[1] SUNG H, FERLAY J, SIEGEL R L, et al. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries [J]. CA Cancer J Clin, 2021, 71(3): 209-49.
[2] SIEGEL R L, GIAQUINTO A N, JEMAL A. Cancer statistics, 2024 [J]. CA Cancer J Clin, 2024, 74(1): 12-49.
[3] ZHENG R S, ZHANG S W, SUN K X, et al. [Cancer statistics in China, 2016] [J]. Zhonghua Zhong Liu Za Zhi, 2023, 45(3): 212-20.
[4] CAO M, LI H, SUN D, et al. Cancer burden of major cancers in China: A need for sustainable actions [J]. Cancer Commun (Lond), 2020, 40(5): 205-10.
[5] HOLLIDAY R. Epigenetics: an overview [J]. Dev Genet, 1994, 15(6): 453-7.
[6] MARKOULI M, STREPKOS D, BASDRA E K, et al. Prominent Role of Histone Modifications in the Regulation of Tumor Metastasis [J]. Int J Mol Sci, 2021, 22(5).
[7] DOR Y, CEDAR H. Principles of DNA methylation and their implications for biology and medicine [J]. Lancet, 2018, 392(10149): 777-86.
[8] ZHAO B S, ROUNDTREE I A, HE C. Post-transcriptional gene regulation by mRNA modifications [J]. Nat Rev Mol Cell Biol, 2017, 18(1): 31-42.
[9] BATES S E. Epigenetic Therapies for Cancer [J]. N Engl J Med, 2020, 383(7): 650-63.
[10] SWYGERT S G, PETERSON C L. Chromatin dynamics: interplay between remodeling enzymes and histone modifications [J]. Biochim Biophys Acta, 2014, 1839(8): 728-36.
[11] CHENG Y, HE C, WANG M, et al. Targeting epigenetic regulators for cancer therapy: mechanisms and advances in clinical trials [J]. Signal Transduct Target Ther, 2019, 4: 62.
[12] WEI J W, HUANG K, YANG C, et al. Non-coding RNAs as regulators in epigenetics (Review) [J]. Oncol Rep, 2017, 37(1): 3-9.
[13] SINHA S, BOILA L D, CHATTERJEE S S, et al. Chapter 2 - miRNA and Cancer: A Deadly Liaison? [M]//CHAKRABARTI D J, MITRA D S. Cancer and Noncoding RNAs. Boston; Academic Press. 2018: 27-46.
[14] ZHUANG J, HUO Q, YANG F, et al. Perspectives on the Role of Histone Modification in Breast Cancer Progression and the Advanced Technological Tools to Study Epigenetic Determinants of Metastasis [J]. Front Genet, 2020, 11: 603552.
[15] BANERJEE R, SMITH J, ECCLES M R, et al. Epigenetic basis and targeting of cancer metastasis [J]. Trends Cancer, 2022, 8(3): 226-41.
[16] SHER G, SALMAN N A, KHAN A Q, et al. Epigenetic and breast cancer therapy: Promising diagnostic and therapeutic applications [J]. Semin Cancer Biol, 2022, 83: 152-65.
[17] HOGG S J, BEAVIS P A, DAWSON M A, et al. Targeting the epigenetic regulation of antitumour immunity [J]. Nat Rev Drug Discov, 2020, 19(11): 776-800.
[18] SHENG W, LAFLEUR M W, NGUYEN T H, et al. LSD1 Ablation Stimulates Anti-tumor Immunity and Enables Checkpoint Blockade [J]. Cell, 2018, 174(3): 549-63.e19.
[19] TOPPER M J, VAZ M, CHIAPPINELLI K B, et al. Epigenetic Therapy Ties MYC Depletion to Reversing Immune Evasion and Treating Lung Cancer [J]. Cell, 2017, 171(6): 1284-300.e21.
[20] GUCCIONE E, RICHARD S. The regulation, functions and clinical relevance of arginine methylation [J]. Nat Rev Mol Cell Biol, 2019, 20(10): 642-57.
