and Actuators B: Chemical, 2014, 192:607-627.
[37] Cho B, Hahm M G, Choi M, et al. Charge-transfer-based gas sensing usingatomic-layer MoS2[J]. Scientific Reports, 2015, 5: 8052.
[38] Rajapakse M, Anderson G, Zhang C, et al. Gas adsorption and light interactionmechanism in phosphorene-based field-effect transistors[J]. Physical ChemistryChemical Physics, 2020, 22(10): 5949-5958.
[39] Mathew M, Rout C S. Schottky diodes based on 2D materials for environmentalgas monitoring: a review on emerging trends, recent developments and futureperspectives[J]. Journal of Materials Chemistry C, 2021, 9(2): 395-416.
[40] Han Y, Huang D, Ma Y, et al. Design of hetero-nanostructures on MoS2 nanosheets to boost NO2 room-temperature sensing[J]. ACS Applied Materials &Interfaces, 2018, 10(26): 22640-22649.
[41] Yue Q, Shao Z, Chang S, et al. Adsorption of gas molecules on monolayer MoS2and effect of applied electric field[J]. Nanoscale Research Letters, 2013, 8(1):425.
[42] Shokri A, Salami N. Gas sensor based on MoS2 monolayer[J]. Sensors andActuators B: Chemical, 2016, 236: 378-385.
[43] Aftab S, Zahir Iqbal M, Hussain S, et al. New developments in gas sensing usingvarious two-dimensional architectural designs[J]. Chemical Engineering Journal,2023, 469: 144039.
[44] Jiang D, Liu Z, Xiao Z, et al. Flexible electronics based on 2D transition metal dichalcogenides[J]. Journal of Materials Chemistry A, 2022, 10(1): 89-121.
[45] Zhu M, Du X, Liu S, et al. A review of strain sensors based on two-dimensionalmolybdenum disulfide[J]. Journal of Materials Chemistry C, 2021, 9(29): 9083-9101.
[46] Zheng L, Wang X, Jiang H, et al. Recent progress of flexible electronics by 2Dtransition metal dichalcogenides[J]. Nano Research, 2021, 15(3): 2413-2432.
[47] Pi L, Li L, Liu K, et al. Recent progress on 2D noble-transition-metalsichalcogenides[J]. Advanced Functional Materials, 2019, 29(51): 1904932.
[48] Cai Y, Shen J, Ge G, et al. Stretchable Ti3C2Tx MXene/carbon nanotube composite based strain sensor with ultrahigh sensitivity and tunable sensing range[J].ACS Nano, 2018, 12(1): 56-62.
[49] Novoselov K S, Geim A K, Morozov S V, et al. Electric field effect in atomicallythin carbon films[J]. Science, 2004, 306(5696): 666-669.
[50] Bae S-H, Lee Y, Sharma B K, et al. Graphene-based transparent strain sensor[J].Carbon, 2013, 51: 236-242.
[51] Zhao J, Wang G, Yang R, et al. Tunable piezoresistivity of nanographene films forstrain sensing[J]. ACS Nano, 2015, 9(2): 1622-1629.
[52] Rinaldi A, Proietti A, Tamburrano A, et al. Graphene-based strain sensor array oncarbon fiber composite laminate[J]. IEEE Sensors Journal, 2015, 15(12): 7295-7303.
[53] Ye X, Yuan Z, Tai H, et al. A wearable and highly sensitive strain sensor based onpolyethylenimine-rGO layered nanocomposite thin film[J]. Journal of MaterialsChemistry C, 2017, 5(31): 7746-7752.
[54] Yan C, Wang J, Kang W, et al. Highly stretchable piezoresistive graphenenanocellulose nanopaper for strain sensors[J]. Advanced Materials, 2013, 26(13):2022-2027.
[55] Coskun M B, Akbari A, Lai D T H, et al. Ultrasensitive strain sensor produced bydirect patterning of liquid crystals of graphene oxide on a flexible substrate[J].ACS Applied Materials & Interfaces, 2016, 8(34): 22501-22505.
