中文版 | English
题名

基于液态金属增强传热的复合热界面材料的制备与性能研究

其他题名
PREPARATION AND PERFORMANCE STUDY OF COMPOSITE THERMAL INTERFACE MATERIALS ENHANCED BY LIQUID METAL FOR HEAT TRANSFER
姓名
姓名拼音
ZHAO Haonan
学号
12233303
学位类型
硕士
学位专业
0856 材料与化工
学科门类/专业学位类别
08 工学
导师
孙蓉
导师单位
中国科学院深圳先进技术研究院
论文答辩日期
2024-05-07
论文提交日期
2024-07-04
学位授予单位
南方科技大学
学位授予地点
深圳
摘要
随着电子设备向小型化和集成化的不断发展,其功率密度正显著增长。热界面材料通过增强电子设备界面之间的热耦合促进高效传热,在热管理中发挥着至关重要的作用,而液态金属又由于其具备作为高性能热界面材料的出色的热学和力学性能等特质而受到关注。本课题以复合热界面材料为研究对象,立足于以液态金属增强其传热,主要进行了以下两个工作:
(1)提出了利用液态金属柱阵列增强硅橡胶基热界面材料导热性能的研究策略。该方法不仅可以对热界面材料的导热系数进行定制调整,而且可以有效地利用液态金属的高导热系数优势。当引入液态金属的含量仅为17.53 vol.%时,导热垫片的导热系数即可从 6.3Wm- 1K-1增长至 10.9 Wm-1K-1。此外,液态金属柱的引入增强了导热垫片的柔软度,促进了热界面材料和散热部件之间更好的接触,从而进一步提高传热效率。复合热界面材料还表现出卓越的服役可靠性,在 300 次冷热冲击循环后仍保持 85 %以上的热性能,且在 1000 次功率循环试验后芯片温度变化保持在 5 °C 以内,具有良好的应用可行性。
(2)提出了液态金属作为填料与聚离子液体进行复合的研究策略。我们选用了兼具离子液体独特的物化性质与聚合物的优异力学性能的聚离子液体作为热界面材料的基体。研究发现液态金属在聚离子液体中的填充量 可高达 90 wt.%。50 wt.%的液态金属将聚离子液体基体的导热系数从 0.188Wm- 1K-1提 升 至 1.755Wm-1K-1,界 面 热 阻 从 43.79 °Ccm2W-1 降 低 至22.8 °Ccm2W-1,对基体导热性能起到良好的增强效果。而且 50 wt.%液态金属填充量的复合热界面材料依然保持 1.755 MPa 的高界面粘接强度。此外, 复合 热界 面材料 在 50 wt.%的液 态金 属填 充量下 断裂 伸长 率仍可达220 %,表现出良好的机械性能。两种复合热界面材料的制备策略更好地发挥了液态金属性能优势,并为液态金属在热界面材料领域的研究与应用提供了新的思路。
关键词
语种
中文
培养类别
独立培养
入学年份
2022
学位授予年份
2024-06
参考文献列表

[1] MOORE A L, SHI L. Emerging challenges and materials for thermal management of electronics [J]. Materials today, 2014, 17(4): 163-74.
[2] FERAIN I, COLINGE C A, COLINGE J-P. Multigate transistors as the future of classical metal–oxide–semiconductor field-effect transistors [J]. Nature, 2011, 479(7373): 310-6.
[3] DASH T P, DEY S, DAS S, et al. Strain-engineering in nanowire field-effect transistors at 3 nm technology node [J]. Physica E: Low-dimensional Systems and Nanostructures, 2020, 118: 113964.
[4] ANSARI L, FELDMAN B, FAGAS G, et al. Simulation of junctionless Si nanowire transistors with 3 nm gate length [J]. Applied Physics Letters, 2010, 97(6).
[5] ZHANG Y, MA J, WEI N, et al. Recent progress in the development of thermal interface materials: a review [J]. Physical Chemistry Chemical Physics, 2021, 23(2): 753-76.
[6] ZHAO W, WASALA S, PERSOONS T. On the fast prediction of the aerodynamic performance of electronics cooling fans considering the effect of tip clearance [J]. IEEE Transactions on Components, Packaging and Manufacturing Technology, 2023.
