[1] MOORE G E. Cramming More Components onto Integrated Circuits, Reprinted from Electron- ics, Volume 38, Number 8, April 19, 1965, Pp.114 Ff.[J/OL]. IEEE Solid-State Circuits SocietyNewsletter, 2006, 11(3): 33-35. DOI: 10.1109/N-SSC.2006.4785860.
[2] RUPP K, SELBERHERR S. The Economic Limit to Moore’s Law[J/OL]. IEEE Transactions on Semiconductor Manufacturing, 2011, 24(1): 1-4. DOI: 10.1109/TSM.2010.2089811.
[3] DEY S, DASH T P, DAS S, et al. Gate-All-Around Si-Nanowire Transistors: Simulation at Nanoscale[C/OL]//2018 IEEE Electron Devices Kolkata Conference (EDKCON). Kolkata, In- dia: IEEE, 2018: 137-141. DOI: 10.1109/EDKCON.2018.8770471.
[4] VARDI A, ZHAO X, del Alamo J A. Quantum-Size Effects in Sub 10-Nm Fin Width InGaAs FinFETs[C/OL]//2015 IEEE International Electron Devices Meeting (IEDM). Washington, DC, USA: IEEE, 2015: 31.3.1-31.3.4. DOI: 10.1109/IEDM.2015.7409807.
[5] IRDS™ 2022: More Moore - IEEE IRDS™[Z].
[2024].
[6] CAVIN R K, LUGLI P, ZHIRNOV V V. Science and Engineering Beyond Moore’s Law[J/OL]. Proceedings of the IEEE, 2012, 100(Special Centennial Issue): 1720-1749. DOI: 10.1109/JP ROC.2012.2190155.
[7] HAMMOUD A, PATTERSON R, GERBER S, et al. Electronic Components and Circuits for Extreme Temperature Environments[C/OL]//10th IEEE International Conference on Electron- ics, Circuits and Systems, 2003. ICECS 2003. Proceedings of the 2003. Sharjah, United Arab Emirates: IEEE, 2003: 44-47. DOI: 10.1109/ICECS.2003.1301972.
[8] PATTERSON R, HAMMOUD A, ELBULUK M. Assessment of Electronics for Cryogenic Space Exploration Missions[J/OL]. Cryogenics, 2006, 46(2-3): 231-236. DOI: 10.1016/j.cryo genics.2005.12.002.
[9] OKCAN B, MERKEN P, GIELEN G, et al. A Cryogenic Analog to Digital Converter Operating from 300 K down to 4.4 K[J/OL]. Review of Scientific Instruments, 2010, 81(2): 024702. DOI: 10.1063/1.3309825.
[10] HIRAO T, HIBI Y, KAWADA M, et al. Cryogenic Readout Electronics with Silicon PMOSFETS for the Infrared Astronomical Satellite, ASTRO-F[J/OL]. Advances in Space Research, 2002, 30(9): 2117-2122. DOI: 10.1016/S0273-1177(02)00598-7.
[11] WADAT,NAGATAH,IKEDAH,etal. DevelopmentofLowPowerCryogenicReadoutIntegrated Circuits Using Fully-Depleted-Silicon-on-Insulator CMOS Technology for Far-Infrared Image Sensors[J/OL]. Journal of Low Temperature Physics, 2012, 167(5-6): 602-608. DOI: 10.1007/s10909-012-0461-6.
[12] NAGATAH,SHIBAIH,HIRAOT,etal. CryogenicCapacitiveTransimpedance Amplifier for Astronomical Infrared Detectors[J/OL]. IEEE Transactions on Electron Devices, 2004, 51(2): 270-278. DOI: 10.1109/TED.2003.821764.
[13] DAONC,KASSAE,AZGHADIMR,etal.AnEnhancedMOSFETThresholdVoltageModel for the 6–300KTemperatureRange[J/OL]. Microelectronics Reliability, 2017, 69: 36-39. DOI: 10.1016/j.microrel.2016.12.007.
[14] BECKERSA,JAZAERIF,GRILLA,etal. PhysicalModelofLow-Temperature to Cryogenic Threshold Voltage in MOSFETs[J/OL]. IEEE Journal of the Electron Devices Society, 2020, 8: 780-788. DOI: 10.1109/JEDS.2020.2989629.