[56] Tao L, Wang D, Tian H, et al. Self-adapted and tunable graphene strain sensorsfor detecting both subtle and large human motions[J]. Nanoscale, 2017, 9(24): 8266-8273.
[57] Li X, Yang T, Yang Y, et al. Large-area ultrathin graphene films by single-stepmarangoni self-assembly for highly sensitive strain sensing application[J].Advanced Functional Materials, 2016, 26(9): 1322-1329.
[58] Wang D, Tao L, Liu Y, et al. High performance flexible strain sensor based onself-locked overlapping graphene sheets[J]. Nanoscale, 2016, 8(48): 20090-20095.
[59] Liu Y, Zhang D, Wang K, et al. A novel strain sensor based on graphene composite films with layered structure[J]. Composites Part A: Applied Science andManufacturing, 2015, 80: 95-103.
[60] Chen S, Wei Y, Wei S, et al. Ultrasensitive cracking-assisted strain sensors basedon silver nanowires/graphene hybrid particles[J]. ACS Applied Materials &Interfaces, 2016, 8(38): 25563-25570.
[61] Liu S, Lin Y, Wei Y, et al. A high performance self-healing strain sensor withsynergetic networks of poly(ɛ-caprolactone) microspheres, graphene and silvernanowires[J]. Composites Science and Technology, 2017, 146: 110-118.
[62] Luo S, Liu T. SWCNT/graphite nanoplatelet hybrid thin films for selftemperature-compensated, highly sensitive, and extensible piezoresistivesensors[J]. Advanced Materials, 2013, 25(39): 5650-5657.
[63] Shi J, Li X, Cheng H, et al. Graphene reinforced carbon nanotube networks forwearable strain sensors[J]. Advanced Functional Materials, 2016, 26(13): 2078-2084.
[64] Yang Z, Wang D Y, Pang Y, et al. Simultaneously detecting subtle and intensivehuman motions based on a silver nanoparticles bridged graphene strain sensor[J].ACS Applied Materials & Interfaces, 2018, 10(4): 3948-3954.
[65] Liu Q, Chen J, Li Y, et al. High-performance strain sensors with fish-scale-likegraphene-sensing layers for full-range detection of human motions[J]. ACS Nano,2016, 10(8): 7901-7906.
[66] Shi X, Liu S, Sun Y, et al. Lowering internal friction of 0D-1D-2D ternarynanocomposite-based strain sensor by fullerene to boost the sensingperformance[J]. Advanced Functional Materials, 2018, 28(22): 1800850.
[67] Inoue N, Onoe H. Graphene-based inline pressure sensor integrated with microfluidic elastic tube[J]. Journal of Micromechanics and Microengineering,2018, 28(1): 014001.
[68] Liu Y, Li C, Shi X, et al. High-sensitivity graphene MOEMS resonant pressuresensor[J]. ACS Applied Materials & Interfaces, 2023, 15(25): 30479-30485.
[69] Lee C, Ahn J, Lee K B, et al. Graphene-based flexible NO2 chemical sensors[J].Thin Solid Films, 2012, 520(16): 5459-5462.
[70] Yang G, Lee C, Kim J, et al. Flexible graphene-based chemical sensors on papersubstrates[J]. Physical Chemistry Chemical Physics, 2013, 15(6): 1798-1801.
[71] Dua V, Surwade S P, Ammu S, et al. All-organic vapor sensor using inkjet-printedreduced graphene oxide[J]. Angewandte Chemie International Edition, 2010,49(12): 2154-2157.
[72] Hassinen J, Kauppila J, Leiro J, et al. Low-cost reduced graphene oxide-basedconductometric nitrogen dioxide-sensitive sensor on paper[J]. Analytical andBioanalytical Chemistry, 2013, 405(11): 3611-3617.
[73] Chen Q, Liu D, Lin L, et al. Bridging interdigitated electrodes by electrochemicalassisted deposition of graphene oxide for constructing flexible gas sensor[J].Sensors and Actuators B: Chemical, 2019, 286: 591-599.
[74] Seekaew Y, Lokavee S, Phokharatkul D, et al. Low-cost and flexible printedgraphene-PEDOT:PSS gas sensor for ammonia detection[J]. Organic Electronics,2014, 15(11): 2971-2981.