[7] XU S, WANG S, CHEN Z, et al. Electric-field-assisted growth of vertical graphene arrays and the application in thermal interface materials [J]. Advanced Functional Materials, 2020, 30(34): 2003302.
[8] CHEN X, SU Y, REAY D, et al. Recent research developments in polymer heat exchangers–A review [J]. Renewable and Sustainable Energy Reviews, 2016, 60: 1367-86.
[9] VENKATADRI V, SAMMAKIA B, SRIHARI K, et al. A review of recent advances in thermal management in three dimensional chip stacks in electronic systems [J]. 2011.
[10] KHAN J, MOMIN S A, MARIATTI M. A review on advanced carbon-based thermal interface materials for electronic devices [J]. Carbon, 2020, 168: 65-112.
[11] KORDYBAN T, RAFANELLI A J. Hot air rises and heat sinks: everything you know about cooling electronics is wrong [Z]. 1998
[12] 蓝色. 揭开 GPU 功耗的面纱 [J]. 个人电脑, 2016, 22(12): 89-92.
[13] GOTSMANN B, LANTZ M. Quantized thermal transport across contacts of rough surfaces [J]. Nature materials, 2013, 12(1): 59-65.
[14] ZHANG P, YUAN P, JIANG X, et al. A theoretical review on interfacial thermal transport at the nanoscale [J]. Small, 2018, 14(2): 1702769.
[15] BEJAN A, KRAUS A D. Heat transfer handbook [M]. John Wiley & Sons, 2003.
[16] MADHUSUDANA C V, MADHUSUDANA C. Thermal contact conductance [M]. Springer, 1996.
[17] 杨斌, 孙蓉. 热界面材料产业现状与研究进展 [J]. 中国 基础科学, 2020, (2): 56-62.
[18] PRASHER R. Thermal interface materials: historical perspective, status, and future directions [J]. Proceedings of the IEEE, 2006, 94(8): 1571-86.
[19] IWABUCHI A, SHIMIZU T, YOSHINO Y, et al. The development of a Vickers-type hardness tester for cryogenic temperatures down to 4.2 K [J]. Cryogenics, 1996, 36(2): 75-81.
[20] LAMBERT M, FLETCHER L. Thermal contact conductance of non-flat, rough, metallic coated metals [J]. J Heat Transfer, 2002, 124(3): 405-12.
[21] VERMA K, COLUMBUS D, HAN B, et al. Real-time warpage measurement of electronic components with variable sensitivity; proceedings of the 1998 Proceedings 48th Electronic Components and Technology Conference (Cat No 98CH36206), F, 1998 [C]. IEEE.
[22] PRASHER R S. Surface chemistry and characteristics based model for the thermal contact resistance of fluidic interstitial thermal interface materials [J]. J Heat Transfer, 2001, 123(5): 969-75.
[23] BAHRU R, ZAMRI M F M A, SHAMSUDDIN A H, et al. A review of thermal interface material fabrication method toward enhancing heat dissipation [J]. International Journal of Energy Research, 2021, 45(3): 3548-68.
[24] GOWDA A, TONAPI S, REITZ B, et al. Choosing the right thermal interface material [J]. Advanced Packaging, 2005, 14(3): 14-8.
[25] SAMSON E C, MACHIROUTU S V, CHANG J-Y, et al. Interface Material Selection and a Thermal Management Technique in Second-Generation Platforms Built on Intel® Centrino™ Mobile Technology [J]. Intel Technology Journal, 2005, 9(1).
[26] HE X, WANG Y. Synergistic effects on the enhancement of thermal conductive properties of thermal greases [J]. Journal of Applied Polymer Science, 2019, 136(27): 47726.
[27] MEI S, GAO Y, DENG Z, et al. Thermally conductive and highly electrically resistive grease through homogeneously dispersing liquid metal droplets inside methyl silicone oil [J]. Journal of Electronic Packaging, 2014, 136(1): 011009.
[28] CHEN H, WEI H, CHEN M, et al. Enhancing the effectiveness of silicone thermal grease by the addition of functionalized carbon nanotubes [J]. Applied Surface Science, 2013, 283: 525-31.
