中文版 | English
题名

铜绿假单胞菌DNA甲基转移酶调控基因表达和毒力表型的机制研究

其他题名
Mechanism of DNA methyltransferases regulating gene expression and virulence phenotypes in Pseudomonas aeruginosa
姓名
姓名拼音
ZHANG Yizhou
学号
12133175
学位类型
硕士
学位专业
0710 生物学
学科门类/专业学位类别
07 理学
导师
LIUYANG
导师单位
南方科技大学医学院
论文答辩日期
2024-04-25
论文提交日期
2024-07-04
学位授予单位
南方科技大学
学位授予地点
深圳
摘要

大部分原核生物缺乏组蛋白和核小体结构,其表观遗传控制主要依赖 DNA 甲基化,由 DNA甲基转移酶 (DNA MTase) 介导。近年来,多项研究表明,DNA 甲基化在调节细菌生理生化活动上具有重要作用。铜绿假单胞菌 (Pseudomonas aeruginosa) 是一种常见的革兰氏阴性条件致病菌,能够引起难以治愈的急性和慢性感染。同时,铜绿假单胞菌也是病原微生物领域的模式细菌,其致病性表型的调控机制 (例如群体感应、生物被膜、分泌系统) 在近几十年来被广泛研究。然而,目前对于铜绿假单胞菌 DNA 甲基化等表观遗传因素探究较少。本项目以两株铜绿假单胞菌临床菌株 TBCF10839 和 LYSZa7 为模型,通过测序、生物信息学分析、生物化学和分子生物学等技术,研究DNA甲基转移酶对细菌转录调控及重要毒力表型的影响。首先,我们通过检测质粒转化效率验证了 LYSZa7 菌株中两个 DNA 甲基转移酶 PaeZa7HsdMS 和 PaeZa7Mod 所在的 R-M 系统的功能,使用单分子实时测序技术和液相色谱串联质谱验证了 DNA 甲基转移酶的 DNA 甲基化功能,并利用 AlphaFold2 对 DNA 甲基转移酶的结构进行了预测。接下来,我们对菌株中几个 DNA 甲基转移酶对转录调控和重要表型的影响进行了研究。课题组前期实验发现,DNA 甲基转移酶 M.TBCFORFCP (CP) 参与调控活性氮氧化合物抵抗一氧化氮还原酶 (NOR) 家族基因的表达,并影响 NO 稳态及对巨噬细胞吞噬的抵抗作用。本研究进一步通过构建定点突变株,证明了距离预测的转录因子 Dnr 和 RpoN 结合位点较近的甲基化基序的甲基化状态会影响 nosR 基因的转录水平。此外,铜绿假单胞菌 LYSZa7 中 DNA 甲基转移酶 PaeZa7Mod 的缺失降低了铜绿假单胞菌 LYSZa7 Ⅲ 型分泌系统 (T3SS) 中 exsA,pscQ 和 pcrD 等基因的表达、增加铁载体合成相关的 pvdA,pchE 和 pchF 等基因的表达。细胞毒力实验和大蜡螟幼虫感染模型表明,DNA甲基转移酶 PaeZa7Mod 的缺失显著降低细菌毒力。差异甲基化基因的富集分析结果表示,甲基转移酶 PaeZa7Mod 对应的基序在 T3SS 相关基因和铁载体合成相关基因中富集,而转录水平的变化可能是由 LYSZa7 基因组相应区域甲基化状态的缺失所导致。铜绿假单胞菌 LYSZa7 中 DNA 甲基转移酶 PaeZa7HsdMS 的缺失增加了铁载体的合成,从而增加细菌摄铁能力。综上,本研究为 DNA 甲基化调控铜绿假单胞菌生理生化活动提供了实验证据,为进一步探究 DNA 甲基转移酶调控细菌表型奠定了基础。

关键词
语种
中文
培养类别
独立培养
入学年份
2021
学位授予年份
2024-06
参考文献列表

[1] CASADESUS J, LOW D. Epigenetic gene regulation in the bacterial world [J]. Microbiol Mol Biol R, 2006, 70(3): 830-+.
