[1]唐辉平, 陆海博,张爱东,等. 基于视觉识别的无人机自主降落无人艇的方法及系统[Z]. 2021.
[2] SCHARSTEIND,SZELISKIR,ZABIHR. ATaxonomyandEvaluationofDenseTwo-Frame Stereo CorrespondenceAlgorithms[C]//StereoandMulti-BaselineVision, 2001.(SMBV2001). Proceedings. IEEE Workshop on. 2002.
[3]席志鹏. 无人机自主飞行若干关键问题研究[D]. 浙江大学,2019.
[4] LIN S, GARRATT M A, LAMBERT A J. Monocular vision-based real-time target recognition and tracking for autonomously landing an UAV in a cluttered shipboard environment[J]. Autonomous Robots, 2017, 41(4): 1-21.
[5]徐焕太. 基于双目视觉的多旋翼无人机自主降落定位方法研究[D]. 哈尔滨理工大学, 2018.
[6]杜晶,雷志辉,周翔.基于红外探测技术的无人机视觉引导助降系统[J].计算机工程,2013, 39: 237-241.
[7]项立,王全辉,陈文霞. 基于红外信标的植保无人机助降系统研究[J]. 现代计算机,2021, 27(34): 6.
[8] CABRERA-PONCE A A, MARTINEZ-CARRANZA J. A vision-based approach for autonomous landing[C]//2017 Workshop on Research, Education and Development of Unmanned Aerial Systems (RED UAS). 2017.
[9] GARCIA-GARCIA A, ORTS-ESCOLANO S, OPREA S, et al. A Review on Deep Learning Techniques Applied to Semantic Segmentation[Z]. 2017.
[10] RONNEBERGER O, FISCHER P, BROX T. U-net: Convolutional networks for biomedical image segmentation[C]//Medical image computing and computer-assisted interventionMICCAI 2015: 18th international conference, Munich, Germany, October 5-9, 2015, proceedings, part III 18. Springer, 2015: 234-241.
[11] LONG J, SHELHAMER E, DARRELL T. Fully Convolutional Networks for Semantic Segmentation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2015, 39(4): 640-651.
[12] BEHERA T K, BAKSHI S, SA P K. Vegetation Extraction from UAV-based Aerial Images through Deep Learning[J]. Computers and Electronics in Agriculture, 2022.
[13] ZHAO H, SHI J, QI X, et al. Pyramid scene parsing network[C]//Proceedings of the IEEE conference on computer vision and pattern recognition. 2017: 2881-2890.
[14] HEK,ZHANGX,RENS,etal. Deepresiduallearning for image recognition[C]//Proceedings of the IEEE conference on computer vision and pattern recognition. 2016: 770-778.
[15] YUF,KOLTUNV. Multi-scale context aggregation by dilated convolutions[A]. 2015.
[16] 张娣. 基于双目视觉的道路场景语义分割技术研究[D]. 南京理工大学,2020.
[17] CORDTSM,OMRANM,RAMOSS,etal. TheCityscapesDatasetforSemanticUrbanScene Understanding[C]//Proc. of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR). 2016.
[18] SUN Q, ZHANG R, CHEN L, et al. Semantic segmentation and path planning for orchards based on UAV images[J]. Computers and Electronics in Agriculture, 2022, 200: 107222.
[19] ROYAG,NAVABN,WACHINGERC. Concurrent spatial and channel ‘squeeze & excitation’in fully convolutional networks[C]//Medical Image Computing and Computer Assisted Intervention–MICCAI 2018: 21st International Conference, Granada, Spain, September 16-20, 2018, Proceedings, Part I. Springer, 2018: 421-429.
[20] CHENLC,PAPANDREOUG,SCHROFFF,etal. Rethinkingatrousconvolutionforsemantic image segmentation[A]. 2017.
[21] ALOMMZ,HASANM,YAKOPCICC,etal.Recurrentresidualconvolutionalneuralnetwork based on u-net (r2u-net) for medical image segmentation[A]. 2018.
[22] GIRISHA S, MM M P, VERMA U, et al. Semantic segmentation of UAV aerial videos using convolutional neural networks[C]//2019 IEEE Second International Conference on Artificial Intelligence and Knowledge Engineering (AIKE). IEEE, 2019: 21-27.
[23] 范满. 机器视觉在旋翼无人机应急降落选址应用研究[D]. 中国民用航空飞行学院,2022.
[24] YUAN Y, CHEN X, WANG J. Object-contextual representations for semantic segmentation [C]//Computer Vision–ECCV 2020: 16th European Conference, Glasgow, UK, August 23–28, 2020, Proceedings, Part VI 16. Springer, 2020: 173-190.