[21] YADAV N, LEE J, KIM J, et al. Specific protein methylation defects and gene expression perturbations in coactivator-associated arginine methyltransferase 1-deficient mice [J]. Proc Natl Acad Sci U S A, 2003, 100(11): 6464-8.
[22] PAWLAK M R, SCHERER C A, CHEN J, et al. Arginine N-methyltransferase 1 is required for early postimplantation mouse development, but cells deficient in the enzyme are viable [J]. Mol Cell Biol, 2000, 20(13): 4859-69.
[23] BLANC R S, RICHARD S. Arginine Methylation: The Coming of Age [J]. Mol Cell, 2017, 65(1): 8-24.
[24] BEDFORD M T, CLARKE S G. Protein arginine methylation in mammals: who, what, and why [J]. Mol Cell, 2009, 33(1): 1-13.
[25] WU Q, SCHAPIRA M, ARROWSMITH C H, et al. Protein arginine methylation: from enigmatic functions to therapeutic targeting [J]. Nat Rev Drug Discov, 2021, 20(7): 509-30.
[26] ANTONYSAMY S. The Structure and Function of the PRMT5:MEP50 Complex [J]. Subcell Biochem, 2017, 83: 185-94.
[27] ANTONYSAMY S, BONDAY Z, CAMPBELL R M, et al. Crystal structure of the human PRMT5:MEP50 complex [J]. Proc Natl Acad Sci U S A, 2012, 109(44): 17960-5.
[28] CHEN Y, SHAO X, ZHAO X, et al. Targeting protein arginine methyltransferase 5 in cancers: Roles, inhibitors and mechanisms [J]. Biomed Pharmacother, 2021, 144: 112252.
[29] ZHU F, GUO H, BATES P D, et al. PRMT5 is upregulated by B-cell receptor signaling and forms a positive-feedback loop with PI3K/AKT in lymphoma cells [J]. Leukemia, 2019, 33(12): 2898-911.
[30] ZHANG H T, ZHANG D, ZHA Z G, et al. Transcriptional activation of PRMT5 by NF-Y is required for cell growth and negatively regulated by the PKC/c-Fos signaling in prostate cancer cells [J]. Biochim Biophys Acta, 2014, 1839(11): 1330-40.
[31] SERIO J, ROPA J, CHEN W, et al. The PAF complex regulation of Prmt5 facilitates the progression and maintenance of MLL fusion leukemia [J]. Oncogene, 2018, 37(4): 450-60.
[32] WANG L, PAL S, SIF S. Protein arginine methyltransferase 5 suppresses the transcription of the RB family of tumor suppressors in leukemia and lymphoma cells [J]. Mol Cell Biol, 2008, 28(20): 6262-77.
[33] ALINARI L, MAHASENAN K V, YAN F, et al. Selective inhibition of protein arginine methyltransferase 5 blocks initiation and maintenance of B-cell transformation [J]. Blood, 2015, 125(16): 2530-43.
[34] LU Y F, CAI X L, LI Z Z, et al. LncRNA SNHG16 Functions as an Oncogene by Sponging MiR-4518 and Up-Regulating PRMT5 Expression in Glioma [J]. Cell Physiol Biochem, 2018, 45(5): 1975-85.
[35] GUO J Q, YANG Z J, WANG S, et al. LncRNA SNHG16 functions as an oncogene by sponging miR-200a-3p in pancreatic cancer [J]. Eur Rev Med Pharmacol Sci, 2020, 24(4): 1718-24.
[36] SUN C M, ZHANG G M, QIAN H N, et al. MiR-1266 suppresses the growth and metastasis of prostate cancer via targeting PRMT5 [J]. Eur Rev Med Pharmacol Sci, 2021, 25(13): 4439-.
[37] WU Z, LIN Y. Long noncoding RNA LINC00515 promotes cell proliferation and inhibits apoptosis by sponging miR-16 and activating PRMT5 expression in human glioma [J]. Onco Targets Ther, 2019, 12: 2595-604.