[2] HOCHER A, LAURSEN S P, RADFORD P, et al. Histones with an unconventional DNA-binding mode in vitro are major chromatin constituents in the bacterium Bdellovibrio bacteriovorus [J]. Nat Microbiol, 2023, 8(11): 2006-19.
[3] WELSH K M, LU A L, CLARK S, et al. Isolation and Characterization of the Escherichia-Coli Muth Gene-Product [J]. J Biol Chem, 1987, 262(32): 15624-9.
[4] BLYN L B, BRAATEN B A, WHITE-ZIEGLER C A, et al. Phase-variation of pyelonephritis-associated pili in Escherichia coli: evidence for transcriptional regulation [J]. Embo J, 1989, 8(2): 613-20.
[5] DOBERENZ S, ECKWEILER D, REICHERT O, et al. Identification of a Pseudomonas aeruginosa PAO1 DNA Methyltransferase, Its Targets, and Physiological Roles [J]. mBio, 2017, 8(1).
[6] HAN S H, LIU J H, LI M A H, et al. DNA Methyltransferase Regulates Nitric Oxide Homeostasis and Virulence in a Chronically Adapted Pseudomonas aeruginosa Strain [J]. Msystems, 2022, 7(5).
[7] JOHNSON T B, COGHILL R D. Researches on pyrimidines. CIII. The discovery of 5-methyl-cytosine in tuberculinic acid, the nucleic acid of the tubercle bacillus [J]. J Am Chem Soc, 1925, 47: 2838-44.
[8] DUNN D B, SMITH J D. Occurrence of a new base in the deoxyribonucleic acid of a strain of Bacterium coli [J]. Nature, 1955, 175(4451): 336-7.
[9] DUNN D B, SMITH J D. The occurrence of 6-methylaminopurine in deoxyribonucleic acids [J]. Biochem J, 1958, 68(4): 627-36.
[10] JANULAITIS A, KLIMASAUSKAS S, PETRUSYTE M, et al. Cytosine modification in DNA by BcnI methylase yields N4-methylcytosine [J]. FEBS Lett, 1983, 161(1): 131-4.
[11] WION D, CASADESUS J. N6-methyl-adenine: an epigenetic signal for DNA-protein interactions [J]. Nat Rev Microbiol, 2006, 4(3): 183-92.
[12] ARBER W, DUSSOIX D. Host specificity of DNA produced by Escherichia coli. I. Host controlled modification of bacteriophage lambda [J]. J Mol Biol, 1962, 5: 18-36.
[13] MANSO A S, CHAI M H, ATACK J M, et al. A random six-phase switch regulates pneumococcal virulence via global epigenetic changes [J]. Nat Commun, 2014, 5: 5055.
[14] LOENEN W A M, DRYDEN D T F, RALEIGH E A, et al. Type I restriction enzymes and their relatives [J]. Nucleic Acids Res, 2014, 42(1): 20-44.
[15] ROBERTS R J, BELFORT M, BESTOR T, et al. A nomenclature for restriction enzymes, DNA methyltransferases, homing endonucleases and their genes [J]. Nucleic Acids Res, 2003, 31(7): 1805-12.
[16] MEISEL A, BICKLE T A, KRUGER D H, et al. Type III restriction enzymes need two inversely oriented recognition sites for DNA cleavage [J]. Nature, 1992, 355(6359): 467-9.
[17] GUPTA Y K, CHAN S H, XU S Y, et al. Structural basis of asymmetric DNA methylation and ATP-triggered long-range diffusion by EcoP15I [J]. Nat Commun, 2015, 6: 7363.
[18] RALEIGH E A, WILSON G. Escherichia coli K-12 restricts DNA containing 5-methylcytosine [J]. Proc Natl Acad Sci U S A, 1986, 83(23): 9070-4.
[19] AU K G, WELSH K, MODRICH P. Initiation of Methyl-Directed Mismatch Repair [J]. J Biol Chem, 1992, 267(17): 12142-8.
[20] SEIB K L, SRIKHANTA Y N, ATACK J M, et al. Epigenetic Regulation of Virulence and Immunoevasion by Phase-Variable Restriction-Modification Systems in Bacterial Pathogens [J]. Annu Rev Microbiol, 2020, 74: 655-71.