[25] CHEN L C, PAPANDREOU G, SCHROFF F, et al. Rethinking Atrous Convolution for Semantic Image Segmentation[Z]. 2017.
[26] ILLIA,BOUZAACHANEK,ElHadajS,etal. Apixel-wise labelled dataset of Moroccan aircraft emergency landing sites for semantic segmentation applications[J/OL]. Data in Brief, 2024, 54: 110379. https://www.sciencedirect.com/science/article/pii/S2352340924003482. DOI: https://doi.org/10.1016/j.dib.2024.110379.
[27] GONÇALVESDN,JUNIORJM,CARRILHOAC,etal. Transformers for mapping burned areas in Brazilian Pantanal and Amazon with PlanetScope imagery[J]. International Journal of Applied Earth Observation and Geoinformation, 2023, 116: 103151.
[28] XIE E, WANG W, YU Z, et al. SegFormer: Simple and Efficient Design for Semantic Segmentation with Transformers[Z]. 2021.
[29] VASWANI A, SHAZEER N, PARMAR N, et al. Attention Is All You Need[J/OL]. CoRR, 2017, abs/1706.03762. http://arxiv.org/abs/1706.03762.
[30] YOON K J, KWEON I S. Adaptive support-weight approach for correspondence search[J]. IEEE transactions on pattern analysis and machine intelligence, 2006, 28(4): 650-656.
[31] SCHARSTEIND,SZELISKIR. Ataxonomy and evaluation of dense two-frame stereo correspondence algorithms[J]. International journal of computer vision, 2002, 47: 7-42.
[32] HIRSCHMüLLERH. Accurateand Efficient Stereo Processing by Semi-Global Matching and Mutual Information[J]. IEEE Computer Society, 2005.
[33] BOYKOVYY. Interactive graph cuts for optimal boundary & region segmentation of objects in n-d images[C]//Proc Eighth IEEE International Conference on Comput Vis. 2001.
[34] 李沛轩. 基于双目视觉的机翼形变测量技术研究[D]. 南方科技大学,2023.
[35] YAOG,CUIJ,DENGK,etal. RobustHarriscornermatching based on the quasi-homography transform and self-adaptive window for wide-baseline stereo images[J]. IEEE Transactions on Geoscience and Remote Sensing, 2017, 56(1): 559-574.
[36] HIRSCHMULLER H. Stereo processing by semiglobal matching and mutual information[J]. IEEE Transactions on pattern analysis and machine intelligence, 2007, 30(2): 328-341.
[37] GALLUP D, FRAHMJM,MORDOHAIP,etal. Real-time plane-sweeping stereo with multiple sweeping directions[C]//2007 IEEE Conference on Computer Vision and Pattern Recognition. IEEE, 2007: 1-8.
[38] YAO Y, LUO Z, LI S, et al. Mvsnet: Depth inference for unstructured multi-view stereo[C]// Proceedings of the European conference on computer vision (ECCV). 2018: 767-783.
[39] YAOY,LUOZ,LIS,etal. Recurrentmvsnetforhigh-resolution multi-view stereo depth inference[C]//Proceedings of the IEEE/CVF conference on computer vision and pattern recognition. 2019: 5525-5534.
[40] CHEN R, HANS, XUJ, et al. Point-based multi-view stereo network[C]//Proceedings of the IEEE/CVF international conference on computer vision. 2019: 1538-1547.
[41] GU X, FAN Z, ZHU S, et al. Cascade cost volume for high-resolution multi-view stereo and stereo matching[C]//Proceedings of the IEEE/CVF conference on computer vision and pattern recognition. 2020: 2495-2504.
[42] GUO X, YANG K, YANG W, et al. Group-Wise Correlation Stereo Network[C]//2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). 2020.
[43] CHANG J R, CHEN Y S. Pyramid stereo matching network[C]//Proceedings of the IEEE conference on computer vision and pattern recognition. 2018: 5410-5418.
[44] YUZ, GAOS. Fast-mvsnet: Sparse-to-dense multi-view stereo with learned propagation and gauss-newton refinement[C]//Proceedings of the IEEE/CVF conference on computervision and pattern recognition. 2020: 1949-1958.
[45] 陈利燕,林鸿,吴健华. 融合随机森林和超像素分割的建筑物自动提取[J/OL]. 测绘通报, 2021: 49-53. DOI: 10.13474/j.cnki.11-2246.2021.0042.
[46] 乔梦佳,王宇飞,赫晓慧,等.基于影像分割与SVM分类的城市建筑物提取研究[J/OL].信息技术,2018: 30-33+38. DOI: 10.13274/j.cnki.hdzj.2018.05.008.