[75] Guo Y, Wang T, Chen F, et al. Hierarchical graphene-polyaniline nanocompositefilms for high-performance flexible electronic gas sensors[J]. Nanoscale, 2016,8(23): 12073-12080.
[76] Chung M G, Kim D-H, Seo D K, et al. Flexible hydrogen sensors using graphenewith palladium nanoparticle decoration[J]. Sensors and Actuators B: Chemical,2012, 169: 387-392.
[77] Huang L, Wang Z, Zhang J, et al. Fully printed, rapid-response sensors based onchemically modified graphene for detecting NO2 at room temperature[J]. ACSApplied Materials & Interfaces, 2014, 6(10): 7426-7433.
[78] Kim Y, Choi Y S, Park S Y, et al. Au decoration of a graphene microchannel forself-activated chemoresistive flexible gas sensors with substantially enhanced参考文献- 117 -response to hydrogen[J]. Nanoscale, 2019, 11(6): 2966-2973.
[79] Naganaboina V R, Singh S G. Graphene-CeO2 based flexible gas sensor:monitoring of low ppm CO gas with high selectivity at room temperature[J].Applied Surface Science, 2021, 563: 150272.
[80] Yi J, Lee J M, Park W I. Vertically aligned ZnO nanorods and graphene hybridarchitectures for high-sensitive flexible gas sensors[J]. Sensors and Actuators B:Chemical, 2011, 155(1): 264-269.
[81] Jeong H Y, Lee D-S, Choi H K, et al. Flexible room-temperature NO2 gas sensorsbased on carbon nanotubes/reduced graphene hybrid films[J]. Applied PhysicsLetters, 2010, 96(21): 213105.
[82] Kim S J, Koh H J, Ren C E, et al. Metallic Ti3C2Tx MXene gas sensors withultrahigh signal-to-noise ratio[J]. ACS Nano, 2018, 12(2): 986-993.
[83] Ren Z, Shi Y, Song T, et al. Flexible low-temperature ammonia gas sensor basedon reduced graphene oxide and molybdenum disulfide[J]. Chemosensors, 2021,9(12): 345.
[84] Kang J Y, Koo W T, Jang J S, et al. 2D layer assembly of Pt-ZnO nanoparticles onreduced graphene oxide for flexible NO2 sensors[J]. Sensors and Actuators B:Chemical, 2021, 331: 129371.
[85] Wang J, Fatima-Ezzahra E, Dai J, et al. Ligand-assisted deposition of ultra-smallAu nanodots on Fe2O3/reduced graphene oxide for flexible gas sensors[J].Nanoscale Advances, 2022, 4(5): 1345-1350.
[86] Lin J, Peng Z, Liu Y, et al. Laser-induced porous graphene films from commercialpolymers[J]. Nature Communications, 2014, 5: 5714.
[87] Beckham J L, Li J T, Stanford M G, et al. High-resolution laser-induced graphenefrom photoresist[J]. ACS Nano, 2021, 15(5): 8976-8983.
[88] Ye R, Chyan Y, Zhang J, et al. Laser-induced graphene formation on wood[J].Advanced Materials, 2017, 29(37): 1702211.
[89] Le T S D, Phan H P, Kwon S, et al. Recent advances in laser-induced graphene:mechanism, fabrication, properties, and applications in flexible electronics[J].Advanced Functional Materials, 2022, 32(48): 2205158.
[90] Zhu J, Huang X, Song W. Physical and chemical sensors on the basis of laser induced graphene: mechanisms, applications, and perspectives[J]. ACS Nano,2021, 15(12): 18708-18741.
[91] Stanford M G, Li J T, Chyan Y, et al. Laser-induced graphene triboelectricnanogenerators[J]. ACS Nano, 2019, 13(6): 7166-7174.
[92] Kothuru A, Fernando P. Laser-induced graphene structures: from synthesis andapplications to future prospects[J]. Materials Today, 2023, 70: 104-136.