[21] ROBERTS R J, VINCZE T, POSFAI J, et al. REBASE: a database for DNA restriction and modification: enzymes, genes and genomes [J]. Nucleic Acids Res, 2023, 51(D1): D629-D30.
[22] BROADBENT S E, BALBONTIN R, CASADESUS J, et al. YhdJ, a nonessential CcrM-like DNA methyltransferase of Escherichia coli and Salmonella enterica [J]. J Bacteriol, 2007, 189(11): 4325-7.
[23] BIRKHOLZ N, JACKSON S A, FAGERLUND R D, et al. A mobile restriction-modification system provides phage defence and resolves an epigenetic conflict with an antagonistic endonuclease [J]. Nucleic Acids Res, 2022, 50(6): 3348-61.
[24] MAGUIN P, VARBLE A, MODELL J W, et al. Cleavage of viral DNA by restriction endonucleases stimulates the type II CRISPR-Cas immune response [J]. Mol Cell, 2022, 82(5): 907-+.
[25] YANG J, HORTON J R, LI J, et al. Structural basis for preferential binding of human TCF4 to DNA containing 5-carboxylcytosine [J]. Nucleic Acids Res, 2019, 47(16): 8375-87.
[26] VANDERWOUDE M, BRAATEN B, LOW D. Epigenetic phase variation of the pap operon in Escherichia coli [J]. Trends Microbiol, 1996, 4(1): 5-9.
[27] BRUNET Y R, BERNARD C S, CASCALES E. Fur-Dam Regulatory Interplay at an Internal Promoter of the Enteroaggregative Escherichia coli Type VI Secretion sci1 Gene Cluster [J]. J Bacteriol, 2020, 202(10).
[28] DEATON A M, BIRD A. CpG islands and the regulation of transcription [J]. Gene Dev, 2011, 25(10): 1010-22.
[29] FENG Q, ZHANG Y. The MeCP1 complex represses transcription through preferential binding, remodeling, and deacetylating methylated nucleosomes [J]. Gene Dev, 2001, 15(7): 827-32.
[30] ATACK J M, SRIKHANTA Y N, FOX K L, et al. A biphasic epigenetic switch controls immunoevasion, virulence and niche adaptation in non-typeable Haemophilus influenzae [J]. Nat Commun, 2015, 6: 7828.
[31] TORREBLANCA J, CASADESUS J. DNA adenine methylase mutants of Salmonella typhimurium and a novel dam-regulated locus [J]. Genetics, 1996, 144(1): 15-26.
[32] FROMMER M, MCDONALD L E, MILLAR D S, et al. A Genomic Sequencing Protocol That Yields a Positive Display of 5-Methylcytosine Residues in Individual DNA Strands [J]. P Natl Acad Sci USA, 1992, 89(5): 1827-31.
[33] LACKS S, GREENBERG B. Complementary Specificity of Restriction Endonucleases of Diplococcus-Pneumoniae with Respect to DNA Methylation [J]. Journal of Molecular Biology, 1977, 114(1): 153-68.
[34] BOULIAS K, GREER E L. Detection of DNA Methylation in Genomic DNA by UHPLC-MS/MS [J]. Methods Mol Biol, 2021, 2198: 79-90.
[35] ZHANG G, HUANG H, LIU D, et al. N6-methyladenine DNA modification in Drosophila [J]. Cell, 2015, 161(4): 893-906.
[36] BEAULAURIER J, SCHADT E E, FANG G. Deciphering bacterial epigenomes using modern sequencing technologies [J]. Nat Rev Genet, 2019, 20(3): 157-72.
[37] KOREN S, HARHAY G P, SMITH T P, et al. Reducing assembly complexity of microbial genomes with single-molecule sequencing [J]. Genome Biol, 2013, 14(9).
[38] GREER E L, BLANCO M A, GU L, et al. DNA Methylation on N6-Adenine in C. elegans [J]. Cell, 2015, 161(4): 868-78.
[39] BEAULAURIER J, ZHANG X S, ZHU S, et al. Single molecule-level detection and long read-based phasing of epigenetic variations in bacterial methylomes [J]. Nat Commun, 2015, 6: 7438.