[38] WEN C, TIAN Z, LI L, et al. SRSF3 and HNRNPH1 Regulate Radiation-Induced Alternative Splicing of Protein Arginine Methyltransferase 5 in Hepatocellular Carcinoma [J]. Int J Mol Sci, 2022, 23(23).
[39] SIPOS A, IVáN J, BéCSI B, et al. Myosin phosphatase and RhoA-activated kinase modulate arginine methylation by the regulation of protein arginine methyltransferase 5 in hepatocellular carcinoma cells [J]. Sci Rep, 2017, 7: 40590.
[40] LATTOUF H, KASSEM L, JACQUEMETTON J, et al. LKB1 regulates PRMT5 activity in breast cancer [J]. Int J Cancer, 2019, 144(3): 595-606.
[41] ESPEJO A B, GAO G, BLACK K, et al. PRMT5 C-terminal Phosphorylation Modulates a 14-3-3/PDZ Interaction Switch [J]. J Biol Chem, 2017, 292(6): 2255-65.
[42] ZHANG H T, ZENG L F, HE Q Y, et al. The E3 ubiquitin ligase CHIP mediates ubiquitination and proteasomal degradation of PRMT5 [J]. Biochim Biophys Acta, 2016, 1863(2): 335-46.
[43] BHURIPANYO K, WANG Y, LIU X, et al. Identifying the substrate proteins of U-box E3s E4B and CHIP by orthogonal ubiquitin transfer [J]. Sci Adv, 2018, 4(1): e1701393.
[44] LI Z, ZHANG J, LIU X, et al. The LINC01138 drives malignancies via activating arginine methyltransferase 5 in hepatocellular carcinoma [J]. Nat Commun, 2018, 9(1): 1572.
[45] NIE M, WANG Y, GUO C, et al. CARM1-mediated methylation of protein arginine methyltransferase 5 represses human γ-globin gene expression in erythroleukemia cells [J]. J Biol Chem, 2018, 293(45): 17454-63.
[46] MAVRAKIS K J, MCDONALD E R, 3RD, SCHLABACH M R, et al. Disordered methionine metabolism in MTAP/CDKN2A-deleted cancers leads to dependence on PRMT5 [J]. Science, 2016, 351(6278): 1208-13.
[47] PAL S, VISHWANATH S N, ERDJUMENT-BROMAGE H, et al. Human SWI/SNF-associated PRMT5 methylates histone H3 arginine 8 and negatively regulates expression of ST7 and NM23 tumor suppressor genes [J]. Mol Cell Biol, 2004, 24(21): 9630-45.
[48] CHIANG K, ZIELINSKA A E, SHAABAN A M, et al. PRMT5 Is a Critical Regulator of Breast Cancer Stem Cell Function via Histone Methylation and FOXP1 Expression [J]. Cell Rep, 2017, 21(12): 3498-513.
[49] MERSAOUI S Y, YU Z, COULOMBE Y, et al. Arginine methylation of the DDX5 helicase RGG/RG motif by PRMT5 regulates resolution of RNA:DNA hybrids [J]. Embo j, 2019, 38(15): e100986.
[50] ZHAO D Y, GISH G, BRAUNSCHWEIG U, et al. SMN and symmetric arginine dimethylation of RNA polymerase II C-terminal domain control termination [J]. Nature, 2016, 529(7584): 48-53.
[51] LI W J, HE Y H, YANG J J, et al. Profiling PRMT methylome reveals roles of hnRNPA1 arginine methylation in RNA splicing and cell growth [J]. Nat Commun, 2021, 12(1): 1946.
[52] MEISTER G, EGGERT C, BüHLER D, et al. Methylation of Sm proteins by a complex containing PRMT5 and the putative U snRNP assembly factor pICln [J]. Curr Biol, 2001, 11(24): 1990-4.
[53] BEZZI M, TEO S X, MULLER J, et al. Regulation of constitutive and alternative splicing by PRMT5 reveals a role for Mdm4 pre-mRNA in sensing defects in the spliceosomal machinery [J]. Genes Dev, 2013, 27(17): 1903-16.