[29] CHIU C-P, CHANDRAN B, MELLO K, et al. An accelerated reliability test method to predict thermal grease pump-out in flip-chip applications; proceedings of the 2001 Proceedings 51st Electronic Components and Technology Conference (Cat No 01CH37220), F, 2001 [C]. IEEE.
[30] DENG Y, JIANG Y. High-performance, safe, and reliable soft-metal thermal pad for thermal management of electronics [J]. Applied Thermal Engineering, 2021, 199: 117555.
[31] MAZLAN M, RAHIM A, AL BAKRI ABDULLAH M M, et al. A new invention of thermal pad using sol-gel nanosilver doped silica film in plastic leaded chip carrier (PLCC) application by using computational fluid dynamic sofrware, CFD analysis [J]. Advanced Materials Research, 2013, 795: 158-63.
[32] MAHAWILI I. Thermal pad for portable body heating/cooling system and method of use [Z]. Google Patents. 1996
[33] SHARMA M, CHUNG D. Solder–graphite network composite sheets as high￾performance themal interface materials [J]. Journal of Electronic Materials, 2015, 44: 929-47.
[34] ROY C K, BHAVNANI S, HAMILTON M C, et al. Thermal performance of low melting temperature alloys at the interface between dissimilar materials [J]. Applied Thermal Engineering, 2016, 99: 72-9.
[35] WEBB R L, GWINN J P. Low melting point thermal interface material; proceedings of the ITherm 2002 Eighth Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems (Cat No 02CH37258), F, 2002 [C]. IEEE.
[36] JEONG S H, CHEN S, HUO J, et al. Mechanically stretchable and electrically insulating thermal elastomer composite by liquid alloy droplet embedment [J]. Scientific reports, 2015, 5(1): 18257.
[37] WANG T H, CHEN H-Y, LEE C-C, et al. High-powered thermal gel degradation evaluation on board-level HFCBGA subjected to reliability tests [J]. Microelectronic engineering, 2011, 88(10): 3101-7.
[38] 毛大厦. 有机/无机复合热界面材料的制备与性能研究 [D]; 中国 科学院大学 (中国科学院深圳先进技术研究院), 2020.
[39] LARSON L, TANG Y, DURFEE L, et al. Engineered thermal interface material; proceedings of the 2014 IEEE 64th Electronic Components and Technology Conference (ECTC), F, 2014 [C]. IEEE.
[40] YU Y-H, MA C-C M, TENG C-C, et al. Enhanced thermal and mechanical properties of epoxy composites filled with silver nanowires and nanoparticles [J]. journal of the Taiwan Institute of Chemical Engineers, 2013, 44(4): 654-9.
[41] RAZA M, WESTWOOD A, STIRLING C, et al. Effect of boron nitride addition on properties of vapour grown carbon nanofiber/rubbery epoxy composites for thermal interface applications [J]. Composites Science and Technology, 2015, 120: 9-16.
[42] KANDASAMY R, WANG X-Q, MUJUMDAR A S. Transient cooling of electronics using phase change material (PCM)-based heat sinks [J]. Applied thermal engineering, 2008, 28(8-9): 1047-57.
[43] LIU Z, CHEN Z, YU F. Enhanced thermal conductivity of microencapsulated phase change materials based on graphene oxide and carbon nanotube hybrid filler [J]. Solar Energy Materials and Solar Cells, 2019, 192: 72-80.
[44] GANATRA Y, MARCONNET A. Passive Thermal Management Using Phase ChangeMaterials: Experimental Evaluation of Thermal Resistances; proceedings of theInternational Electronic Packaging Technical Conference and Exhibition, F, 2015 [C].American Society of Mechanical Engineers.
[45] FRANZ J R. Metal-nonmetal transition in expanded liquid mercury [J]. Physical review letters, 1986, 57(7): 889.
[46] EPSTEIN L F, POWERS M D. Liquid metals. I. The viscosity of mercury vapor and the potential function for mercury [J]. The Journal of Physical Chemistry, 1953, 57(3): 336-41.
