[1] MELL P, GRANCE T, et al. The NIST definition of cloud computing[J]. Communications of the ACM, 2011, 53(6): 50-50.
[2] 中国工业和信息化部. 云计算发展三年行动计划 (2017-2019 年)[EB/OL]. (2017-03-30)
[2024-02-15]. http://www.cac.gov.cn/2017-04/11/c_1120785878.htm.
[3] MCCARTHY J. REMINISCENCES ON THE HISTORY OF TIME SHARING[EB/OL]. 1983. http://www-formal.stanford.edu/jmc/history/timesharing/timesharing.html.
[4] STRACHEY C S. Time sharing in large, fast computers.[C]//IFIP Congress: Vol. 59. 1959:336-341.
[5] 何宝宏. 何宝宏: 云计算如何发力?[J]. 中国经贸, 2019(5): 4.
[6] GARTNER. Gartner Forecasts Worldwide Public Cloud End-User Spending to Reach Nearly $600 Billion in 2023[EB/OL]. (2023-04). https://www.gartner.com/en/newsroom/press-releases.
[7] 中国信息通信研究院. 云计算白皮书(2023 年)[EB/OL]. (2023-07)
[2024-02-15]. http://www.caict.ac.cn/kxyj/qwfb/bps/202307/t20230725_458185.htm.
[8] 马超. 面向云计算中心的资源优化方法及系统[D]. 西安电子科技大学, 2020.
[9] LO D, CHENG L, GOVINDARAJU R, et al. Heracles: Improving Resource Efficiency at Scale[C]//Proceedings of the 42nd Annual International Symposium on Computer Architecture. 2015: 450-462.
[10] REISS C, TUMANOV A, GANGER G R, et al. Heterogeneity and Dynamicity of Clouds at Scale: Google Trace Analysis[C]//Proceedings of the third ACM Symposium on Cloud Computing. 2012: 1-13.
[11] LIU H. A measurement study of server utilization in public clouds[C]//2011 IEEE Ninth International Conference on Dependable, Autonomic and Secure Computing. IEEE, 2011: 435-442.
[12] GUO J, CHANG Z, WANG S, et al. Who limits the resource efficiency of my datacenter: An analysis of alibaba datacenter traces[C]//Proceedings of the International Symposium on Quality of Service. 2019: 1-10.
[13] QIN X, MA M, ZHAO Y, et al. How different are the cloud workloads? characterizing largescale private and public cloud workloads[C]//2023 53rd Annual IEEE/IFIP International Conference on Dependable Systems and Networks (DSN). IEEE, 2023: 522-530.
[14] INTEL. Cloud Computing Virtualization Building Private IaaS Guide: 1sted[M]. Intel, 2013.
[15] LU Z, WU J, BAO J, et al. OCReM: OpenStack-based Cloud Datacentre Resource Monitoring and Management Scheme[J]. International Journal of High Performance Computing and Networking, 2016, 9(1-2): 31-44.
[16] 阿里云文档. 阿里云文档-云服务器 ECS:共享型[EB/OL]. (2022-06-21)
[2024-02-15]. https://help.aliyun.com/document_detail/108489.htm.
[17] 阿里云文档. 阿里云文档-什么是抢占式实例[EB/OL]. (2023-09-26)
[2024-02-15]. https://help.aliyun.com/zh/ecs/user-guide/overview-4.
[18] LOWE S D. Best Practices for Oversubscription of CPU, Memory and Storage in vSphereVirtual Environments[J]. Technical Whitepaper, Dell, 2013.
[19] 倪远. 基于多层嵌套虚拟化的云资源优化方案研究[D]. 西安电子科技大学, 2017.
[20] DING X, GIBBONS P B, KOZUCH M A, et al. Gleaner: Mitigating the Blocked-Waiter Wakeup Problem for Virtualized Multicore Applications[C]//2014 USENIX Annual Technical Conference (USENIX ATC 14). 2014: 73-84.
[21] OUYANG J, LANGE J R, ZHENG H. Shoot4U: Using VMM Assists to Optimize TLB Operations on Preempted vCPUs[J]. ACM SIGPLAN Notices, 2016, 51(7): 17-23.