[93] Luo S D, Hoang P T, Liu T. Direct laser writing for creating porous graphiticstructures and their use for flexible and highly sensitive sensor and sensorarrays[J]. Carbon, 2016, 96: 522-531.
[94] Carvalho A F, Fernandes A J S, Leitão C, et al. Laser-induced graphene strainsensors produced by ultraviolet irradiation of polyimide[J]. Advanced FunctionalMaterials, 2018, 28(52): 1805271.
[95] Liu W, Huang Y, Peng Y, et al. Stable wearable strain sensors on textiles by directlaser writing of graphene[J]. ACS Applied Nano Materials, 2020, 3(1): 283-293.
[96] Kulyk B, Silva B F R, Carvalho A F, et al. Laser-induced graphene from paper formechanical sensing[J]. ACS Applied Materials & Interfaces, 2021, 13(8): 10210-10221.
[97] Rahimi R, Ochoa M, Yu W, et al. Highly stretchable and sensitive unidirectionalstrain sensor via laser carbonization[J]. ACS Applied Materials & Interfaces,2015, 7(8): 4463-4470.
[98] Dallinger A, Keller K, Fitzek H, et al. Stretchable and skin-conformableconductors based on polyurethane/laser-induced graphene[J]. ACS AppliedMaterials & Interfaces, 2020, 12(17): 19855-19865.
[99] Liu W, Chen Q, Huang Y, et al. In situ laser synthesis of Pt nanoparticlesembedded in graphene films for wearable strain sensors with ultra-highsensitivity and stability[J]. Carbon, 2022, 190: 245-254.
[100] Wang W, Lu L, Lu X, et al. Scorpion-inspired dual-bionic, microcrack-assistedwrinkle based laser induced graphene-silver strain sensor with high sensitivityand broad working range for wireless health monitoring system[J]. NanoResearch, 2022, 16(1): 1228-1241.
[101] Chhetry A, Sharifuzzaman M, Yoon H, et al. MoS2-decorated laser-induced graphene for a highly sensitive, hysteresis-free, and reliable piezoresistive strainsensor[J]. ACS Applied Materials & Interfaces, 2019, 11(25): 22531-22542.
[102] Stanford M G, Yang K C, Chyan Y, et al. Laser-induced graphene for flexible andembeddable gas sensors[J]. ACS Nano, 2019, 13(3): 3474-3482.
[103] Zhu J, Cho M, Li Y T, et al. Biomimetic turbinate-like artificial nose for hydrogendetection based on 3D porous laser-induced graphene[J]. ACS Applied Materials& Interfaces, 2019, 11(27): 24386-24394.
[104] Yan W H, Yan W R, Chen T D, et al. Size-tunable flowerlike MoS2 nanospherescombined with laser-induced graphene electrodes for NO2 sensing[J]. ACSApplied Nano Materials, 2020, 3(3): 2545-2553.
[105] Peng Z R, Tao L Q, Zou S M, et al. A multi-functional NO2 gas monitor and selfalarm based on laser-induced graphene[J]. Chemical Engineering Journal, 2022,428(5651): 131079.
[106] Faghihnasiri M, Ahmadi A, Golpayegan S A, et al. A first-principles study ofnonlinear elastic behavior and anisotropic wlectronic properties of twodimensional HfS2[J]. Nanomaterials, 2020, 10(3): 446.
[107] Ding G Q, Gao G Y, Huang Z S, et al. Thermoelectric properties of monolayerMSe2 (M = Zr, Hf): low lattice thermal conductivity and a promising figure ofmerit[J]. Nanotechnology, 2016, 27(37): 375703.
[108] Irelan R M, Henderson T M, Scuseria G E. Long-range-corrected hybrids using arange-separated Perdew-Burke-Ernzerhof functional and random phaseapproximation correlation[J]. Journal of Chemical Physics, 2011, 135(9): 094105.
[109] Perdew J P, Burke K, Ernzerhof M. Generalized gradient approximation madesimple[J]. Physical Review Letters, 1997, 78(7): 1396.
[110] Delley B. DMol, a standard tool for density functional calculations: Review andadvances[J]. Theoretical and Computational Chemistry, 1995, 2: 221-254.