[15] SU H, CAI Y, ZHOU S, et al. A Physical Charge-Based Analytical Threshold Voltage Model for Cryogenic CMOS Design[J/OL]. IEEE Journal of the Electron Devices Society, 2024: 1-1. DOI: 10.1109/JEDS.2024.3359664.
[16] Lnpez-LO,MARTINEZI,Gutierrez-DE,etal. ElectricalandThermalCharacterizationforSOI P-Type FinFET down to Sub-Kelvin Temperatures[C/OL]//2020 IEEE Latin America Electron Devices Conference (LAEDC). San Jose, Costa Rica: IEEE, 2020: 1-3. DOI: 10.1109/LAED C49063.2020.9072950.
[17] HANSONR,KOUWENHOVENLP,PETTAJR,etal. SpinsinFew-ElectronQuantumDots [J/OL]. Reviews of Modern Physics, 2007, 79(4): 1217-1265. DOI: 10.1103/RevModPhys.79. 1217.
[18] Gonzalez-Zalba M F, de Franceschi S, CHARBON E, et al. Scaling Silicon-Based Quantum Computing Using CMOS Technology[J/OL]. Nature Electronics, 2021, 4(12): 872-884. DOI: 10.1038/s41928-021-00681-y.
[19] SCAPPUCCIG,KLOEFFELC,ZWANENBURGFA,etal. TheGermaniumQuantumInformation Route[J/OL]. Nature Reviews Materials, 2021, 6(10): 926-943. DOI: 10.1038/s41578-020-00262-z.
[20] CHAINK,HUANGJH,DUSTERJ,etal. AMOSFETElectronMobilityModelofWideTemperature Range (77- 400 K) for IC Simulation[J/OL]. Semiconductor Science and Technology, 1997, 12(4): 355-358. DOI: 10.1088/0268-1242/12/4/002.
[21] CHENK,ZHANGG,DUSTERJ,etal. MOSFETInversion Layer Capacitance Model Based on Fermi-Dirac Statistics for Wide Temperature Range[J/OL]. Solid-State Electronics, 1997, 41(3): 507-509. DOI: 10.1016/S0038-1101(96)00104-9.
[22] CHENG Y, JENG M C, LIU Z, et al. A Physical and Scalable– Model in BSIM3v3 for Analog/Digital Circuit Simulation[J]. IEEE TRANSACTIONS ON ELECTRON DEVICES, 1997, 44(2): 11.
[23] PAHWAG,KUSHWAHAP,DASGUPTAA,etal. CompactModelingofTemperatureEffects in FDSOIandFinFETDevicesDowntoCryogenicTemperatures[J/OL]. IEEE Transactions on Electron Devices, 2021, 68(9): 4223-4230. DOI: 10.1109/TED.2021.3097971.
[24] BECKERSA,JAZAERIF,ENZC. TheoreticalLimitofLowTemperatureSubthresholdSwing in Field-Effect Transistors[J/OL]. IEEE Electron Device Letters, 2020, 41(2): 276-279. DOI: 10.1109/LED.2019.2963379.
[25] BECKERS A, JAZAERI F, ENZ C. Characterization and Modeling of 28-Nm Bulk CMOS Technology Down to 4.2 K[J/OL]. IEEE Journal of the Electron Devices Society, 2018, 6: 1007-1018. DOI: 10.1109/JEDS.2018.2817458.
[26] BECKERS A, JAZAERI F, ENZ C. Cryogenic MOS Transistor Model[J/OL]. IEEE Transactions on Electron Devices, 2018, 65(9): 3617-3625. DOI: 10.1109/TED.2018.2854701.
[27] TAKEUCHI K, KOBAYASHI M, HIRAMOTO T. A Threshold Voltage Definition Based on a Standardized Charge Versus Voltage Relationship[J/OL]. IEEE Transactions on Electron Devices, 2022, 69(3): 942-948. DOI: 10.1109/TED.2022.3144623.