[47] LIU T, SEN P, KIM C-J. Characterization of nontoxic liquid-metal alloy galinstan for applications in microdevices [J]. Journal of Microelectromechanical Systems, 2011, 21(2): 443-50.
[48] LIU J, ZHOU Y. A computer chip cooling method which uses low melting point metal and its alloys as the cooling fluid [J]. China Patent, 2002, 2131419(10).
[49] ZHANG M, YAO S, RAO W, et al. Transformable soft liquid metal micro/nanomaterials [J]. Materials Science and Engineering: R: Reports, 2019, 138: 1-35.
[50] LIDE D R. CRC handbook of chemistry and physics [M]. CRC press, 2004.
[51] UUSITALO J, LEINO M, ENQVIST T, et al. α decay studies of very neutron deficient francium and radium isotopes [J]. Physical Review C, 2005, 71(2): 024306.
[52] GONG X, CHIAROTTI G L, PARRINELLO M, et al. α-gallium: A metallic molecular crystal [J]. Physical Review B, 1991, 43(17): 14277.
[53] WEITAO W, HONGYU W, CHENGYI G, et al. Preparation and Characterization of High-Performance Silicone Thermal Pad [J]. Silicone Material, 2023, 37(5).
[54] LIU J, FANG Z, BAO C. Studies on 8.4 W/m· K thermally conductive silicone rubber with high compressibility, high electrical insulation, high thermal reliability, and low cost [J]. Composites Part A: Applied Science and Manufacturing, 2024: 108100.
[55] LIN Z, JIN H, DENG H, et al. Robust, self-healable, recyclable and thermally conductive silicone composite as intelligent thermal interface material [J]. Composite Structures, 2024, 332: 117932.
[56] YAN J, CAI Y, ZHANG H, et al. Rapid Thermochromic and Highly Thermally Conductive Nanocomposite Based on Silicone Rubber for Temperature Visualization Thermal Management in Electronic Devices [J]. ACS applied materials & interfaces, 2024.
[57] XUE X, ZHANG D, WU Y, et al. Segregated and non-settling liquid metal elastomer via jamming of elastomeric particles [J]. Advanced Functional Materials, 2023, 33(6): 2210553.
[58] HE Q, QIN M, ZHANG H, et al. Patterned liquid metal embedded in brush-shaped polymers for dynamic thermal management [J]. Materials Horizons, 2024, 11(2): 531-44.
[59] BHUYAN P, WEI Y, SIN D, et al. Soft and stretchable liquid metal composites with shape memory and healable conductivity [J]. ACS Applied Materials & Interfaces, 2021, 13(24): 28916-24.
[60] UPPAL A, KONG W, RANA A, et al. Precuring Matrix Viscosity Controls Thermal Conductivity of Elastomeric Composites with Compression-Activated Liquid and Solid Metallic Filler Networks [J]. Advanced Materials Interfaces, 2023, 10(9): 2201875.
[61] FANG R, YAO B, CHEN T, et al. 3D Highly Stretchable Liquid Metal/Elastomer Composites with Strain-Enhanced Conductivity [J]. Advanced Functional Materials, 2023: 2310225.
[62] TANG J, ZHAO X, LI J, et al. Gallium-based liquid metal amalgams: Transitional state metallicmixtures (TransM2ixes) with enhanced and tunable electrical, thermal, and mechanical properties [J]. ACS applied materials & interfaces, 2017, 9(41): 35977-87.
[63] 王梦婕. 液态金属基和硅橡胶基热界面材料的制备及其导热性能研究 [D]; 青岛: 青岛科技大学, 2018.
[64] ZHANG Y, HAO N, LIN X, et al. Emerging challenges in the thermal management of cellulose nanofibril-based supercapacitors, lithium-ion batteries and solar cells: A review [J]. Carbohydrate polymers, 2020, 234: 115888.
[65] HANSSON J, NILSSON T M, YE L, et al. Novel nanostructured thermal interface materials: a review [J]. International Materials Reviews, 2018, 63(1): 22-45.
[66] JASMEE S, OMAR G, OTHAMAN S S C, et al. Interface thermal resistance and thermal conductivity of polymer composites at different types, shapes, and sizes of fillers: A review [J]. Polymer Composites, 2021, 42(6): 2629-52.