[111] Grimme S. Semiempirical GGA-type density functional constructed with a longrange dispersion correction[J]. Journal of Computational Chemistry, 2006, 27(15):1787-1799.
[112] Behler J. Atom-centered symmetry functions for constructing high-dimensionalneural network potentials[J]. Journal of Chemical Physics, 2011, 134(7): 074106.
[113] Delley B. Hardness conserving semilocal pseudopotentials[J]. Physical Review B,2002, 66(15): 155125.
[114] Delley B. An all‐electron numerical method for solving the local densityfunctional for polyatomic molecules[J]. Journal of Chemical Physics, 1990, 92(1):508-517.
[115] Song H Y, Sun J J, Li M. Enhancement of monolayer HfSe2 thermoelectricperformance by strain engineering: a DFT calculation[J]. Chemical PhysicsLetters, 2021, 784(7345): 139109.
[116] Abbasi A, Sardroodi J J. Adsorption and dissociation of H2S on nitrogen-dopedTiO2 anatase nanoparticles: Insights from DFT computations[J]. Surfaces andInterfaces, 2017, 8: 15-27.
[117] Pei Z, Xiong X, He J, et al. Highly stretchable and durable conductive knittedfabrics for the skins of soft robots[J]. Soft Robot, 2019, 6(6): 687-700.
[118] Li Y, Miao X, Chen J Y, et al. Sensing performance of knitted strain sensor ontwo-dimensional and three-dimensional surfaces[J]. Materials & Design, 2021,197: 109273.
[119] Chen W, Yan X. Progress in achieving high-performance piezoresistive andcapacitive flexible pressure sensors: A review[J]. Journal of Materials Science &Technology, 2020, 43: 175-188.
[120] Nguyen T, Dinh T, Phan H-P, et al. Advances in ultrasensitive piezoresistivesensors: from conventional to flexible and stretchable applications[J]. MaterialsHorizons, 2021, 8(8): 2123-2150.
[121] Zhang J, Chen J, Li M, et al. Design, fabrication, and implementation of an arraytype MEMS piezoresistive intelligent pressure sensor system[J]. Micromachines,2018, 9(3): 104.
[122] Escudero P, Yeste J, Pascual-Izarra C, et al. Color tunable pressure sensors basedon polymer nanostructured membranes for optofluidic applications[J]. ScientificReports, 2019, 9(1): 3259.
[123] Lee C, Wei X, Kysar J W, et al. Measurement of the elastic properties andintrinsic strength of monolayer graphene[J]. Science, 2008, 321(5887): 385-388.
[124] Kim K S, Zhao Y, Jang H, et al. Large-scale pattern growth of graphene films for stretchable transparent electrodes[J]. Nature, 2009, 457(7230): 706-710.
[125] Cocco G, Cadelano E, Colombo L. Gap opening in graphene by shear strain[J].Physical Review B, 2010, 81(24): 241412.
[126] Bunch J S, Verbridge S S, Alden J S, et al. Impermeable atomic membranes fromgraphene sheets[J]. Nano Letters, 2008, 8(8): 2458-2462.
[127] Smith A D, Niklaus F, Paussa A, et al. Electromechanical piezoresistive sensing insuspended graphene membranes[J]. Nano Letters, 2013, 13(7): 3237-3242.
[128] Aguilera-Servin J, Miao T, Bockrath M. Nanoscale pressure sensors realized fromsuspended graphene membrane devices[J]. Applied Physics Letters, 2015, 106:083103.
[129] Milovanović S P, Tadić M Ž, Peeters F M. Graphene membrane as a pressuregauge[J]. Applied Physics Letters, 2017, 111(4): 043101.
[130] Faugeras C, Nerrière A, Potemski M, et al. Few-layer graphene on SiC, pyroliticgraphite, and graphene: A Raman scattering study[J]. Applied Physics Letters,2008, 92(1): 011914
[131] Reina A, Jia X, Ho J, et al. Large area, few-layer graphene films on arbitrarysubstrates by chemical vapor deposition[J]. Nano Letters, 2008, 9(1): 30-35.