[54] HAMARD P J, SANTIAGO G E, LIU F, et al. PRMT5 Regulates DNA Repair by Controlling the Alternative Splicing of Histone-Modifying Enzymes [J]. Cell Rep, 2018, 24(10): 2643-57.
[55] GAO G, DHAR S, BEDFORD M T. PRMT5 regulates IRES-dependent translation via methylation of hnRNP A1 [J]. Nucleic Acids Res, 2017, 45(8): 4359-69.
[56] REN J, WANG Y, LIANG Y, et al. Methylation of ribosomal protein S10 by protein-arginine methyltransferase 5 regulates ribosome biogenesis [J]. J Biol Chem, 2010, 285(17): 12695-705.
[57] WU Y, WANG Z, HAN L, et al. PRMT5 regulates RNA m6A demethylation for doxorubicin sensitivity in breast cancer [J]. Mol Ther, 2022, 30(7): 2603-17.
[58] HU D, GUR M, ZHOU Z, et al. Interplay between arginine methylation and ubiquitylation regulates KLF4-mediated genome stability and carcinogenesis [J]. Nat Commun, 2015, 6: 8419.
[59] CALABRETTA S, VOGEL G, YU Z, et al. Loss of PRMT5 Promotes PDGFRα Degradation during Oligodendrocyte Differentiation and Myelination [J]. Dev Cell, 2018, 46(4): 426-40.e5.
[60] CHANDRASHEKAR D S, KARTHIKEYAN S K, KORLA P K, et al. UALCAN: An update to the integrated cancer data analysis platform [J]. Neoplasia, 2022, 25: 18-27.
[61] JANSSON M, DURANT S T, CHO E C, et al. Arginine methylation regulates the p53 response [J]. Nat Cell Biol, 2008, 10(12): 1431-9.
[62] WEI T Y, JUAN C C, HISA J Y, et al. Protein arginine methyltransferase 5 is a potential oncoprotein that upregulates G1 cyclins/cyclin-dependent kinases and the phosphoinositide 3-kinase/AKT signaling cascade [J]. Cancer Sci, 2012, 103(9): 1640-50.
[63] DU C, HANSEN L J, SINGH S X, et al. A PRMT5-RNF168-SMURF2 Axis Controls H2AX Proteostasis [J]. Cell Rep, 2019, 28(12): 3199-211.e5.
[64] CLARKE T L, SANCHEZ-BAILON M P, CHIANG K, et al. PRMT5-Dependent Methylation of the TIP60 Coactivator RUVBL1 Is a Key Regulator of Homologous Recombination [J]. Mol Cell, 2017, 65(5): 900-16.e7.
[65] GUO Z, ZHENG L, XU H, et al. Methylation of FEN1 suppresses nearby phosphorylation and facilitates PCNA binding [J]. Nat Chem Biol, 2010, 6(10): 766-73.
[66] REHMAN I, BASU S M, DAS S K, et al. PRMT5-mediated arginine methylation of TDP1 for the repair of topoisomerase I covalent complexes [J]. Nucleic Acids Res, 2018, 46(11): 5601-17.
[67] HE W, MA X, YANG X, et al. A role for the arginine methylation of Rad9 in checkpoint control and cellular sensitivity to DNA damage [J]. Nucleic Acids Res, 2011, 39(11): 4719-27.
[68] KIM H, KIM H, FENG Y, et al. PRMT5 control of cGAS/STING and NLRC5 pathways defines melanoma response to antitumor immunity [J]. Sci Transl Med, 2020, 12(551).
[69] JIANG Y, YUAN Y, CHEN M, et al. PRMT5 disruption drives antitumor immunity in cervical cancer by reprogramming T cell-mediated response and regulating PD-L1 expression [J]. Theranostics, 2021, 11(18): 9162-76.
[70] INOUE M, OKAMOTO K, TERASHIMA A, et al. Arginine methylation controls the strength of γc-family cytokine signaling in T cell maintenance [J]. Nat Immunol, 2018, 19(11): 1265-76.
[71] SACHAMITR P, HO J C, CIAMPONI F E, et al. PRMT5 inhibition disrupts splicing and stemness in glioblastoma [J]. Nat Commun, 2021, 12(1): 979.
