[1] MOORE A L, SHI L. Emerging challenges and materials for thermal management of electronics [J]. Materials today, 2014, 17(4): 163-74.
[2] FERAIN I, COLINGE C A, COLINGE J-P. Multigate transistors as the future of classical metal–oxide–semiconductor field-effect transistors [J]. Nature, 2011, 479(7373): 310-6.
[3] DASH T P, DEY S, DAS S, et al. Strain-engineering in nanowire field-effect transistors at 3 nm technology node [J]. Physica E: Low-dimensional Systems and Nanostructures, 2020, 118: 113964.
[4] ANSARI L, FELDMAN B, FAGAS G, et al. Simulation of junctionless Si nanowire transistors with 3 nm gate length [J]. Applied Physics Letters, 2010, 97(6).
[5] ZHANG Y, MA J, WEI N, et al. Recent progress in the development of thermal interface materials: a review [J]. Physical Chemistry Chemical Physics, 2021, 23(2): 753-76.
[6] ZHAO W, WASALA S, PERSOONS T. On the fast prediction of the aerodynamic performance of electronics cooling fans considering the effect of tip clearance [J]. IEEE Transactions on Components, Packaging and Manufacturing Technology, 2023.
[7] XU S, WANG S, CHEN Z, et al. Electric-field-assisted growth of vertical graphene arrays and the application in thermal interface materials [J]. Advanced Functional Materials, 2020, 30(34): 2003302.
[8] CHEN X, SU Y, REAY D, et al. Recent research developments in polymer heat exchangers–A review [J]. Renewable and Sustainable Energy Reviews, 2016, 60: 1367-86.
[9] VENKATADRI V, SAMMAKIA B, SRIHARI K, et al. A review of recent advances in thermal management in three dimensional chip stacks in electronic systems [J]. 2011.
[10] KHAN J, MOMIN S A, MARIATTI M. A review on advanced carbon-based thermal interface materials for electronic devices [J]. Carbon, 2020, 168: 65-112.
[11] KORDYBAN T, RAFANELLI A J. Hot air rises and heat sinks: everything you know about cooling electronics is wrong [Z]. 1998
[12] 蓝色. 揭开 GPU 功耗的面纱 [J]. 个人电脑, 2016, 22(12): 89-92.
[13] GOTSMANN B, LANTZ M. Quantized thermal transport across contacts of rough surfaces [J]. Nature materials, 2013, 12(1): 59-65.
[14] ZHANG P, YUAN P, JIANG X, et al. A theoretical review on interfacial thermal transport at the nanoscale [J]. Small, 2018, 14(2): 1702769.
[15] BEJAN A, KRAUS A D. Heat transfer handbook [M]. John Wiley & Sons, 2003.
[16] MADHUSUDANA C V, MADHUSUDANA C. Thermal contact conductance [M]. Springer, 1996.
[17] 杨斌, 孙蓉. 热界面材料产业现状与研究进展 [J]. 中国 基础科学, 2020, (2): 56-62.
[18] PRASHER R. Thermal interface materials: historical perspective, status, and future directions [J]. Proceedings of the IEEE, 2006, 94(8): 1571-86.
[19] IWABUCHI A, SHIMIZU T, YOSHINO Y, et al. The development of a Vickers-type hardness tester for cryogenic temperatures down to 4.2 K [J]. Cryogenics, 1996, 36(2): 75-81.
[20] LAMBERT M, FLETCHER L. Thermal contact conductance of non-flat, rough, metallic coated metals [J]. J Heat Transfer, 2002, 124(3): 405-12.
[21] VERMA K, COLUMBUS D, HAN B, et al. Real-time warpage measurement of electronic components with variable sensitivity; proceedings of the 1998 Proceedings 48th Electronic Components and Technology Conference (Cat No 98CH36206), F, 1998 [C]. IEEE.
[22] PRASHER R S. Surface chemistry and characteristics based model for the thermal contact resistance of fluidic interstitial thermal interface materials [J]. J Heat Transfer, 2001, 123(5): 969-75.
[23] BAHRU R, ZAMRI M F M A, SHAMSUDDIN A H, et al. A review of thermal interface material fabrication method toward enhancing heat dissipation [J]. International Journal of Energy Research, 2021, 45(3): 3548-68.