[132] Tseng S F, Chen P S, Hsu S H, et al. Investigation of fiber laser-induced porousgraphene electrodes in controlled atmospheres for ZnO nanorod-based NO2 gassensors[J]. Applied Surface Science, 2023, 620(9): 156847.
[133] Kaidarova A, Khan M A, Marengo M, et al. Wearable multifunctional printedgraphene sensors[J]. npj Flexible Electronics, 2019, 3(1): 10.
[134] Lei T, Jingyu Z, Dawei Z, et al. Laser-induced graphene electrodes on poly(ether–ether–ketone)/PDMS composite films for flexible strain and humidity sensors[J].ACS Applied Nano Materials, 2023, 6(19): 17802-17813.
[135] Wang H, Zhao Z, Liu P, et al. A soft and stretchable electronics using laserinduced graphene on polyimide/PDMS composite substrate[J]. npj FlexibleElectronics, 2022, 6(1): 26.
[136] Parmeggiani M, Zaccagnini P, Stassi S, et al. PDMS/polyimide composite as anelastomeric substrate for multifunctional laser-induced graphene electrodes[J].ACS Applied Materials & Interfaces, 2019, 11(36): 33221-33230.
[137] Wang W, Lu L, Li Z, et al. Fingerprint-inspired strain sensor with balancedsensitivity and strain range using laser-induced graphene[J]. ACS AppliedMaterials & Interfaces, 2022, 14(1): 1315-1325.
[138] Xu K, Fujita Y, Lu Y, et al. A wearable body condition sensor system withwireless feedback alarm functions[J]. Advanced Materials, 2021, 33(18):e2008701.
[139] Wang W, Liu Y, Ding M, et al. From network to channel: crack-based strainsensors with high sensitivity, stretchability, and linearity via strain engineering[J].Nano Energy, 2023, 116: 108832.
[140] Song Z, Li W, Bao Y, et al. Breathable and skin-mountable strain sensor withtunable stretchability, sensitivity, and linearity via surface strain delocalization forversatile skin activities' recognition[J]. ACS Applied Materials & Interfaces, 2018,10(49): 42826-42836.
[141] Jing W, Ziyi H, Qiushui C, et al. Biochemical analysis on microfluidic chips[J].Trends in Analytical Chemistry, 2016, 80: 213-231.
[142] Jahn Y M, Ya'akobovitz A. Outstanding stretchability and thickness-dependentmechanical properties of 2D HfS2, HfSe2, and hafnium oxide[J]. Nanoscale, 2021,13(44): 18458-18466.
[143] Bertolazzi S, Brivio J, Kis A. Stretching and breaking of ultrathin MoS2[J]. ACSNano, 2011, 5(12): 9703-9709.
[144] Lin L, Ryan J, Tianyu M, et al. Work function: fundamentals, measurement,calculation, engineering, and applications[J]. Physical Review Applied, 2023,19(3): 037001.
[145] Ferrari A C, Meyer J C, Scardaci V, et al. Raman spectrum of graphene andgraphene layers[J]. Physical Review Letters, 2006, 97(18): 187401.
[146] Luong D X, Yang K, Yoon J, et al. Laser-induced graphene composites asmultifunctional surfaces[J]. ACS Nano, 2019, 13(2): 2579-2586.
[147] Yin L, Xu K, Wen Y, et al. Ultrafast and ultrasensitive phototransistors based onfew-layered HfSe2[J]. Applied Physics Letters, 2016, 109(21): 213105.
[148] Kang M, Rathi S, Lee I, et al. Electrical characterization of multilayer HfSe2 fieldeffect transistors on SiO2 substrate[J]. Applied Physics Letters, 2015, 106(14): 43108.
[149] Cruz A, Mutlu Z, Ozkan M, et al. Raman investigation of the air stability of 2Hpolytype HfSe2 thin films[J]. MRS Communications, 2018, 8(3): 1191-1196.
[150] Liu L, Li Y, Huang X, et al. Low-power memristive logic device enabled bycontrollable oxidation of 2D HfSe2 for in-memory computing[J]. AdvancedScience, 2021, 8(15): e2005038.
