中文版 | English
题名

量子计算超低温MOSFET阈值电压物理机理及其芯片设计建模的研究

其他题名
INVESTIGATION ON PHYSICAL MECHANISMS AND CHIP DESIGN MODELING OF MOSFET THRESHOLD VOLTAGE AT CRYOGENIC TEMPERATURE FOR QUANTUM COMPUTING
姓名
姓名拼音
SU Hao
学号
12132467
学位类型
硕士
学位专业
080903 微电子学与固体电子学
学科门类/专业学位类别
08 工学
导师
陈凯
导师单位
深港微电子学院
论文答辩日期
2024-05-15
论文提交日期
2024-07-04
学位授予单位
南方科技大学
学位授予地点
深圳
摘要

量子计算被认为是后摩尔定律时代最具潜力实现更高算力的技术路径之一。 基于硅基和超导量子比特的量子计算机是目前两种较为主流的实现方式。硅基和 超导量子比特都需要在毫开(mK)温度级别的超低温环境下才能工作,用于读取 和控制量子比特信号的CMOS测控电路目前普遍被放置在4K的低温环境下,未 来甚至有将量子比特与CMOS测控电路通过不同工程实现方式集成到单芯片的设 想,这意味着CMOS芯片在未来可能需要工作在毫开温度环境下。随着温度下降 到4K乃至以下的超低温环境,诸多不同的材料与器件物理机制都会随之发生重 大改变,这需要对此前业界已建立在常温下的器件物理框架,以及由此所建立的 芯片设计紧凑模型进行重新审视、研究乃至某些部分的重构。EDA电路设计工具 无法准确地对超低温下的晶体管器件行为进行有效仿真,使超低温CMOS电路设 计颇具挑战。 就低温CMOS器件建模而言,从超低温测试始就面临一系列挑战,例如线缆 数量、制冷功率、噪声等。精确的超低温实验数据较难获取,外加与常温不同的物 理机理和现象需要深入探究等挑战,当前业界现状是不同领军团队采取了不同的 建模策略,基于经验公式的工程建模与物理机理研究并举,且后者采取先易后难 的方式逐渐推进。故基于明确物理意义的框架性建模,即便只是针对某一关键器 件物理参数比如MOSFET阈值电压,也在不断摸索研发的过程之中。 本文介绍了超低温环境下的MOSFET阈值电压这一重要参数,进行基于物理 意义的框架性建模的基础性工作:首先通过对器件尺寸的实验设计,进行了五次 流片,其中包括台积电(TSMC)180nm和40nm两个工艺节点。在对NMOS和 PMOS分别进行多个温区的测试表征,参数提取,量化分析后,在深刻理解物理机 理,并开发出相应数学公式的基础上,进行了适合于芯片设计工程计算的超低温 CMOS阈值电压的紧凑模型建模。作为超低温阈值电压物理机理研究及建模的第 一步,本工作聚焦于大尺寸Bulk阈值电压模型。在该工作取得突破性进展的基础 上,对后续工作,即MOSFET尺寸微缩所产生的各种复杂二级效应,进行了前瞻 性的理论与建模思路探讨,为后续的阈值电压框架性建模铺就基础。

关键词
语种
中文
培养类别
独立培养
入学年份
2021
学位授予年份
2024-06
参考文献列表

[1] MOORE G E. Cramming More Components onto Integrated Circuits, Reprinted from Electron- ics, Volume 38, Number 8, April 19, 1965, Pp.114 Ff.[J/OL]. IEEE Solid-State Circuits SocietyNewsletter, 2006, 11(3): 33-35. DOI: 10.1109/N-SSC.2006.4785860.
[2] RUPP K, SELBERHERR S. The Economic Limit to Moore’s Law[J/OL]. IEEE Transactions on Semiconductor Manufacturing, 2011, 24(1): 1-4. DOI: 10.1109/TSM.2010.2089811.
[3] DEY S, DASH T P, DAS S, et al. Gate-All-Around Si-Nanowire Transistors: Simulation at Nanoscale[C/OL]//2018 IEEE Electron Devices Kolkata Conference (EDKCON). Kolkata, In- dia: IEEE, 2018: 137-141. DOI: 10.1109/EDKCON.2018.8770471.