[67] SHI Y, PENG L, DING Y, et al. Nanostructured conductive polymers for advanced energy storage [J]. Chemical Society Reviews, 2015, 44(19): 6684-96.
[68] XING J, TAO P, WU Z, et al. Nanocellulose-graphene composites: A promising nanomaterial for flexible supercapacitors [J]. Carbohydrate polymers, 2019, 207: 447-59.
[69] RAZEEB K M, DALTON E, CROSS G L W, et al. Present and future thermal interface materials for electronic devices [J]. International Materials Reviews, 2018, 63(1): 1-21.
[70] XUAN Y, LI Q. Heat transfer enhancement of nanofluids [J]. International Journal of heat and fluid flow, 2000, 21(1): 58-64.
[71] XU J, MUNARI A, DALTON E, et al. Silver nanowire array-polymer composite as thermal interface material [J]. Journal of Applied Physics, 2009, 106(12).
[72] SHAO Y, EL-KADY M F, WANG L J, et al. Graphene-based materials for flexible supercapacitors [J]. Chemical Society Reviews, 2015, 44(11): 3639-65.
[73] COLANGELO G, FAVALE E, MILANESE M, et al. Cooling of electronic devices: Nanofluids contribution [J]. Applied Thermal Engineering, 2017, 127: 421-35.
[74] SUN J, YAO Y, ZENG X, et al. Preparation of boron nitride nanosheet/nanofibrillated cellulose nanocomposites with ultrahigh thermal conductivity via engineering interfacial thermal resistance [J]. Advanced Materials Interfaces, 2017, 4(17): 1700563.
[75] MALAKOOTI M H, KAZEM N, YAN J, et al. Liquid metal supercooling for low-temperature thermoelectric wearables [J]. Advanced functional materials, 2019, 29(45): 1906098.
[76] AFRIN S, HAQUE E, REN B, et al. Liquid elementary metals and alloys: Synthesis, characterization, properties, and applications [J]. Applied Materials Today, 2023, 31: 101746.
[77] CHEN S, WANG H-Z, ZHAO R-Q, et al. Liquid metal composites [J]. Matter, 2020, 2(6): 1446-80.
[78] HU L, WANG H, WANG X, et al. Magnetic liquid metals manipulated in the three dimensional free space [J]. ACS applied materials & interfaces, 2019, 11(8): 8685-92.
[79] DICKEY M D, CHIECHI R C, LARSEN R J, et al. Eutectic gallium-indium (EGaIn): a liquid metal alloy for the formation of stable structures in microchannels at room temperature [J]. Advanced functional materials, 2008, 18(7): 1097-104.
[80] LIU P, LUO Y, LIU J, et al. Laminar metal foam: a soft and highly thermally conductive thermal interface material with a reliable joint for semiconductor packaging [J]. ACS Applied Materials & Interfaces, 2021, 13(13): 15791-801.
[81] ZHAO Z, SONI S, LEE T, et al. Smart Eutectic Gallium–Indium: From Properties to Applications [J]. Advanced Materials, 2023, 35(1): 2203391.
[82] WANG H, XING W, CHEN S, et al. Liquid metal composites with enhanced thermal conductivity and stability using molecular thermal linker [J]. Advanced Materials, 2021, 33(43): 2103104.
[83] KALANTAR-ZADEH K, TANG J, DAENEKE T, et al. Emergence of liquid metals in nanotechnology [J]. ACS nano, 2019, 13(7): 7388-95.
[84] ZHU L, WANG B, HANDSCHUH-WANG S, et al. Liquid metal–based soft microfluidics [J]. Small, 2020, 16(9): 1903841.
[85] YI L, LIU J. Liquid metal biomaterials: a newly emerging area to tackle modern biomedical challenges [J]. International Materials Reviews, 2017, 62(7): 415-40.
[86] HUANG K, QIU W, OU M, et al. An anti-leakage liquid metal thermal interface material [J]. RSC advances, 2020, 10(32): 18824-9.