[72] IBRAHIM R, MATSUBARA D, OSMAN W, et al. Expression of PRMT5 in lung adenocarcinoma and its significance in epithelial-mesenchymal transition [J]. Hum Pathol, 2014, 45(7): 1397-405.
[73] LIU L, YAN H, RUAN M, et al. An AKT/PRMT5/SREBP1 axis in lung adenocarcinoma regulates de novo lipogenesis and tumor growth [J]. Cancer Sci, 2021, 112(8): 3083-98.
[74] JING P, ZHAO N, YE M, et al. Protein arginine methyltransferase 5 promotes lung cancer metastasis via the epigenetic regulation of miR-99 family/FGFR3 signaling [J]. Cancer Lett, 2018, 427: 38-48.
[75] ZAKRZEWICZ D, DIDIASOVA M, KRüGER M, et al. Protein arginine methyltransferase 5 mediates enolase-1 cell surface trafficking in human lung adenocarcinoma cells [J]. Biochim Biophys Acta Mol Basis Dis, 2018, 1864(5 Pt A): 1816-27.
[76] HAN X, WEI L, WU B. PRMT5 Promotes Aerobic Glycolysis and Invasion of Breast Cancer Cells by Regulating the LXRα/NF-κBp65 Pathway [J]. Onco Targets Ther, 2020, 13: 3347-57.
[77] WU D, JIA H, ZHANG Z, et al. Circ-PRMT5 promotes breast cancer by the miR-509-3p/TCF7L2 axis activating the PI3K/AKT pathway [J]. J Gene Med, 2021, 23(2): e3300.
[78] SHAILESH H, SIVEEN K S, SIF S. Protein arginine methyltransferase 5 (PRMT5) activates WNT/β-catenin signalling in breast cancer cells via epigenetic silencing of DKK1 and DKK3 [J]. J Cell Mol Med, 2021, 25(3): 1583-600.
[79] PAK M G, LEE H W, ROH M S. High nuclear expression of protein arginine methyltransferase-5 is a potentially useful marker to estimate submucosal invasion in endoscopically resected early colorectal carcinoma [J]. Pathol Int, 2015, 65(10): 541-8.
[80] YAN Y, ZHAO P, WANG Z, et al. PRMT5 regulates colorectal cancer cell growth and EMT via EGFR/Akt/GSK3β signaling cascades [J]. Aging (Albany NY), 2021, 13(3): 4468-81.
[81] DEMETRIADOU C, PAVLOU D, MPEKRIS F, et al. NAA40 contributes to colorectal cancer growth by controlling PRMT5 expression [J]. Cell Death Dis, 2019, 10(3): 236.
[82] HAN X, LI R, ZHANG W, et al. Expression of PRMT5 correlates with malignant grade in gliomas and plays a pivotal role in tumor growth in vitro [J]. J Neurooncol, 2014, 118(1): 61-72.
[83] YAN F, ALINARI L, LUSTBERG M E, et al. Genetic validation of the protein arginine methyltransferase PRMT5 as a candidate therapeutic target in glioblastoma [J]. Cancer Res, 2014, 74(6): 1752-65.
[84] BRAUN C J, STANCIU M, BOUTZ P L, et al. Coordinated Splicing of Regulatory Detained Introns within Oncogenic Transcripts Creates an Exploitable Vulnerability in Malignant Glioma [J]. Cancer Cell, 2017, 32(4): 411-26.e11.
[85] TAMIYA H, KIM H, KLYMENKO O, et al. SHARPIN-mediated regulation of protein arginine methyltransferase 5 controls melanoma growth [J]. J Clin Invest, 2018, 128(1): 517-30.
[86] JIN Y, ZHOU J, XU F, et al. Targeting methyltransferase PRMT5 eliminates leukemia stem cells in chronic myelogenous leukemia [J]. J Clin Invest, 2016, 126(10): 3961-80.