[4] VARDI A, ZHAO X, del Alamo J A. Quantum-Size Effects in Sub 10-Nm Fin Width InGaAs FinFETs[C/OL]//2015 IEEE International Electron Devices Meeting (IEDM). Washington, DC, USA: IEEE, 2015: 31.3.1-31.3.4. DOI: 10.1109/IEDM.2015.7409807.
[5] IRDS™ 2022: More Moore - IEEE IRDS™[Z].
[2024].
[6] CAVIN R K, LUGLI P, ZHIRNOV V V. Science and Engineering Beyond Moore’s Law[J/OL]. Proceedings of the IEEE, 2012, 100(Special Centennial Issue): 1720-1749. DOI: 10.1109/JP ROC.2012.2190155.
[7] HAMMOUD A, PATTERSON R, GERBER S, et al. Electronic Components and Circuits for Extreme Temperature Environments[C/OL]//10th IEEE International Conference on Electron- ics, Circuits and Systems, 2003. ICECS 2003. Proceedings of the 2003. Sharjah, United Arab Emirates: IEEE, 2003: 44-47. DOI: 10.1109/ICECS.2003.1301972.
[8] PATTERSON R, HAMMOUD A, ELBULUK M. Assessment of Electronics for Cryogenic Space Exploration Missions[J/OL]. Cryogenics, 2006, 46(2-3): 231-236. DOI: 10.1016/j.cryo genics.2005.12.002.
[9] OKCAN B, MERKEN P, GIELEN G, et al. A Cryogenic Analog to Digital Converter Operating from 300 K down to 4.4 K[J/OL]. Review of Scientific Instruments, 2010, 81(2): 024702. DOI: 10.1063/1.3309825.
[10] HIRAO T, HIBI Y, KAWADA M, et al. Cryogenic Readout Electronics with Silicon PMOSFETS for the Infrared Astronomical Satellite, ASTRO-F[J/OL]. Advances in Space Research, 2002, 30(9): 2117-2122. DOI: 10.1016/S0273-1177(02)00598-7.
[11] WADAT,NAGATAH,IKEDAH,etal. DevelopmentofLowPowerCryogenicReadoutIntegrated Circuits Using Fully-Depleted-Silicon-on-Insulator CMOS Technology for Far-Infrared Image Sensors[J/OL]. Journal of Low Temperature Physics, 2012, 167(5-6): 602-608. DOI: 10.1007/s10909-012-0461-6.
[12] NAGATAH,SHIBAIH,HIRAOT,etal. CryogenicCapacitiveTransimpedance Amplifier for Astronomical Infrared Detectors[J/OL]. IEEE Transactions on Electron Devices, 2004, 51(2): 270-278. DOI: 10.1109/TED.2003.821764.
[13] DAONC,KASSAE,AZGHADIMR,etal.AnEnhancedMOSFETThresholdVoltageModel for the 6–300KTemperatureRange[J/OL]. Microelectronics Reliability, 2017, 69: 36-39. DOI: 10.1016/j.microrel.2016.12.007.
[14] BECKERSA,JAZAERIF,GRILLA,etal. PhysicalModelofLow-Temperature to Cryogenic Threshold Voltage in MOSFETs[J/OL]. IEEE Journal of the Electron Devices Society, 2020, 8: 780-788. DOI: 10.1109/JEDS.2020.2989629.
[15] SU H, CAI Y, ZHOU S, et al. A Physical Charge-Based Analytical Threshold Voltage Model for Cryogenic CMOS Design[J/OL]. IEEE Journal of the Electron Devices Society, 2024: 1-1. DOI: 10.1109/JEDS.2024.3359664.
[16] Lnpez-LO,MARTINEZI,Gutierrez-DE,etal. ElectricalandThermalCharacterizationforSOI P-Type FinFET down to Sub-Kelvin Temperatures[C/OL]//2020 IEEE Latin America Electron Devices Conference (LAEDC). San Jose, Costa Rica: IEEE, 2020: 1-3. DOI: 10.1109/LAED C49063.2020.9072950.