[22] SHAN J, DING X, GEHANI N. APPLES: Efficiently Handling Spin-lock Synchronization on Virtualized Platforms[J]. IEEE Transactions on Parallel and Distributed Systems, 2017, 28(7):1811-1824.
[23] JIA W, SHAN J, LI T O, et al. vSMT-IO: Improving I/O Performance and Efficiency on SMT Processors in Virtualized Clouds[C]//2020 USENIX Annual Technical Conference (USENIX ATC 20). 2020: 449-463.
[24] SCHILDERMANS S, SHAN J, AERTS K, et al. Virtualization Overhead of Multithreading in X86 State-of-the-art & Remaining Challenges[J]. IEEE Transactions on Parallel and Distributed Systems, 2021, 32(10): 2557-2570.
[25] SONG X, SHI J, CHEN H, et al. Schedule processes, not VCPUs[C]//Proceedings of the 4th Asia-Pacific Workshop on Systems. 2013: 1-7.
[26] KIM H, KIM S, JEONG J, et al. Demand-based Coordinated Scheduling for SMP VMs[C]//Proceedings of the eighteenth International Conference on Architectural Support for Programming Languages and Operating Systems. 2013: 369-380.
[27] RAO J, ZHOU X. Towards Fair and Efficient SMP Virtual Machine Scheduling[C]//Vol. 49. ACM New York, NY, USA, 2014: 273-286.
[28] WU S, CHEN H, DI S, et al. Synchronization-aware Scheduling for Virtual Clusters in Cloud[J]. IEEE Transactions on Parallel and Distributed Systems, 2014, 26(10): 2890-2902.
[29] WU S, XIE Z, CHEN H, et al. Dynamic Acceleration of Parallel Applications in Cloud Platforms by Adaptive Time-Slice Control[C]//2016 IEEE International Parallel and Distributed Processing Symposium (IPDPS). IEEE, 2016: 343-352.
[30] AHN J, PARK C H, HEO T, et al. Accelerating Critical OS Services in Virtualized Systems with Flexible Micro-Sliced Cores[C]//Proceedings of the Thirteenth EuroSys Conference. 2018: 1-14.
[31] KASHYAP S, MIN C, KIM T. Scaling Guest OS Critical Sections with eCS[C]//2018 USENIXAnnual Technical Conference (USENIX ATC 18). 2018: 159-172.
[32] ISHIGURO K, YASUNO N, AUBLIN P L, et al. Mitigating Excessive vCPU Spinning in Magnostic KVM[C]//Proceedings of the 17th ACM SIGPLAN/SIGOPS International Conference on Virtual Execution Environments. 2021: 139-152.
[33] CHEN S, DELIMITROU C, MARTÍNEZ J F. Parties: QoS-aware Resource Partitioning for Multiple Interactive Services[C]//Proceedings of the Twenty-Fourth International Conference on Architectural Support for Programming Languages and Operating Systems. 2019: 107-120.
[34] PATEL T, TIWARI D. Clite: Efficient and QoS-aware Co-location of Multiple Latency-critical Jobs for Warehouse Scale Computers[C]//2020 IEEE International Symposium on High Performance Computer Architecture (HPCA). IEEE, 2020: 193-206.
[35] DU BOIS K, EYERMAN S, EECKHOUT L. Per-thread Cycle Accounting in Multicore Processors[J]. ACM Transactions on Architecture and Code Optimization (TACO), 2013, 9(4):1-22.
[36] SUBRAMANIAN L, SESHADRI V, GHOSH A, et al. The Application Slowdown Model: Quantifying and Controlling the Impact of Inter-application Interference at Shared Caches and Main Memory[C]//Proceedings of the 48th International Symposium on Microarchitecture. 2015: 62-75.
[37] KANNAN R S, LAURENZANO M, AHN J, et al. Caliper: Interference Estimator for Multitenant Environments Sharing Architectural Resources[J]. ACM Transactions on Architecture and Code Optimization (TACO), 2019, 16(3): 1-25.
[38] MASOUROS D, XYDIS S, SOUDRIS D. Rusty: Runtime Interference-aware Predictive Monitoring for Modern Multi-tenant Systems[J]. IEEE Transactions on Parallel and Distributed Systems, 2020, 32(1): 184-198.