[24] GOWDA A, TONAPI S, REITZ B, et al. Choosing the right thermal interface material [J]. Advanced Packaging, 2005, 14(3): 14-8.
[25] SAMSON E C, MACHIROUTU S V, CHANG J-Y, et al. Interface Material Selection and a Thermal Management Technique in Second-Generation Platforms Built on Intel® Centrino™ Mobile Technology [J]. Intel Technology Journal, 2005, 9(1).
[26] HE X, WANG Y. Synergistic effects on the enhancement of thermal conductive properties of thermal greases [J]. Journal of Applied Polymer Science, 2019, 136(27): 47726.
[27] MEI S, GAO Y, DENG Z, et al. Thermally conductive and highly electrically resistive grease through homogeneously dispersing liquid metal droplets inside methyl silicone oil [J]. Journal of Electronic Packaging, 2014, 136(1): 011009.
[28] CHEN H, WEI H, CHEN M, et al. Enhancing the effectiveness of silicone thermal grease by the addition of functionalized carbon nanotubes [J]. Applied Surface Science, 2013, 283: 525-31.
[29] CHIU C-P, CHANDRAN B, MELLO K, et al. An accelerated reliability test method to predict thermal grease pump-out in flip-chip applications; proceedings of the 2001 Proceedings 51st Electronic Components and Technology Conference (Cat No 01CH37220), F, 2001 [C]. IEEE.
[30] DENG Y, JIANG Y. High-performance, safe, and reliable soft-metal thermal pad for thermal management of electronics [J]. Applied Thermal Engineering, 2021, 199: 117555.
[31] MAZLAN M, RAHIM A, AL BAKRI ABDULLAH M M, et al. A new invention of thermal pad using sol-gel nanosilver doped silica film in plastic leaded chip carrier (PLCC) application by using computational fluid dynamic sofrware, CFD analysis [J]. Advanced Materials Research, 2013, 795: 158-63.
[32] MAHAWILI I. Thermal pad for portable body heating/cooling system and method of use [Z]. Google Patents. 1996
[33] SHARMA M, CHUNG D. Solder–graphite network composite sheets as highperformance themal interface materials [J]. Journal of Electronic Materials, 2015, 44: 929-47.
[34] ROY C K, BHAVNANI S, HAMILTON M C, et al. Thermal performance of low melting temperature alloys at the interface between dissimilar materials [J]. Applied Thermal Engineering, 2016, 99: 72-9.
[35] WEBB R L, GWINN J P. Low melting point thermal interface material; proceedings of the ITherm 2002 Eighth Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems (Cat No 02CH37258), F, 2002 [C]. IEEE.
[36] JEONG S H, CHEN S, HUO J, et al. Mechanically stretchable and electrically insulating thermal elastomer composite by liquid alloy droplet embedment [J]. Scientific reports, 2015, 5(1): 18257.
[37] WANG T H, CHEN H-Y, LEE C-C, et al. High-powered thermal gel degradation evaluation on board-level HFCBGA subjected to reliability tests [J]. Microelectronic engineering, 2011, 88(10): 3101-7.
[38] 毛大厦. 有机/无机复合热界面材料的制备与性能研究 [D]; 中国 科学院大学 (中国科学院深圳先进技术研究院), 2020.
[39] LARSON L, TANG Y, DURFEE L, et al. Engineered thermal interface material; proceedings of the 2014 IEEE 64th Electronic Components and Technology Conference (ECTC), F, 2014 [C]. IEEE.
[40] YU Y-H, MA C-C M, TENG C-C, et al. Enhanced thermal and mechanical properties of epoxy composites filled with silver nanowires and nanoparticles [J]. journal of the Taiwan Institute of Chemical Engineers, 2013, 44(4): 654-9.
[41] RAZA M, WESTWOOD A, STIRLING C, et al. Effect of boron nitride addition on properties of vapour grown carbon nanofiber/rubbery epoxy composites for thermal interface applications [J]. Composites Science and Technology, 2015, 120: 9-16.
[42] KANDASAMY R, WANG X-Q, MUJUMDAR A S. Transient cooling of electronics using phase change material (PCM)-based heat sinks [J]. Applied thermal engineering, 2008, 28(8-9): 1047-57.