[40] SANCHEZ-ROMERO M A, COTA I, CASADESUS J. DNA methylation in bacteria: from the methyl group to the methylome [J]. Curr Opin Microbiol, 2015, 25: 9-16.
[41] JAIN M, OLSEN H E, PATEN B, et al. The Oxford Nanopore MinION: delivery of nanopore sequencing to the genomics community [J]. Genome Biol, 2016, 17(1): 239.
[42] LASZLO A H, DERRINGTON I M, BRINKERHOFF H, et al. Detection and mapping of 5-methylcytosine and 5-hydroxymethylcytosine with nanopore MspA [J]. Proc Natl Acad Sci U S A, 2013, 110(47): 18904-9.
[43] SIMPSON J T, WORKMAN R E, ZUZARTE P C, et al. Detecting DNA cytosine methylation using nanopore sequencing [J]. Nat Methods, 2017, 14(4): 407-+.
[44] WANG Y H, ZHAO Y, BOLLAS A, et al. Nanopore sequencing technology, bioinformatics and applications [J]. Nat Biotechnol, 2021, 39(11): 1348-65.
[45] JURADO-MARTIN I, SAINZ-MEJIAS M, MCCLEAN S. Pseudomonas aeruginosa: An Audacious Pathogen with an Adaptable Arsenal of Virulence Factors [J]. Int J Mol Sci, 2021, 22(6).
[46] RIQUELME S A, LIIMATTA K, WONG FOK LUNG T, et al. Pseudomonas aeruginosa Utilizes Host-Derived Itaconate to Redirect Its Metabolism to Promote Biofilm Formation [J]. Cell Metab, 2020, 31(6): 1091-106 e6.
[47] BIANCONI I, JEUKENS J, FRESCHI L, et al. Comparative genomics and biological characterization of sequential Pseudomonas aeruginosa isolates from persistent airways infection [J]. BMC Genomics, 2015, 16: 1105.
[48] DENG W, MARSHALL N C, ROWLAND J L, et al. Assembly, structure, function and regulation of type III secretion systems [J]. Nat Rev Microbiol, 2017, 15(6): 323-37.
[49] BURSTEIN D, SATANOWER S, SIMOVITCH M, et al. Novel type III effectors in Pseudomonas aeruginosa [J]. Mbio, 2015, 6(2): e00161.
[50] HAUSER A R. The type III secretion system of Pseudomonas aeruginosa: infection by injection [J]. Nat Rev Microbiol, 2009, 7(9): 654-65.
[51] OLIVER A, MULET X, LOPEZ-CAUSAPE C, et al. The increasing threat of Pseudomonas aeruginosa high-risk clones [J]. Drug Resist Updat, 2015, 21-22: 41-59.
[52] OZER E A, NNAH E, DIDELOT X, et al. The Population Structure of Pseudomonas aeruginosa Is Characterized by Genetic Isolation of exoU+ and exoS+ Lineages [J]. Genome Biol Evol, 2019, 11(1): 1780-96.
[53] YAHR T L, WOLFGANG M C. Transcriptional regulation of the Pseudomonas aeruginosa type III secretion system [J]. Mol Microbiol, 2006, 62(3): 631-40.
[54] HA U H, KIM J, BADRANE H, et al. An in vivo inducible gene of Pseudomonas aeruginosa encodes an anti-ExsA to suppress the type III secretion system [J]. Mol Microbiol, 2004, 54(2): 307-20.
[55] SHEN D K, FILOPON D, KUHN L, et al. PsrA is a positive transcriptional regulator of the type III secretion system in [J]. Infect Immun, 2006, 74(2): 1121-9.
[56] KANG Y, LUNIN V V, SKARINA T, et al. The long-chain fatty acid sensor, PsrA, modulates the expression of rpoS and the type III secretion exsCEBA operon in Pseudomonas aeruginosa [J]. Mol Microbiol, 2009, 73(1): 120-36.
[57] WILLIAMS MCMACKIN E A, MARSDEN A E, YAHR T L. H-NS Family Members MvaT and MvaU Regulate the Pseudomonas aeruginosa Type III Secretion System [J]. J Bacteriol, 2019, 201(14).