[28] SINGHSK,GUPTAS,VEGARA,etal.AccurateModelingofCryogenicTemperatureEffects in 10-Nm Bulk CMOS FinFETs Using the BSIM-CMG Model[J/OL]. IEEE Electron Device Letters, 2022, 43(5): 689-692. DOI: 10.1109/LED.2022.3158495.
[29] LUTT,LIZ,LUOC,etal.CharacterizationandModelingof0.18𝜇mBulkCMOSTechnology at Sub-Kelvin Temperature[J/OL]. IEEE Journal of the Electron Devices Society, 2020, 8: 897904. DOI: 10.1109/JEDS.2020.3015265.
[30] ZHANGY,LUT,WANGW,etal. Characterization and Modeling of Native MOSFETs Down to 4.2 K[J/OL]. IEEE Transactions on Electron Devices, 2021, 68(9): 4267-4273. DOI: 10.1 109/TED.2021.3099775.
[31] CHEN Y, ZHANG Y, HUANG J, et al. Compact Modeling of Quantum Transport in 55NmMOSFETsat Cryogenic Temperatures[J/OL]. IEEE Electron Device Letters, 2023, 44(9): 1392-1395. DOI: 10.1109/LED.2023.3299592.
[32] WANGZ, TANGZ, GUOA,et al. Temperature-Driven Gate Geometry Effects in Nanoscale Cryogenic MOSFETs[J/OL]. IEEE Electron Device Letters, 2020, 41(5): 661-664. DOI: 10.1 109/LED.2020.2984280.
[33] TANGZ,WANGZ,GUOA,etal. CryogenicCMOSRFDeviceModelingforScalable QuantumComputerDesign[J/OL]. IEEEJournaloftheElectronDevicesSociety, 2022, 10: 532-539. DOI: 10.1109/JEDS.2022.3186979.
[34] ZHANG X, WUZ,BUJ, et al. Modeling of the Subthreshold Swing in Cryogenic MOSFET With the Combination of Gaussian Band Tail and Gaussian Interface State[J/OL]. IEEE Transactions on Electron Devices, 2024, 71(2): 1173-1178. DOI: 10.1109/TED.2023.3342108.
[35] BALESTRA F, AUDAIRE L, LUCAS C. Influence of Substrate Freeze-out on the Characteristics of MOS Transistors at Very Low Temperatures[J/OL]. Solid-State Electronics, 1987, 30 (3): 321-327. DOI: 10.1016/0038-1101(87)90190-0.
[36] COLINGE J P. Reduction of Kink Effect in Thin-Film SOI MOSFETs[J/OL]. IEEE Electron Device Letters, 1988, 9(2): 97-99. DOI: 10.1109/55.2052.
[37] SIMOENE,DIERICKXB,WARMERDAML,etal. Freeze-out Effects on NMOS Transistor Characteristics at 4.2 K[J/OL]. IEEE Transactions on Electron Devices, 1989, 36(6): 11551161. DOI: 10.1109/16.24362.
[38] 雒超. 极低温CMOS器件建模与环形振荡器研究[D/OL]. 中国科学技术大学,2019. DOI: 10.27517/d.cnki.gzkju.2019.000387.
[39] Ortiz-CondeA. Revisiting MOSFETThresholdVoltageExtractionMethods[J]. Microelectronics Reliability, 2013: 16.
[40] T HARTPA,BABAIEM,CHARBONE,etal. Characterization and Modeling of Mismatch in Cryo-CMOS[J/OL]. IEEE Journal of the Electron Devices Society, 2020, 8: 263-273. DOI: 10.1109/JEDS.2020.2976546.
[41] BECKERSA, JAZAERI F, ENZ C. Inflection Phenomenon in Cryogenic MOSFET Behavior [J/OL]. IEEE Transactions on Electron Devices, 2020, 67(3): 1357-1360. DOI: 10.1109/TED. 2020.2965475.
[42] BECKERS A, MICHL J, GRILL A, et al. Physics-Based and Closed-Form Model for CryoCMOSSubthreshold Swing[C]//2022.
[43] JAEGER R, GAENSSLEN F. Simple Analytical Models for the Temperature Dependent Threshold Behavior of Depletion-Mode Devices[J/OL]. IEEE Journal of Solid-State Circuits, 1979, 14(2): 423-429. DOI: 10.1109/JSSC.1979.1051193.