[43] LIU Z, CHEN Z, YU F. Enhanced thermal conductivity of microencapsulated phase change materials based on graphene oxide and carbon nanotube hybrid filler [J]. Solar Energy Materials and Solar Cells, 2019, 192: 72-80.
[44] GANATRA Y, MARCONNET A. Passive Thermal Management Using Phase ChangeMaterials: Experimental Evaluation of Thermal Resistances; proceedings of theInternational Electronic Packaging Technical Conference and Exhibition, F, 2015 [C].American Society of Mechanical Engineers.
[45] FRANZ J R. Metal-nonmetal transition in expanded liquid mercury [J]. Physical review letters, 1986, 57(7): 889.
[46] EPSTEIN L F, POWERS M D. Liquid metals. I. The viscosity of mercury vapor and the potential function for mercury [J]. The Journal of Physical Chemistry, 1953, 57(3): 336-41.
[47] LIU T, SEN P, KIM C-J. Characterization of nontoxic liquid-metal alloy galinstan for applications in microdevices [J]. Journal of Microelectromechanical Systems, 2011, 21(2): 443-50.
[48] LIU J, ZHOU Y. A computer chip cooling method which uses low melting point metal and its alloys as the cooling fluid [J]. China Patent, 2002, 2131419(10).
[49] ZHANG M, YAO S, RAO W, et al. Transformable soft liquid metal micro/nanomaterials [J]. Materials Science and Engineering: R: Reports, 2019, 138: 1-35.
[50] LIDE D R. CRC handbook of chemistry and physics [M]. CRC press, 2004.
[51] UUSITALO J, LEINO M, ENQVIST T, et al. α decay studies of very neutron deficient francium and radium isotopes [J]. Physical Review C, 2005, 71(2): 024306.
[52] GONG X, CHIAROTTI G L, PARRINELLO M, et al. α-gallium: A metallic molecular crystal [J]. Physical Review B, 1991, 43(17): 14277.
[53] WEITAO W, HONGYU W, CHENGYI G, et al. Preparation and Characterization of High-Performance Silicone Thermal Pad [J]. Silicone Material, 2023, 37(5).
[54] LIU J, FANG Z, BAO C. Studies on 8.4 W/m· K thermally conductive silicone rubber with high compressibility, high electrical insulation, high thermal reliability, and low cost [J]. Composites Part A: Applied Science and Manufacturing, 2024: 108100.
[55] LIN Z, JIN H, DENG H, et al. Robust, self-healable, recyclable and thermally conductive silicone composite as intelligent thermal interface material [J]. Composite Structures, 2024, 332: 117932.
[56] YAN J, CAI Y, ZHANG H, et al. Rapid Thermochromic and Highly Thermally Conductive Nanocomposite Based on Silicone Rubber for Temperature Visualization Thermal Management in Electronic Devices [J]. ACS applied materials & interfaces, 2024.
[57] XUE X, ZHANG D, WU Y, et al. Segregated and non-settling liquid metal elastomer via jamming of elastomeric particles [J]. Advanced Functional Materials, 2023, 33(6): 2210553.
[58] HE Q, QIN M, ZHANG H, et al. Patterned liquid metal embedded in brush-shaped polymers for dynamic thermal management [J]. Materials Horizons, 2024, 11(2): 531-44.
[59] BHUYAN P, WEI Y, SIN D, et al. Soft and stretchable liquid metal composites with shape memory and healable conductivity [J]. ACS Applied Materials & Interfaces, 2021, 13(24): 28916-24.
[60] UPPAL A, KONG W, RANA A, et al. Precuring Matrix Viscosity Controls Thermal Conductivity of Elastomeric Composites with Compression-Activated Liquid and Solid Metallic Filler Networks [J]. Advanced Materials Interfaces, 2023, 10(9): 2201875.
[61] FANG R, YAO B, CHEN T, et al. 3D Highly Stretchable Liquid Metal/Elastomer Composites with Strain-Enhanced Conductivity [J]. Advanced Functional Materials, 2023: 2310225.
[62] TANG J, ZHAO X, LI J, et al. Gallium-based liquid metal amalgams: Transitional state metallicmixtures (TransM2ixes) with enhanced and tunable electrical, thermal, and mechanical properties [J]. ACS applied materials & interfaces, 2017, 9(41): 35977-87.