[17] HANSONR,KOUWENHOVENLP,PETTAJR,etal. SpinsinFew-ElectronQuantumDots [J/OL]. Reviews of Modern Physics, 2007, 79(4): 1217-1265. DOI: 10.1103/RevModPhys.79. 1217.
[18] Gonzalez-Zalba M F, de Franceschi S, CHARBON E, et al. Scaling Silicon-Based Quantum Computing Using CMOS Technology[J/OL]. Nature Electronics, 2021, 4(12): 872-884. DOI: 10.1038/s41928-021-00681-y.
[19] SCAPPUCCIG,KLOEFFELC,ZWANENBURGFA,etal. TheGermaniumQuantumInformation Route[J/OL]. Nature Reviews Materials, 2021, 6(10): 926-943. DOI: 10.1038/s41578-020-00262-z.
[20] CHAINK,HUANGJH,DUSTERJ,etal. AMOSFETElectronMobilityModelofWideTemperature Range (77- 400 K) for IC Simulation[J/OL]. Semiconductor Science and Technology, 1997, 12(4): 355-358. DOI: 10.1088/0268-1242/12/4/002.
[21] CHENK,ZHANGG,DUSTERJ,etal. MOSFETInversion Layer Capacitance Model Based on Fermi-Dirac Statistics for Wide Temperature Range[J/OL]. Solid-State Electronics, 1997, 41(3): 507-509. DOI: 10.1016/S0038-1101(96)00104-9.
[22] CHENG Y, JENG M C, LIU Z, et al. A Physical and Scalable– Model in BSIM3v3 for Analog/Digital Circuit Simulation[J]. IEEE TRANSACTIONS ON ELECTRON DEVICES, 1997, 44(2): 11.
[23] PAHWAG,KUSHWAHAP,DASGUPTAA,etal. CompactModelingofTemperatureEffects in FDSOIandFinFETDevicesDowntoCryogenicTemperatures[J/OL]. IEEE Transactions on Electron Devices, 2021, 68(9): 4223-4230. DOI: 10.1109/TED.2021.3097971.
[24] BECKERSA,JAZAERIF,ENZC. TheoreticalLimitofLowTemperatureSubthresholdSwing in Field-Effect Transistors[J/OL]. IEEE Electron Device Letters, 2020, 41(2): 276-279. DOI: 10.1109/LED.2019.2963379.
[25] BECKERS A, JAZAERI F, ENZ C. Characterization and Modeling of 28-Nm Bulk CMOS Technology Down to 4.2 K[J/OL]. IEEE Journal of the Electron Devices Society, 2018, 6: 1007-1018. DOI: 10.1109/JEDS.2018.2817458.
[26] BECKERS A, JAZAERI F, ENZ C. Cryogenic MOS Transistor Model[J/OL]. IEEE Transactions on Electron Devices, 2018, 65(9): 3617-3625. DOI: 10.1109/TED.2018.2854701.
[27] TAKEUCHI K, KOBAYASHI M, HIRAMOTO T. A Threshold Voltage Definition Based on a Standardized Charge Versus Voltage Relationship[J/OL]. IEEE Transactions on Electron Devices, 2022, 69(3): 942-948. DOI: 10.1109/TED.2022.3144623.
[28] SINGHSK,GUPTAS,VEGARA,etal.AccurateModelingofCryogenicTemperatureEffects in 10-Nm Bulk CMOS FinFETs Using the BSIM-CMG Model[J/OL]. IEEE Electron Device Letters, 2022, 43(5): 689-692. DOI: 10.1109/LED.2022.3158495.
[29] LUTT,LIZ,LUOC,etal.CharacterizationandModelingof0.18𝜇mBulkCMOSTechnology at Sub-Kelvin Temperature[J/OL]. IEEE Journal of the Electron Devices Society, 2020, 8: 897904. DOI: 10.1109/JEDS.2020.3015265.
[30] ZHANGY,LUT,WANGW,etal. Characterization and Modeling of Native MOSFETs Down to 4.2 K[J/OL]. IEEE Transactions on Electron Devices, 2021, 68(9): 4267-4273. DOI: 10.1 109/TED.2021.3099775.