[151] Kang M, Rathi S, Lee I, et al. Tunable electrical properties of multilayer HfSe2field effect transistors by oxygen plasma treatment[J]. Nanoscale, 2017, 9(4):1645-1652.
[152] Mirabelli G, Mcgeough C, Schmidt M, et al. Air sensitivity of MoS2, MoSe2,MoTe2, HfS2, and HfSe2[J]. Journal of Applied Physics, 2016, 120(12): 125102.
[153] Chhetry A, Sharma S, Barman S C, et al. Black phosphorus@laser-engravedgraphene heterostructure-based temperature-strain hybridized sensor forelectronic-skin applications[J]. Advanced Functional Materials, 2020, 31(10):2007661.
[154] Cheng X, Cai J, Xu J, et al. High-performance strain sensors based onAu/graphene composite films with hierarchical cracks for wide linear-rangemotion monitoring[J]. ACS Applied Materials & Interfaces, 2022, 14(34): 39230-39239.
[155] Li Q, Wu T, Zhao W, et al. Laser-induced corrugated graphene films for integratedmultimodal sensors[J]. ACS Applied Materials & Interfaces, 2021, 13(31):37433-37444.
[156] Ma Y, Li Z, Han J, et al. Vertical graphene canal mesh for strain sensing with asupereminent resolution[J]. ACS Applied Materials & Interfaces, 2022, 14(28):32387-32394.
[157] Zhang J, Liu X, Neri G, et al. Nanostructured materials for room-temperature gassensors[J]. Advanced Materials, 2016, 28(5): 795-831.
[158] Jung H T. The present and future of gas sensors[J]. ACS Sensors, 2022, 7(4): 912-913.
[159] Li H, Yin Z, He Q, et al. Fabrication of single- and multilayer MoS2 film-basedfield-effect transistors for sensing NO at room temperature[J]. Small, 2012, 8(1): 63-67.
[160] Zhang D, Wang M, Zhang W, et al. Flexible humidity sensing and portableapplications based on MoSe2 nanoflowers/copper tungstate nanoparticles[J].Sensors and Actuators B: Chemical, 2020, 304: 127234.
[161] Ko K Y, Song J G, Kim Y, et al. Improvement of gas-sensing performance oflarge-area tungsten disulfide nanosheets by surface functionalization[J]. ACSNano, 2016, 10(10): 9287-9296.
[162] Guo H, Lan C, Zhou Z, et al. Transparent, flexible, and stretchable WS2 basedhumidity sensors for electronic skin[J]. Nanoscale, 2017, 9(19): 6246-6253.
[163] Eftekhari A. Tungsten dichalcogenides (WS2, WSe2, and WTe2): materialschemistry and applications[J]. Journal of Materials Chemistry A, 2017, 5(35):18299-18325.
[164] Guo S, Yang D, Zhang S, et al. Development of a cloud-based epidermal MoSe2device for hazardous gas sensing[J]. Advanced Functional Materials, 2019,29(18): 1900138.
[165] Kumar R, Zheng W, Liu X, et al. MoS2-based nanomaterials for roomtemperature gas sensors[J]. Advanced Materials Technologies, 2020, 5(5):1901062.
[166] Baek D-H, Kim J. MoS2 gas sensor functionalized by Pd for the detection ofhydrogen[J]. Sensors and Actuators B: Chemical, 2017, 250: 686-691.
[167] Ko K Y, Lee S, Park K, et al. High-performance gas sensor using a large-areaWS2xSe2-2x alloy for low-power operation wearable applications[J]. ACS AppliedMaterials & Interfaces, 2018, 10(40): 34163-34171.
[168] Lebègue S, Björkman T, Klintenberg M, et al. Two-dimensional materials fromdata filtering and ab initio calculations[J]. Physical Review X, 2013, 3(3): 031002.
[169] Gong C, Zhang H, Wang W, et al. Band alignment of two-dimensional transitionmetal dichalcogenides: Application in tunnel field effect transistors[J]. AppliedPhysics Letters, 2013, 103(5): 053513.