[63] 王梦婕. 液态金属基和硅橡胶基热界面材料的制备及其导热性能研究 [D]; 青岛: 青岛科技大学, 2018.
[64] ZHANG Y, HAO N, LIN X, et al. Emerging challenges in the thermal management of cellulose nanofibril-based supercapacitors, lithium-ion batteries and solar cells: A review [J]. Carbohydrate polymers, 2020, 234: 115888.
[65] HANSSON J, NILSSON T M, YE L, et al. Novel nanostructured thermal interface materials: a review [J]. International Materials Reviews, 2018, 63(1): 22-45.
[66] JASMEE S, OMAR G, OTHAMAN S S C, et al. Interface thermal resistance and thermal conductivity of polymer composites at different types, shapes, and sizes of fillers: A review [J]. Polymer Composites, 2021, 42(6): 2629-52.
[67] SHI Y, PENG L, DING Y, et al. Nanostructured conductive polymers for advanced energy storage [J]. Chemical Society Reviews, 2015, 44(19): 6684-96.
[68] XING J, TAO P, WU Z, et al. Nanocellulose-graphene composites: A promising nanomaterial for flexible supercapacitors [J]. Carbohydrate polymers, 2019, 207: 447-59.
[69] RAZEEB K M, DALTON E, CROSS G L W, et al. Present and future thermal interface materials for electronic devices [J]. International Materials Reviews, 2018, 63(1): 1-21.
[70] XUAN Y, LI Q. Heat transfer enhancement of nanofluids [J]. International Journal of heat and fluid flow, 2000, 21(1): 58-64.
[71] XU J, MUNARI A, DALTON E, et al. Silver nanowire array-polymer composite as thermal interface material [J]. Journal of Applied Physics, 2009, 106(12).
[72] SHAO Y, EL-KADY M F, WANG L J, et al. Graphene-based materials for flexible supercapacitors [J]. Chemical Society Reviews, 2015, 44(11): 3639-65.
[73] COLANGELO G, FAVALE E, MILANESE M, et al. Cooling of electronic devices: Nanofluids contribution [J]. Applied Thermal Engineering, 2017, 127: 421-35.
[74] SUN J, YAO Y, ZENG X, et al. Preparation of boron nitride nanosheet/nanofibrillated cellulose nanocomposites with ultrahigh thermal conductivity via engineering interfacial thermal resistance [J]. Advanced Materials Interfaces, 2017, 4(17): 1700563.
[75] MALAKOOTI M H, KAZEM N, YAN J, et al. Liquid metal supercooling for low-temperature thermoelectric wearables [J]. Advanced functional materials, 2019, 29(45): 1906098.
[76] AFRIN S, HAQUE E, REN B, et al. Liquid elementary metals and alloys: Synthesis, characterization, properties, and applications [J]. Applied Materials Today, 2023, 31: 101746.
[77] CHEN S, WANG H-Z, ZHAO R-Q, et al. Liquid metal composites [J]. Matter, 2020, 2(6): 1446-80.
[78] HU L, WANG H, WANG X, et al. Magnetic liquid metals manipulated in the three dimensional free space [J]. ACS applied materials & interfaces, 2019, 11(8): 8685-92.
[79] DICKEY M D, CHIECHI R C, LARSEN R J, et al. Eutectic gallium-indium (EGaIn): a liquid metal alloy for the formation of stable structures in microchannels at room temperature [J]. Advanced functional materials, 2008, 18(7): 1097-104.
[80] LIU P, LUO Y, LIU J, et al. Laminar metal foam: a soft and highly thermally conductive thermal interface material with a reliable joint for semiconductor packaging [J]. ACS Applied Materials & Interfaces, 2021, 13(13): 15791-801.
[81] ZHAO Z, SONI S, LEE T, et al. Smart Eutectic Gallium–Indium: From Properties to Applications [J]. Advanced Materials, 2023, 35(1): 2203391.
[82] WANG H, XING W, CHEN S, et al. Liquid metal composites with enhanced thermal conductivity and stability using molecular thermal linker [J]. Advanced Materials, 2021, 33(43): 2103104.
