[1] Moore G E. Cramming More Components onto Integrated Circuits[J]. PROCEEDINGS OF THE IEEE, 1998, 86(1).
[2] Feynman R P. Simulating physics with computers[J].
[3] Lambropoulos P, Petrosyan D. Fundamentals of quantum optics and quantum information[M]. Berlin ; New York: Springer, 2007.
[4] Almudever C G, Lao L, Fu X, et al. The engineering challenges in quantum computing[J]. 2017.
[5] Bardin J C, Jeffrey E, Lucero E, et al. 29.1 A 28nm Bulk-CMOS 4-to-8GHz ¡2mW Cryogenic Pulse Modulator for Scalable Quantum Computing[C]//2019 IEEE International Solid- State Circuits Conference - (ISSCC). San Francisco, CA, USA: IEEE, 2019: 456-458.
[6] Charbon E, Sebastiano F, Babaie M, et al. 15.5 Cryo-CMOS circuits and systems for scalable quantum computing[C]//2017 IEEE International Solid-State Circuits Conference (ISSCC). San Francisco, CA, USA: IEEE, 2017: 264-265.
[7] Cheng Y, Jeng M C, Liu Z, 等. A physical and scalable I-V model in BSIM3v3 for analog/digital circuit simulation[J]. IEEE Transactions on Electron Devices, 1997, 44(2): 277-287.
[8] Pahwa G, Kushwaha P, Dasgupta A, et al. Compact Modeling of Temperature Effects in FDSOI and FinFET Devices Down to Cryogenic Temperatures[J]. IEEE Transactions on Electron Devices, 2021, 68(9): 4223-4230.
[9] Incandela R M, Song L, Homulle H A R, et al. Nanometer CMOS characterization and compact modeling at deep-cryogenic temperatures[C]//2017 47th European Solid-State Device Research Conference (ESSDERC). Leuven, Belgium: IEEE, 2017: 58-61.
[10] Beckers A, Jazaeri F, Bohuslavskyi H, et al. Design-oriented modeling of 28 nm FDSOI CMOS technology down to 4.2 K for quantum computing[C]//2018 Joint International EUROSOI Workshop and International Conference on Ultimate Integration on Silicon (EUROSOI-ULIS). Granada: IEEE, 2018: 1-4.
[11] Beckers A, Beckers D, Jazaeri F, et al. Generalized Boltzmann relations in semiconductors including band tails[J]. Journal of Applied Physics, 2021, 129(4): 045701.
[12] Beckers A, Jazaeri F, Grill A, et al. Physical Model of Low-Temperature to Cryogenic Threshold Voltage in MOSFETs[J]. IEEE Journal of the Electron Devices Society, 2020, 8: 780-788.
[13] Beckers A, Jazaeri F, Enz C. Characterization and Modeling of 28-nm Bulk CMOS Technology Down to 4.2 K[J]. IEEE Journal of the Electron Devices Society, 2018, 6: 1007-1018.
[14] Chakraborty W, Aabrar K A, Gomez J, 等. Characterization and Modeling of 22 nm FDSOI Cryogenic RF CMOS[J]. IEEE Journal on Exploratory Solid-State Computational Devices and Circuits, 2021, 7(2): 184-192.
[15] Grill A, John V, Michl J, et al. Temperature Dependent Mismatch and Variability in a Cryo-CMOS Array with 30k Transistors[C]//2022 IEEE International Reliability Physics Symposium (IRPS). Dallas, TX, USA: IEEE, 2022: 10A.1-1-10A.1-6.
[16] T Hart P A, Babaie M, Charbon E, et al. Characterization and Modeling of Mismatch in Cryo-CMOS[J]. IEEE Journal of the Electron Devices Society, 2020, 8: 263-273.
[17] Schriek E, Sebastiano F, Charbon E. A Cryo-CMOS Digital Cell Library for Quantum Computing Applications[J]. IEEE Solid-State Circuits Letters, 2020, 3: 310-313.
[18] Saligram R, Datta S, Raychowdhury A. Scaled Back End of Line Interconnects at Cryogenic Temperatures[J]. IEEE Electron Device Letters, 2021, 42(11): 1674-1677.
[19] Patra B, Mehrpoo M, Ruffino A, et al. Characterization and Analysis of On-Chip Microwave Passive Components at Cryogenic Temperatures[J]. IEEE Journal of the Electron Devices Society, 2020, 8: 448-456.
[20] Homulle H, Sebastiano F, Charbon E. Deep-Cryogenic Voltage References in 40-nm CMOS[J]. IEEE Solid-State Circuits Letters, 2018, 1(5): 110-113.
[21] Mehrpoo M, Sebastiano F, Charbon E, 等. A Cryogenic CMOS Parametric Amplifier[J]. IEEE Solid-State Circuits Letters, 2020, 3: 5-8.
[22] Kiene G, Catania A, Overwater R, 等. 13.4 A 1GS/s 6-to-8b 0.5mW/Qubit Cryo-CMOS SAR ADC for Quantum Computing in 40nm CMOS[C]//2021 IEEE International Solid- State Circuits Conference (ISSCC): 卷 64. 2021: 214-216.
[23] Gong J, Charbon E, Sebastiano F, 等. A Cryo-CMOS PLL for Quantum Computing Applications[J]. IEEE Journal of Solid-State Circuits, 2022: 1-14.