[87] TARIGHAT S S, SANTHANAM R, FRANKHOUSER D, et al. The dual epigenetic role of PRMT5 in acute myeloid leukemia: gene activation and repression via histone arginine methylation [J]. Leukemia, 2016, 30(4): 789-99.
[88] GULLà A, HIDESHIMA T, BIANCHI G, et al. Protein arginine methyltransferase 5 has prognostic relevance and is a druggable target in multiple myeloma [J]. Leukemia, 2018, 32(4): 996-1002.
[89] KARKHANIS V, ALINARI L, OZER H G, et al. Protein arginine methyltransferase 5 represses tumor suppressor miRNAs that down-regulate CYCLIN D1 and c-MYC expression in aggressive B-cell lymphoma [J]. J Biol Chem, 2020, 295(5): 1165-80.
[90] LI Y, CHITNIS N, NAKAGAWA H, et al. PRMT5 is required for lymphomagenesis triggered by multiple oncogenic drivers [J]. Cancer Discov, 2015, 5(3): 288-303.
[91] LU X, FERNANDO T M, LOSSOS C, et al. PRMT5 interacts with the BCL6 oncoprotein and is required for germinal center formation and lymphoma cell survival [J]. Blood, 2018, 132(19): 2026-39.
[92] MOUNIR Z, KORN J M, WESTERLING T, et al. ERG signaling in prostate cancer is driven through PRMT5-dependent methylation of the Androgen Receptor [J]. Elife, 2016, 5.
[93] ZHU Y, XIA T, CHEN D Q, et al. Promising role of protein arginine methyltransferases in overcoming anti-cancer drug resistance [J]. Drug Resist Updat, 2024, 72: 101016.
[94] ZHENG J, LI B, WU Y, et al. Targeting Arginine Methyltransferase PRMT5 for Cancer Therapy: Updated Progress and Novel Strategies [J]. J Med Chem, 2023, 66(13): 8407-27.
[95] BONDAY Z Q, CORTEZ G S, GROGAN M J, et al. LLY-283, a Potent and Selective Inhibitor of Arginine Methyltransferase 5, PRMT5, with Antitumor Activity [J]. ACS Med Chem Lett, 2018, 9(7): 612-7.
[96] PATEL M R, MONGA V, JAUHARI S, et al. A Phase 1 Dose Escalation Study of Protein Arginine Methyltransferase 5 (PRMT5) Inhibitor PRT543 in Patients with Myeloid Malignancies [J]. Blood, 2021, 138: 2609.
[97] FEUSTEL K, FALCHOOK G S. Protein Arginine Methyltransferase 5 (PRMT5) Inhibitors in Oncology Clinical Trials: A review [J]. J Immunother Precis Oncol, 2022, 5(3): 58-67.
[98] JENSEN-PERGAKES K, TATLOCK J, MAEGLEY K A, et al. SAM-Competitive PRMT5 Inhibitor PF-06939999 Demonstrates Antitumor Activity in Splicing Dysregulated NSCLC with Decreased Liability of Drug Resistance [J]. Mol Cancer Ther, 2022, 21(1): 3-15.
[99] VIEITO M, MORENO V, SPREAFICO A, et al. Phase 1 Study of JNJ-64619178, a Protein Arginine Methyltransferase 5 Inhibitor, in Advanced Solid Tumors [J]. Clin Cancer Res, 2023, 29(18): 3592-602.
[100]DUNCAN K W, RIOUX N, BORIACK-SJODIN P A, et al. Structure and Property Guided Design in the Identification of PRMT5 Tool Compound EPZ015666 [J]. ACS Med Chem Lett, 2016, 7(2): 162-6.
[101]CHAN-PENEBRE E, KUPLAST K G, MAJER C R, et al. A selective inhibitor of PRMT5 with in vivo and in vitro potency in MCL models [J]. Nat Chem Biol, 2015, 11(6): 432-7.
[102]LIN H, WANG M, ZHANG Y W, et al. Discovery of Potent and Selective Covalent Protein Arginine Methyltransferase 5 (PRMT5) Inhibitors [J]. ACS Med Chem Lett, 2019, 10(7): 1033-8.