[31] CHEN Y, ZHANG Y, HUANG J, et al. Compact Modeling of Quantum Transport in 55NmMOSFETsat Cryogenic Temperatures[J/OL]. IEEE Electron Device Letters, 2023, 44(9): 1392-1395. DOI: 10.1109/LED.2023.3299592.
[32] WANGZ, TANGZ, GUOA,et al. Temperature-Driven Gate Geometry Effects in Nanoscale Cryogenic MOSFETs[J/OL]. IEEE Electron Device Letters, 2020, 41(5): 661-664. DOI: 10.1 109/LED.2020.2984280.
[33] TANGZ,WANGZ,GUOA,etal. CryogenicCMOSRFDeviceModelingforScalable QuantumComputerDesign[J/OL]. IEEEJournaloftheElectronDevicesSociety, 2022, 10: 532-539. DOI: 10.1109/JEDS.2022.3186979.
[34] ZHANG X, WUZ,BUJ, et al. Modeling of the Subthreshold Swing in Cryogenic MOSFET With the Combination of Gaussian Band Tail and Gaussian Interface State[J/OL]. IEEE Transactions on Electron Devices, 2024, 71(2): 1173-1178. DOI: 10.1109/TED.2023.3342108.
[35] BALESTRA F, AUDAIRE L, LUCAS C. Influence of Substrate Freeze-out on the Characteristics of MOS Transistors at Very Low Temperatures[J/OL]. Solid-State Electronics, 1987, 30 (3): 321-327. DOI: 10.1016/0038-1101(87)90190-0.
[36] COLINGE J P. Reduction of Kink Effect in Thin-Film SOI MOSFETs[J/OL]. IEEE Electron Device Letters, 1988, 9(2): 97-99. DOI: 10.1109/55.2052.
[37] SIMOENE,DIERICKXB,WARMERDAML,etal. Freeze-out Effects on NMOS Transistor Characteristics at 4.2 K[J/OL]. IEEE Transactions on Electron Devices, 1989, 36(6): 11551161. DOI: 10.1109/16.24362.
[38] 雒超. 极低温CMOS器件建模与环形振荡器研究[D/OL]. 中国科学技术大学,2019. DOI: 10.27517/d.cnki.gzkju.2019.000387.
[39] Ortiz-CondeA. Revisiting MOSFETThresholdVoltageExtractionMethods[J]. Microelectronics Reliability, 2013: 16.
[40] T HARTPA,BABAIEM,CHARBONE,etal. Characterization and Modeling of Mismatch in Cryo-CMOS[J/OL]. IEEE Journal of the Electron Devices Society, 2020, 8: 263-273. DOI: 10.1109/JEDS.2020.2976546.
[41] BECKERSA, JAZAERI F, ENZ C. Inflection Phenomenon in Cryogenic MOSFET Behavior [J/OL]. IEEE Transactions on Electron Devices, 2020, 67(3): 1357-1360. DOI: 10.1109/TED. 2020.2965475.
[42] BECKERS A, MICHL J, GRILL A, et al. Physics-Based and Closed-Form Model for CryoCMOSSubthreshold Swing[C]//2022.
[43] JAEGER R, GAENSSLEN F. Simple Analytical Models for the Temperature Dependent Threshold Behavior of Depletion-Mode Devices[J/OL]. IEEE Journal of Solid-State Circuits, 1979, 14(2): 423-429. DOI: 10.1109/JSSC.1979.1051193.
[44] GAENSSLENF,JAEGERR,WALKERJ. LowTemperatureThresholdBehaviorofDepletion Mode Devices- Characterization and Simulation[C/OL]//1977 International Electron Devices Meeting. 1977: 520-524. DOI: 10.1109/IEDM.1977.189307.
[45] GAENSSLENF,RIDEOUTV,WALKERE,etal.VerySmallMOSFET’sforLow-Temperature Operation[J/OL]. IEEE Transactions on Electron Devices, 1977, 24(3): 218-229. DOI: 10.110 9/T-ED.1977.18712.