[170] Cui H, Jia P, Peng X. Adsorption of SO2 and NO2 molecule on intrinsic and Pddoped HfSe2 monolayer: A first-principles study[J]. Applied Surface Science,2020, 513: 145863.
[171] Cui H, Zhu H, Jia P. Adsorption and sensing of SO2 and SOF2 molecule by Ptdoped HfSe2 monolayer: a first-principles study[J]. Applied Surface Science,2020, 530: 147242.
[172] Timmer B, Olthuis W, Berg A V D. Ammonia sensors and their applications-areview[J]. Sensors and Actuators B: Chemical, 2005, 107(2): 666-677.
[173] Sui N, Zhang P, Zhou T, et al. Selective ppb-level ozone gas sensor based onhierarchical branch-like In2O3 nanostructure[J]. Sensors and Actuators B:Chemical, 2021, 336: 129612.
[174] Niu F, Tao L M, Deng Y C, et al. Phosphorus doped graphene nanosheets forroom temperature NH3 sensing[J]. New Journal of Chemistry, 2014, 38(6): 2269.
[175] Feng Q, Li X, Wang J, et al. Reduced graphene oxide (rGO) encapsulated Co3O4composite nanofibers for highly selective ammonia sensors[J]. Sensors andActuators B: Chemical, 2016, 222: 864-870.
[176] Feng Q, Li X, Wang J. Percolation effect of reduced graphene oxide (rGO) onammonia sensing of rGO-SnO2 composite based sensor[J]. Sensors and ActuatorsB: Chemical, 2017, 243: 1115-1126.
[177] Wang T, Sun Z, Huang D, et al. Studies on NH3 gas sensing by zinc oxidenanowire-reduced graphene oxide nanocomposites[J]. Sensors and Actuators B:Chemical, 2017, 252: 284-294.
[178] Lin Q, Li Y, Yang M. Tin oxide/graphene composite fabricated via a hydrothermalmethod for gas sensors working at room temperature[J]. Sensors and Actuators B:Chemical, 2012, 173: 139-147.
[179] Wang X, Gu D, Li X, et al. Reduced graphene oxide hybridized with WS2nanoflakes based heterojunctions for selective ammonia sensors at roomtemperature[J]. Sensors and Actuators B: Chemical, 2019, 282: 290-299.
[180] Haridas V, Sukhananazerin A, Mary Sneha J, et al. α-Fe2O3 loaded less-defectivegraphene sheets as chemiresistive gas sensor for selective sensing of NH3[J].Applied Surface Science, 2020, 517: 146158.
[181] Ye Z, Tai H, Guo R, et al. Excellent ammonia sensing performance of gas sensorbased on graphene/titanium dioxide hybrid with improved morphology[J].Applied Surface Science, 2017, 419: 84-90.
[182] Su P G, Yang L Y. NH3 gas sensor based on Pd/SnO2/rGO ternary compositeoperated at room-temperature[J]. Sensors and Actuators B: Chemical, 2016, 223:202-208.
[183] Schedin F, Geim A K, Morozov S V, et al. Detection of individual gas moleculesadsorbed on graphene[J]. Nature Materials, 2007, 6(9): 652-6555.
[184] Chen Y, Zhang W, Wu Q. A highly sensitive room-temperature sensing materialfor NH3: SnO2-nanorods coupled by rGO[J]. Sensors and Actuators B: Chemical,2017, 242: 1216-1226.
[185] Lu G, Ocola L E, Chen J. Reduced graphene oxide for room-temperature gassensors[J]. Nanotechnology, 2009, 20(44): 445502.
[186] Cho D Y, Min C H, Kim J, et al. Bond nature of oxygen-deficient HfO2/Si(100)film[J]. Applied Physics Letters, 2006, 89(25): 253510.
[187] Ye H, Liu L, Xu Y, et al. SnSe monolayer: a promising candidate of SO2 sensorwith high adsorption quantity[J]. Applied Surface Science, 2019, 484: 33-38.
[188] Liu L, Yang Q, Wang Z, et al. High selective gas detection for small moleculesbased on germanium selenide monolayer[J]. Applied Surface Science, 2018, 433:575-581
修改评论