[39] SHI T, YANG Y, CHENG Y, et al. Alioth: A Machine Learning Based Interference-Aware Performance Monitor for Multi-Tenancy Applications in Public Cloud[C]//2023 IEEE International Parallel and Distributed Processing Symposium (IPDPS). 2023: 908-917.
[40] BIENIA C, KUMAR S, SINGH J P, et al. The PARSEC Benchmark Suite: Characterization and Architectural Implications[C]//Proceedings of the 17th International Conference on Parallel Architectures and Compilation Techniques. 2008: 72-81.
[41] DIXIT K M. The SPEC Benchmarks[J]. Parallel computing, 1991, 17(10-11): 1195-1209.
[42] ARMBRUST M, XIN R S, LIAN C, et al. Spark SQL: Relational Data Processing in Spark[C]// Proceedings of the 2015 ACM SIGMOD International Conference on Management of Data. 2015: 1383-1394.
[43] MySQL Official Website[EB/OL]. https://www.mysql.com/.
[44] Memcached Official Website[EB/OL]. https://memcached.org/.
[45] NGINX Official Website[EB/OL]. https://www.nginx.com/.
[46] KILIC O, DODDAMANI S, BHAT A, et al. Overcoming Virtualization Overheads for LargevCPU Virtual Machines[C]//2018 IEEE 26th International Symposium on Modeling, Analysis, and Simulation of Computer and Telecommunication Systems (MASCOTS). IEEE, 2018: 369-380.
[47] TANG W, KE Y, FU S, et al. Demeter: QoS-aware CPU Scheduling to Reduce Power Consumption of Multiple Black-box Workloads[C]//Proceedings of the 13th Symposium on Cloud Computing. 2022: 31-46.
[48] KASTURE H, SANCHEZ D. Tailbench: A Benchmark Suite and Evaluation Methodology for Latency-critical Applications[C]//2016 IEEE International Symposium on Workload Characterization (IISWC). IEEE, 2016: 1-10.
[49] Xapian project[EB/OL]. https://github.com/xapian/xapian.
[50] Github Page of Wrk2 Load Generator[EB/OL]. https://github.com/sc2682cornell/wrk2.
[51] KOEHN P, HOANG H, BIRCH A, et al. Moses: Open Source Toolkit for Statistical Machine Translation[C]//Proceedings of the 45th Annual Meeting of the Association for Computational Linguistics Companion Volume Proceedings of the Demo and Poster Sessions. 2007: 177-180.
[52] Github Page of Mutated Load Generator[EB/OL]. https://github.com/scslab/mutated.
[53] Github Page of Wrk2 Load Generator[EB/OL]. https://github.com/sc2682cornell/wrk2.
[54] Github Page of Sysbench Load Generator[EB/OL]. https://github.com/akopytov/sysbench.
[55] 6SENSE. Memcached - Market Share, Competitor Insights in Technology WebMarket Share of Memcached.[EB/OL]. 2024. https://6sense.com/tech/technology-design-and-architecture/memcached-market-share.
[56] W3TECHS. Usage statistics and market shares of web servers[EB/OL]. 2024. https://w3techs.com/technologies/overview/web_server/.
[57] 6SENSE. MySQL - Market Share, Competitor Insights in Relational Databases[EB/OL]. 2023.https://6sense.com/tech/relational-databases/mysql-market-share.
[58] LEVERICH J, KOZYRAKIS C. Reconciling High Server Utilization and Sub-millisecond Quality-of-service[C]//Proceedings of the Ninth European Conference on Computer Systems.2014: 1-14.
[59] HAZELWOOD K, BIRD S, BROOKS D, et al. Applied Machine Learning at Facebook: A Datacenter Infrastructure Perspective[C]//2018 IEEE International Symposium on High Performance Computer Architecture (HPCA). IEEE, 2018: 620-629.
[60] OUSTERHOUT A, FRIED J, BEHRENS J, et al. Shenango: Achieving high CPU Efficiency for Latency-sensitive Datacenter Workloads[C]//16th USENIX Symposium on Networked Systems Design and Implementation (NSDI 19). 2019: 361-378.
[61] CHENG L, RAO J, LAU F C. vScale: Automatic and Efficient Processor Scaling for SMP Virtual Machines[C]//Proceedings of the Eleventh European Conference on Computer Systems. 2016: 1-14
修改评论