[47] 李潇凡,王胜强,翁轩,等. 基于UNet深度学习算法的东海大型漂浮藻类遥感监测[J]. 光学学报,2021,41: 18-26.
[48] 张哲晗,方薇,杜丽丽,等. 基于编码-解码卷积神经网络的遥感图像语义分割[J]. 光学学报,2020, 40: 46-55.
[49] 任欣磊,王阳萍,杨景玉,等. 基于改进U-net的遥感影像建筑物提取[J]. 激光与光电子学进展,2019, 56: 195-202.
[50] KRIZHEVSKY A, SUTSKEVER I, HINTON G E. ImageNet classification with deep convolutional neural networks[J]. Communications of the ACM, 2017, 60(6): 84-90.
[51] CLEVERT D A, UNTERTHINER T, HOCHREITER S. Fast and Accurate Deep Network Learning by Exponential Linear Units (ELUs)[J]. Computer Science, 2015.
[52] IOFFE S, SZEGEDY C. Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift[J]. JMLR.org, 2015.
[53] LINM,CHENQ,YANS. Networkinnetwork[A]. 2013.
[54] SZEGEDY C, LIU W, JIA Y, et al. Going Deeper with Convolutions[J]. IEEE Computer Society, 2014.
[55] HINTONGE,SRIVASTAVA N, KRIZHEVSKY A, et al. Improving neural networks by preventing co-adaptation of feature detectors[Z]. 2012: págs. 212-223.
[56] CHENY,WANGY,LUP,etal. Large-scalestructurefrommotionwithsemantic constraints of aerial images[C]//Chinese Conference on Pattern Recognition and Computer Vision (PRCV). Springer, 2018: 347-359.
[57] NIGAMI,HUANGC,RAMANAND. EnsembleKnowledgeTransfer for Semantic Segmentation[C]//IEEE Winter Conference on Applications of Computer Vision. 2018.
[58] LYU Y, VOSSELMANG, XIA GS,et al. UAVid: A semantic segmentation dataset for UAV imagery[J/OL]. ISPRS Journal of Photogrammetry and Remote Sensing, 2020, 165: 108- 119. http://www.sciencedirect.com/science/article/pii/S0924271620301295. DOI: https://doi.org/ 10.1016/j.isprsjprs.2020.05.009.
[59] SHAOZ, YANGK,ZHOUW. Performance Evaluation of Single-Label and Multi-Label Remote Sensing Image Retrieval Using a Dense Labeling Dataset[J]. Remote Sensing, 2018(6).
[60] CHAUDHURI B, DEMIR B, CHAUDHURI S, et al. Multilabel Remote Sensing Image Retrieval Using a Semisupervised Graph-Theoretic Method[J]. IEEE Transactions on Geoscience and Remote Sensing, 2018, 56(2): 1144-1158.
[61] YANGY,NEWSAMS. Bag-of-visual-words and spatial extensions for land-use classification [C]//ACM. 2010: 270.
[62] SUN K, XIAO B, LIU D, et al. Deep High-Resolution Representation Learning for Human Pose Estimation[C]//CVPR. 2019.
[63] XIAO B, WU H, WEI Y. Simple Baselines for Human Pose Estimation and Tracking[C]// European Conference on Computer Vision (ECCV). 2018.
[64] WANGJ,SUNK,CHENGT,etal. DeepHigh-Resolution Representation Learning for Visual Recognition[J]. TPAMI, 2019.
[65] WANGJ,SUNK,CHENGT,etal. DeepHigh-Resolution Representation Learning for Visual Recognition[Z]. 2019.
[66] LIU Y, CHU L, CHEN G, et al. PaddleSeg: A High-Efficient Development Toolkit for Image Segmentation[Z]. 2021.
[67] 邵军军. 基于双目立体视觉的行人检测与测距系统研究[D]. 兰州理工大学,2022.
[68] BOUGUETJY,PERONAP. CameraCalibration from Points and Lines in Dual-Space Geometry[Z]. 1998.
[69] MATTOCCIAS. Stereo vision: Algorithms and applications[J]. University of Bologna, 2013, 22.
[70] 何雨. 基于深度学习的室内环境感知方法研究[D]. 西安工业大学,2023.
[71] 李云廷. 基于立体视觉的三维精确测量方法研究[D]. 华中科技大学,2016.
[72] 耿英楠. 立体匹配技术的研究[D]. 吉林大学,2014.
[73] 夏珂. 垂直起降无人机视觉助降技术研究[D]. 南方科技大学,2022
修改评论