[87] MA K-Q, LIU J. Nano liquid-metal fluid as ultimate coolant [J]. Physics Letters A, 2007, 361(3): 252-6.
[88] SHEN Q, JIANG M, WANG R, et al. Liquid metal-based soft, hermetic, and wireless-communicable seals for stretchable systems [J]. Science, 2023, 379(6631): 488-93.
[89] ZHAO L, LIU H, CHEN X, et al. Liquid metal nano/micro-channels as thermal interface materials for efficient energy saving [J]. Journal of Materials Chemistry C, 2018, 6(39): 10611-7.
[90] JIA L-C, JIN Y-F, REN J-W, et al. Highly thermally conductive liquid metal-based composites with superior thermostability for thermal management [J]. Journal of Materials Chemistry C, 2021, 9(8): 2904-11.
[91] BARTLETT M D, KAZEM N, POWELL-PALM M J, et al. High thermal conductivity in soft elastomers with elongated liquid metal inclusions [J]. Proceedings of the National Academy of Sciences, 2017, 114(9): 2143-8.
[92] ZHAO J-W, ZHAO R, HUO Y-K, et al. Effects of surface roughness, temperature and pressure on interface thermal resistance of thermal interface materials [J]. International Journal of Heat and Mass Transfer, 2019, 140: 705-16.
[93] CHIU H T, SUKACHONMAKUL T, KUO M T, et al. Surface modification of aluminum nitride by polysilazane and its polymer-derived amorphous silicon oxycarbide ceramic for the enhancement of thermal conductivity in silicone rubber composite [J]. Applied surface science, 2014, 292: 928-36.
[94] NAMITHA L, ANANTHAKUMAR S, SEBASTIAN M. Aluminum nitride filled flexible silicone rubber composites for microwave substrate applications [J]. Journal of Materials Science: Materials in Electronics, 2015, 26: 891-7.
[95] CHOI Y Y, HO D H, CHO J H. Self-healable hydrogel–liquid metal composite platform enabled by a 3D printed stamp for a multimodular sensor system [J]. ACS applied materials & interfaces, 2020, 12(8): 9824-32.
[96] GUL O, KIM K, GU J, et al. Sensitivity-controllable liquid-metal-based pressure sensor for wearable applications [J]. ACS Applied Electronic Materials, 2021, 3(9): 4027-36.
[97] WANG D, GAO C, WANG W, et al. Shape-transformable, fusible rodlike swimming liquid metal nanomachine [J]. ACS nano, 2018, 12(10): 10212-20.
[98] PARK J E, WON S, CHO W, et al. Fabrication and applications of stimuli-responsive micro/nanopillar arrays [J]. Journal of Polymer Science, 2021, 59(14): 1491-517.
[99] JASNA V, RAMESAN M. Fabrication of novel nanocomposites from styrenebutadiene rubber/z nc sulphide nanoparticles [J]. Journal of materials science, 2018, 53(11): 8250-62.
[100] LEE E, SALGADO R A, LEE B, et al. Design of lithium cobalt oxide electrodes with high thermal conductivity and electrochemical performance using carbon nanotubes and diamond particles [J]. Carbon, 2018, 129: 702-10.
[101] MEHRA N, LI Y, ZHU J. Small organic linkers with hybrid terminal groups drive efficient phonon transport in polymers [J]. The Journal of Physical Chemistry C, 2018, 122(19): 10327-33.
[102] ZHANG L, DENG H, FU Q. Recent progress on thermal conductive and electrical insulating polymer composites [J]. Composites Communications, 2018, 8: 74-82.

所在学位评定分委会
材料与化工
国内图书分类号
TB33
来源库
人工提交
成果类型学位论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/778996
专题中国科学院深圳理工大学(筹)联合培养
推荐引用方式
GB/T 7714
赵浩楠. 基于液态金属增强传热的复合热界面材料的制备与性能研究[D]. 深圳. 南方科技大学,2024.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
12233303-赵浩楠-中国科学院深圳(4126KB)----限制开放--请求全文
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[赵浩楠]的文章
百度学术
百度学术中相似的文章
[赵浩楠]的文章
必应学术
必应学术中相似的文章
[赵浩楠]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。