[46] FOX R, JAEGER R. MOSFET Behavior and Circuit Considerations for Analog Applications at 77 K[J/OL]. IEEE Transactions on Electron Devices, 1987, 34(1): 114-123. DOI: 10.1109/ T-ED.1987.22893.
[47] AKTURK A, ALLNUTT J, DILLI Z, et al. Device Modeling at Cryogenic Temperatures: Effects of Incomplete Ionization[J/OL]. IEEE Transactions on Electron Devices, 2007, 54(11): 2984-2990. DOI: 10.1109/TED.2007.906966.
[48] INCANDELA R M, SONGL, HOMULLEH,et al. Characterization and Compact Modeling of Nanometer CMOS Transistors at Deep-Cryogenic Temperatures[J/OL]. IEEE Journal of the Electron Devices Society, 2018, 6: 996-1006. DOI: 10.1109/JEDS.2018.2821763.
[49] EKANAYAKE S R, LEHMANN T, DZURAK A S, et al. Characterization of SOS-CMOS FETs at Low Temperatures for the Design of Integrated Circuits for Quantum Bit Control and Readout[J/OL]. IEEE Transactions on Electron Devices, 2010, 57(2): 539-547. DOI: 10.1109/ TED.2009.2037381.
[50] VARSHNIYP.TemperatureDependenceoftheEnergyGapinSemiconductors[J/OL]. Physica, 1967, 34(1): 149-154. DOI: 10.1016/0031-8914(67)90062-6.
[51] SU H, CAI Y, ZHOU S, et al. Characterization and Threshold Voltage Modeling of Bulk PMOSFETsDownto10mKforCryogenicCMOSDesign[C]//The 7THInternational MOS-AK Workshop. Nanjing, 2023: 7-9.
[52] HAFEZIM,GHIBAUDOG,BALESTRAF. AssessmentofInterfaceState Density in Silicon Metal-oxide-semiconductor Transistors at Room, Liquid-nitrogen, and Liquid-helium Temperatures[J/OL]. Journal of Applied Physics, 1990, 67(4): 1950-1952. DOI: 10.1063/1.345572.
[53] CASSÉ M,TACHIK,THIELE S, et al. Spectroscopic Charge Pumping in Si Nanowire Transistors with a High-𝜅/Metal Gate[J/OL]. Applied Physics Letters, 2010, 96(12): 123506. DOI: 10.1063/1.3368122.
[54] APPASWAMYA, CHAKRABORTYP, CRESSLER J D. Influence of Interface Traps on the Temperature Sensitivity of MOSFET Drain-Current Variations[J/OL]. IEEE Electron Device Letters, 2010, 31(5): 387-389. DOI: 10.1109/LED.2010.2041892.
[55] WANGX,Adamu-Lema F, CHENG B, et al. Geometry, Temperature, and Body Bias Dependence of Statistical Variability in 20-Nm Bulk CMOS Technology: A Comprehensive Simulation Analysis[J/OL]. IEEE Transactions on Electron Devices, 2013, 60(5): 1547-1554. DOI: 10.1109/TED.2013.2254490.
[56] YANZ,DEENM. SubstrateBiasEffectsonDrain-Induced Barrier Lowering in Short Channel PMOSDevicesat 77 K[J/OL]. Cryogenics, 1990, 30(12): 1160-1165. DOI: 10.1016/0011-227 5(90)90226-3.
[57] BSIM4–BSIMGroup[Z].
[2024].

所在学位评定分委会
电子科学与技术
国内图书分类号
TN386.1
来源库
人工提交
成果类型学位论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/778984
专题南方科技大学-香港科技大学深港微电子学院筹建办公室
推荐引用方式
GB/T 7714
苏浩. 量子计算超低温MOSFET阈值电压物理机理及其芯片设计建模的研究[D]. 深圳. 南方科技大学,2024.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
12132467-苏浩-南方科技大学-香(24418KB)----限制开放--请求全文
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[苏浩]的文章
百度学术
百度学术中相似的文章
[苏浩]的文章
必应学术
必应学术中相似的文章
[苏浩]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。