[24] Guo Y, Liu Q, Li T, et al. Cryogenic CMOS RF Circuits: A Promising Approach for Large-Scale Quantum Computing[J]. IEEE Transactions on Circuits and Systems II: Express Briefs, 2024, 71(3): 1619-1625.
[25] Caglar A, Winckel S V, Brebels S, 等. Design and Analysis of a 4.2 mW 4 K 6–8 GHz CMOS LNA for Superconducting Qubit Readout[J]. IEEE Journal of Solid-State Circuits, 2022: 1-11.
[26] Peng Y, Benserhir J, Castaneda M, et al. A 0.32 X 0.12 mm^2 Cryogenic BiCMOS 0.1–8.8 GHz Low Noise Amplifier Achieving 4 K Noise Temperature for SNWD Readout[J]. IEEE Transactions on Microwave Theory and Techniques, 2024: 1-14.
[27] Patra B, Van Dijk J P G, Subramanian S, et al. 19.1 A Scalable Cryo-CMOS 2-to-20GHz Digitally Intensive Controller for 4×32 Frequency Multiplexed Spin Qubits/Transmons in 22nm FinFET Technology for Quantum Computers[C]//2020 IEEE International Solid- State Circuits Conference - (ISSCC). San Francisco, CA, USA: IEEE, 2020: 304-306.
[28] Guo Y, Li Y, Huang W, et al. A Polar-Modulation-Based Cryogenic Qubit State Controller in 28nm Bulk CMOS[C]//2023 IEEE International Solid- State Circuits Conference (ISSCC). San Francisco, CA, USA: IEEE, 2023: 508-510.
[29] Yoo J, Chen Z, Arute F, et al. 34.2 A 28-nm Bulk-CMOS IC for Full Control of a Superconducting Quantum Processor Unit-Cell[C]//2023 IEEE International Solid- State Circuits Conference (ISSCC). San Francisco, CA, USA: IEEE, 2023: 506-508.
[30] Guevel L L, Billiot G, Jehl X, et al. 19.2 A 110mK 295µW 28nm FDSOI CMOS Quantum Integrated Circuit with a 2.8GHz Excitation and nA Current Sensing of an On-Chip Double Quantum Dot[C]//2020 IEEE International Solid- State Circuits Conference - (ISSCC). San Francisco, CA, USA: IEEE, 2020: 306-308.
[31] Pauka S J, Das K, Kalra R, et al. A cryogenic CMOS chip for generating control signals for multiple qubits[J]. Nature Electronics, 2021, 4(1): 64-70.
[32] Zhang Y, Lu T, Wang W, 等. Characterization and Modeling of Native MOSFETs Down to 4.2 K[J]. IEEE Transactions on Electron Devices, 2021, 68(9): 4267-4273.
[33] Li Z, Luo C, Lu T, et al. Cryogenic Characerization and Modeling of Standard CMOS down to Liquid Helium Temperature for Quantum Computing[M]. arXiv, 2019.
[34] Tang Z, Wang Z, Guo A, 等. Cryogenic CMOS RF Device Modeling for Scalable Quantum Computer Design[J]. IEEE Journal of the Electron Devices Society, 2022, 10: 532-539.
[35] Wang Z, Tang Z, Guo A, et al. Temperature-Driven Gate Geometry Effects in Nanoscale Cryogenic MOSFETs[J]. IEEE Electron Device Letters, 2020, 41(5): 661-664.
[36] Zhang G, Lin H, Wang C. 34.5 A Calibration-Free 12.8-16.5GHz Cryogenic CMOS VCO with 202dBc/Hz FoM for Classic-Quantum Interface[C]//2023 IEEE International Solid- State Circuits Conference (ISSCC). San Francisco, CA, USA: IEEE, 2023: 512-514.
[37] bsim330_manual.pdf[Z].
[38] Cassé M, Tachi K, Thiele S, et al. Spectroscopic charge pumping in Si nanowire transistors with a high-κ/metal gate[J]. Applied Physics Letters, 2010, 96(12): 123506.
[39] Beckers A, Jazaeri F, Bohuslavskyi H, et al. Characterization and modeling of 28-nm FDSOI CMOS technology down to cryogenic temperatures[J]. Solid-State Electronics, 2019, 159: 106-115.
[40] Matula R A. Electrical resistivity of copper, gold, palladium, and silver[J]. Journal of Physical and Chemical Reference Data, 1979, 8(4): 1147-1298.
[41] Lopez G, Davis J, Meindl J. A new physical model and experimental measurements of copper interconnect resistivity considering size effects and line-edge roughness (LER)[J].
[42] Lt Hart P A, Huizinga T, Babaie M, et al. Integrated Cryo-CMOS Temperature Sensors for Quantum Control ICs[C]//2022 IEEE 15th Workshop on Low Temperature Electronics (WOLTE). Matera, Italy: IEEE, 2022: 1-4.
[43] T Hart P A, Babaie M, Vladimirescu A, et al. Characterization and Modeling of Self-Heating in Nanometer Bulk-CMOS at Cryogenic Temperatures[J]. IEEE Journal of the Electron Devices Society, 2021, 9: 891-901.
[44] Saligram R, Chakraborty W, Cao N, et al. Power Performance Analysis of Digital Standard Cells for 28 nm Bulk CMOS at Cryogenic Temperature Using BSIM Models[J]. IEEE Journal on Exploratory Solid-State Computational Devices and Circuits, 2021, 7(2): 193-200.
修改评论