[83] KALANTAR-ZADEH K, TANG J, DAENEKE T, et al. Emergence of liquid metals in nanotechnology [J]. ACS nano, 2019, 13(7): 7388-95.
[84] ZHU L, WANG B, HANDSCHUH-WANG S, et al. Liquid metal–based soft microfluidics [J]. Small, 2020, 16(9): 1903841.
[85] YI L, LIU J. Liquid metal biomaterials: a newly emerging area to tackle modern biomedical challenges [J]. International Materials Reviews, 2017, 62(7): 415-40.
[86] HUANG K, QIU W, OU M, et al. An anti-leakage liquid metal thermal interface material [J]. RSC advances, 2020, 10(32): 18824-9.
[87] MA K-Q, LIU J. Nano liquid-metal fluid as ultimate coolant [J]. Physics Letters A, 2007, 361(3): 252-6.
[88] SHEN Q, JIANG M, WANG R, et al. Liquid metal-based soft, hermetic, and wireless-communicable seals for stretchable systems [J]. Science, 2023, 379(6631): 488-93.
[89] ZHAO L, LIU H, CHEN X, et al. Liquid metal nano/micro-channels as thermal interface materials for efficient energy saving [J]. Journal of Materials Chemistry C, 2018, 6(39): 10611-7.
[90] JIA L-C, JIN Y-F, REN J-W, et al. Highly thermally conductive liquid metal-based composites with superior thermostability for thermal management [J]. Journal of Materials Chemistry C, 2021, 9(8): 2904-11.
[91] BARTLETT M D, KAZEM N, POWELL-PALM M J, et al. High thermal conductivity in soft elastomers with elongated liquid metal inclusions [J]. Proceedings of the National Academy of Sciences, 2017, 114(9): 2143-8.
[92] ZHAO J-W, ZHAO R, HUO Y-K, et al. Effects of surface roughness, temperature and pressure on interface thermal resistance of thermal interface materials [J]. International Journal of Heat and Mass Transfer, 2019, 140: 705-16.
[93] CHIU H T, SUKACHONMAKUL T, KUO M T, et al. Surface modification of aluminum nitride by polysilazane and its polymer-derived amorphous silicon oxycarbide ceramic for the enhancement of thermal conductivity in silicone rubber composite [J]. Applied surface science, 2014, 292: 928-36.
[94] NAMITHA L, ANANTHAKUMAR S, SEBASTIAN M. Aluminum nitride filled flexible silicone rubber composites for microwave substrate applications [J]. Journal of Materials Science: Materials in Electronics, 2015, 26: 891-7.
[95] CHOI Y Y, HO D H, CHO J H. Self-healable hydrogel–liquid metal composite platform enabled by a 3D printed stamp for a multimodular sensor system [J]. ACS applied materials & interfaces, 2020, 12(8): 9824-32.
[96] GUL O, KIM K, GU J, et al. Sensitivity-controllable liquid-metal-based pressure sensor for wearable applications [J]. ACS Applied Electronic Materials, 2021, 3(9): 4027-36.
[97] WANG D, GAO C, WANG W, et al. Shape-transformable, fusible rodlike swimming liquid metal nanomachine [J]. ACS nano, 2018, 12(10): 10212-20.
[98] PARK J E, WON S, CHO W, et al. Fabrication and applications of stimuli-responsive micro/nanopillar arrays [J]. Journal of Polymer Science, 2021, 59(14): 1491-517.
[99] JASNA V, RAMESAN M. Fabrication of novel nanocomposites from styrenebutadiene rubber/z nc sulphide nanoparticles [J]. Journal of materials science, 2018, 53(11): 8250-62.
[100] LEE E, SALGADO R A, LEE B, et al. Design of lithium cobalt oxide electrodes with high thermal conductivity and electrochemical performance using carbon nanotubes and diamond particles [J]. Carbon, 2018, 129: 702-10.
[101] MEHRA N, LI Y, ZHU J. Small organic linkers with hybrid terminal groups drive efficient phonon transport in polymers [J]. The Journal of Physical Chemistry C, 2018, 122(19): 10327-33.
[102] ZHANG L, DENG H, FU Q. Recent progress on thermal conductive and electrical insulating polymer composites [J]. Composites Communications, 2018, 8: 74-82.
修改评论