[44] GAENSSLENF,JAEGERR,WALKERJ. LowTemperatureThresholdBehaviorofDepletion Mode Devices- Characterization and Simulation[C/OL]//1977 International Electron Devices Meeting. 1977: 520-524. DOI: 10.1109/IEDM.1977.189307.
[45] GAENSSLENF,RIDEOUTV,WALKERE,etal.VerySmallMOSFET’sforLow-Temperature Operation[J/OL]. IEEE Transactions on Electron Devices, 1977, 24(3): 218-229. DOI: 10.110 9/T-ED.1977.18712.
[46] FOX R, JAEGER R. MOSFET Behavior and Circuit Considerations for Analog Applications at 77 K[J/OL]. IEEE Transactions on Electron Devices, 1987, 34(1): 114-123. DOI: 10.1109/ T-ED.1987.22893.
[47] AKTURK A, ALLNUTT J, DILLI Z, et al. Device Modeling at Cryogenic Temperatures: Effects of Incomplete Ionization[J/OL]. IEEE Transactions on Electron Devices, 2007, 54(11): 2984-2990. DOI: 10.1109/TED.2007.906966.
[48] INCANDELA R M, SONGL, HOMULLEH,et al. Characterization and Compact Modeling of Nanometer CMOS Transistors at Deep-Cryogenic Temperatures[J/OL]. IEEE Journal of the Electron Devices Society, 2018, 6: 996-1006. DOI: 10.1109/JEDS.2018.2821763.
[49] EKANAYAKE S R, LEHMANN T, DZURAK A S, et al. Characterization of SOS-CMOS FETs at Low Temperatures for the Design of Integrated Circuits for Quantum Bit Control and Readout[J/OL]. IEEE Transactions on Electron Devices, 2010, 57(2): 539-547. DOI: 10.1109/ TED.2009.2037381.
[50] VARSHNIYP.TemperatureDependenceoftheEnergyGapinSemiconductors[J/OL]. Physica, 1967, 34(1): 149-154. DOI: 10.1016/0031-8914(67)90062-6.
[51] SU H, CAI Y, ZHOU S, et al. Characterization and Threshold Voltage Modeling of Bulk PMOSFETsDownto10mKforCryogenicCMOSDesign[C]//The 7THInternational MOS-AK Workshop. Nanjing, 2023: 7-9.
[52] HAFEZIM,GHIBAUDOG,BALESTRAF. AssessmentofInterfaceState Density in Silicon Metal-oxide-semiconductor Transistors at Room, Liquid-nitrogen, and Liquid-helium Temperatures[J/OL]. Journal of Applied Physics, 1990, 67(4): 1950-1952. DOI: 10.1063/1.345572.
[53] CASSÉ M,TACHIK,THIELE S, et al. Spectroscopic Charge Pumping in Si Nanowire Transistors with a High-𝜅/Metal Gate[J/OL]. Applied Physics Letters, 2010, 96(12): 123506. DOI: 10.1063/1.3368122.
[54] APPASWAMYA, CHAKRABORTYP, CRESSLER J D. Influence of Interface Traps on the Temperature Sensitivity of MOSFET Drain-Current Variations[J/OL]. IEEE Electron Device Letters, 2010, 31(5): 387-389. DOI: 10.1109/LED.2010.2041892.
[55] WANGX,Adamu-Lema F, CHENG B, et al. Geometry, Temperature, and Body Bias Dependence of Statistical Variability in 20-Nm Bulk CMOS Technology: A Comprehensive Simulation Analysis[J/OL]. IEEE Transactions on Electron Devices, 2013, 60(5): 1547-1554. DOI: 10.1109/TED.2013.2254490.
[56] YANZ,DEENM. SubstrateBiasEffectsonDrain-Induced Barrier Lowering in Short Channel PMOSDevicesat 77 K[J/OL]. Cryogenics, 1990, 30(12): 1160-1165. DOI: 10.1016/0011-227 5(90)90226-3.
[57] BSIM4–BSIMGroup[Z].
[2024].
修改评论