[103]PALTE R L, SCHNEIDER S E, ALTMAN M D, et al. Allosteric Modulation of Protein Arginine Methyltransferase 5 (PRMT5) [J]. ACS Med Chem Lett, 2020, 11(9): 1688-93.
[104]BéKéS M, LANGLEY D R, CREWS C M. PROTAC targeted protein degraders: the past is prologue [J]. Nat Rev Drug Discov, 2022, 21(3): 181-200.
[105]SHEN Y, GAO G, YU X, et al. Discovery of First-in-Class Protein Arginine Methyltransferase 5 (PRMT5) Degraders [J]. J Med Chem, 2020, 63(17): 9977-89.
[106]SMITH C R, ARANDA R, BOBINSKI T P, et al. Fragment-Based Discovery of MRTX1719, a Synthetic Lethal Inhibitor of the PRMT5•MTA Complex for the Treatment of MTAP-Deleted Cancers [J]. J Med Chem, 2022, 65(3): 1749-66.
[107]VILLALONA-CALERO M A, PATNAIK A, MAKI R G, et al. Design and rationale of a phase 1 dose-escalation study of AMG 193, a methylthioadenosine (MTA)-cooperative PRMT5 inhibitor, in patients with advanced methylthioadenosine phosphorylase (MTAP)-null solid tumors [J]. Journal of Clinical Oncology, 2022, 40(16_suppl): TPS3167-TPS.
[108]DEMARTINO G N, SLAUGHTER C A. The proteasome, a novel protease regulated by multiple mechanisms [J]. J Biol Chem, 1999, 274(32): 22123-6.
[109]KUHN D J, CHEN Q, VOORHEES P M, et al. Potent activity of carfilzomib, a novel, irreversible inhibitor of the ubiquitin-proteasome pathway, against preclinical models of multiple myeloma [J]. Blood, 2007, 110(9): 3281-90.
[110]PICKART C M. Mechanisms underlying ubiquitination [J]. Annu Rev Biochem, 2001, 70: 503-33.
[111]BROWN R, KAGANOVICH D. Look Out Autophagy, Ubiquilin UPS Its Game [J]. Cell, 2016, 166(4): 797-9.
[112]WANG Y, LE W D. Autophagy and Ubiquitin-Proteasome System [J]. Adv Exp Med Biol, 2019, 1206: 527-50.
[113]BIBO-VERDUGO B, SALVESEN G S. Caspase mechanisms in the regulation of inflammation [J]. Mol Aspects Med, 2022, 88: 101085.
[114]MANASANCH E E, ORLOWSKI R Z. Proteasome inhibitors in cancer therapy [J]. Nat Rev Clin Oncol, 2017, 14(7): 417-33.
[115]LEE D H, GOLDBERG A L. Proteasome inhibitors: valuable new tools for cell biologists [J]. Trends Cell Biol, 1998, 8(10): 397-403.
[116]RICHARDSON P G, SONNEVELD P, SCHUSTER M W, et al. Bortezomib or high-dose dexamethasone for relapsed multiple myeloma [J]. N Engl J Med, 2005, 352(24): 2487-98.
[117]HUANG Z, WU Y, ZHOU X, et al. Efficacy of therapy with bortezomib in solid tumors: a review based on 32 clinical trials [J]. Future Oncol, 2014, 10(10): 1795-807.
[118]WELLER M, LE RHUN E, PREUSSER M, et al. How we treat glioblastoma [J]. ESMO Open, 2019, 4(Suppl 2): e000520.
[119]SPENCER A, HARRISON S, ZONDER J, et al. A phase 1 clinical trial evaluating marizomib, pomalidomide and low-dose dexamethasone in relapsed and refractory multiple myeloma (NPI-0052-107): final study results [J]. Br J Haematol, 2018, 180(1): 41-51.
[120]HEITMAN J, MOVVA N R, HALL M N. Targets for cell cycle arrest by the immunosuppressant rapamycin in yeast [J]. Science, 1991, 253(5022): 905-9.
[121]HARA K, MARUKI Y, LONG X, et al. Raptor, a binding partner of target of rapamycin (TOR), mediates TOR action [J]. Cell, 2002, 110(2): 177-89.
[122]SAXTON R A, SABATINI D M. mTOR Signaling in Growth, Metabolism, and Disease [J]. Cell, 2017, 169(2): 361-71.
[123]THOREEN C C, CHANTRANUPONG L, KEYS H R, et al. A unifying model for mTORC1-mediated regulation of mRNA translation [J]. Nature, 2012, 485(7396): 109-13.
[124]BEN-SAHRA I, HOXHAJ G, RICOULT S J H, et al. mTORC1 induces purine synthesis through control of the mitochondrial tetrahydrofolate cycle [J]. Science, 2016, 351(6274): 728-33.
[125]KIM J, KUNDU M, VIOLLET B, et al. AMPK and mTOR regulate autophagy through direct phosphorylation of Ulk1 [J]. Nat Cell Biol, 2011, 13(2): 132-41.
[126]SCHMIDT K M, DIETRICH P, HACKL C, et al. Inhibition of mTORC2/RICTOR Impairs Melanoma Hepatic Metastasis [J]. Neoplasia, 2018, 20(12): 1198-208.
[127]EBNER M, SINKOVICS B, SZCZYGIEŁ M, et al. Localization of mTORC2 activity inside cells [J]. J Cell Biol, 2017, 216(2): 343-53.
[128]VALVEZAN A J, MANNING B D. Molecular logic of mTORC1 signalling as a metabolic rheostat [J]. Nat Metab, 2019, 1(3): 321-33.
[129]MENON S, DIBBLE C C, TALBOTT G, et al. Spatial control of the TSC complex integrates insulin and nutrient regulation of mTORC1 at the lysosome [J]. Cell, 2014, 156(4): 771-85.
[130]HERZIG S, SHAW R J. AMPK: guardian of metabolism and mitochondrial homeostasis [J]. Nat Rev Mol Cell Biol, 2018, 19(2): 121-35.
[131]GINGRAS A C, GYGI S P, RAUGHT B, et al. Regulation of 4E-BP1 phosphorylation: a novel two-step mechanism [J]. Genes Dev, 1999, 13(11): 1422-37.
[132]HOLZ M K, BALLIF B A, GYGI S P, et al. mTOR and S6K1 mediate assembly of the translation preinitiation complex through dynamic protein interchange and ordered phosphorylation events [J]. Cell, 2005, 123(4): 569-80.
[133]ROUSSEAU A, BERTOLOTTI A. An evolutionarily conserved pathway controls proteasome homeostasis [J]. Nature, 2016, 536(7615): 184-9.
[134]SCHWARTZ A L, CIECHANOVER A. Targeting proteins for destruction by the ubiquitin system: implications for human pathobiology [J]. Annu Rev Pharmacol Toxicol, 2009, 49: 73-96.
[135]CAMMAS A, HERVIOU P, DUMAS L, et al. Analysis of mRNA Translation by Polysome Profiling [J]. Methods Mol Biol, 2022, 2404: 69-81.
[136]TAHMASEBI S, KHOUTORSKY A, MATHEWS M B, et al. Translation deregulation in human disease [J]. Nat Rev Mol Cell Biol, 2018, 19(12): 791-807.
[137]PENG Y, WANG Y, ZHOU C, et al. PI3K/Akt/mTOR Pathway and Its Role in Cancer Therapeutics: Are We Making Headway? [J]. Front Oncol, 2022, 12: 819128.
[138]SANZ-CASTILLO B, HURTADO B, VARA-CIRUELOS D, et al. The MASTL/PP2A cell cycle kinase-phosphatase module restrains PI3K-Akt activity in an mTORC1-dependent manner [J]. Embo j, 2023, 42(2): e110833.
[139]HUANG L, ZHANG X O, ROZEN E J, et al. PRMT5 ac Targeting protein arginine methyltransferase 5 in cancers: Roles, inhibitors and mechanisms tivates AKT via methylation to promote tumor metastasis [J]. Nat Commun, 2022, 13(1): 3955.
修改评论