[58] HORNA G, RUIZ J. Type 3 secretion system of Pseudomonas aeruginosa [J]. Microbiol Res, 2021, 246: 126719.
[59] MONLEZUN L, LIEBL D, FENEL D, et al. PscI is a type III secretion needle anchoring protein with in vitro polymerization capacities [J]. Mol Microbiol, 2015, 96(2): 419-36.
[60] BURNS R E, MCDANIEL-CRAIG A, SUKHAN A. Site-directed mutagenesis of the Pseudomonas aeruginosa type III secretion system protein PscJ reveals an essential role for surface-localized residues in needle complex function [J]. Microb Pathog, 2008, 45(3): 225-30.
[61] ESHELMAN K, YAO H, PUNCHI HEWAGE A N D, et al. Inhibiting the BfrB:Bfd interaction in Pseudomonas aeruginosa causes irreversible iron accumulation in bacterioferritin and iron deficiency in the bacterial cytosol [J]. Metallomics, 2017, 9(6): 646-59.
[62] WEERATUNGA S K, LOVELL S, YAO H, et al. Structural studies of bacterioferritin B from Pseudomonas aeruginosa suggest a gating mechanism for iron uptake via the ferroxidase center [J]. Biochemistry-Us, 2010, 49(6): 1160-75.
[63] CORNELIS P, MATTHIJS S, VAN OEFFELEN L. Iron uptake regulation in Pseudomonas aeruginosa [J]. Biometals, 2009, 22(1): 15-22.
[64] MAYNERIS-PERXACHS J, MORENO-NAVARRETE J M, FERNANDEZ-REAL J M. The role of iron in host-microbiota crosstalk and its effects on systemic glucose metabolism [J]. Nat Rev Endocrinol, 2022, 18(11): 683-98.
[65] HIDER R C. Siderophore Mediated Absorption of Iron [J]. Struct Bond, 1984, 58: 25-87.
[66] MEYER J M, NEELY A, STINTZI A, et al. Pyoverdin is essential for virulence of Pseudomonas aeruginosa [J]. Infect Immun, 1996, 64(2): 518-23.
[67] MINANDRI F, IMPERI F, FRANGIPANI E, et al. Role of Iron Uptake Systems in Pseudomonas aeruginosa Virulence and Airway Infection [J]. Infect Immun, 2016, 84(8): 2324-35.
[68] LAMONT I L, BEARE P A, OCHSNER U, et al. Siderophore-mediated signaling regulates virulence factor production in Pseudomonas aeruginosa [J]. P Natl Acad Sci USA, 2002, 99(10): 7072-7.
[69] WILDERMAN P J, VASIL A I, JOHNSON Z, et al. Characterization of an endoprotease (PrpL) encoded by a PvdS-regulated gene in Pseudomonas aeruginosa [J]. Infect Immun, 2001, 69(9): 5385-94.
[70] VISCA P, IMPERI F, LAMONT I L. Pyoverdine siderophores: from biogenesis to biosignificance [J]. Trends Microbiol, 2007, 15(1): 22-30.
[71] GASSER V, GUILLON L, CUNRATH O, et al. Cellular organization of siderophore biosynthesis in Pseudomonas aeruginosa: Evidence for siderosomes [J]. J Inorg Biochem, 2015, 148: 27-34.
[72] YETERIAN E, MARTIN L W, GUILLON L, et al. Synthesis of the siderophore pyoverdine in Pseudomonas aeruginosa involves a periplasmic maturation [J]. Amino Acids, 2010, 38(5): 1447-59.
[73] HANNAUER M, YETERIAN E, MARTIN L W, et al. An efflux pump is involved in secretion of newly synthesized siderophore by Pseudomonas aeruginosa [J]. Febs Letters, 2010, 584(23): 4751-5.
[74] ALBRECHTGARY A M, BLANC S, ROCHEL N, et al. Bacterial Iron Transport - Coordination Properties of Pyoverdin Paa, a Peptidic Siderophore of Pseudomonas-Aeruginosa [J]. Inorg Chem, 1994, 33(26): 6391-402.
[75] POOLE K, NESHAT S, KREBES K, et al. Cloning and Nucleotide-Sequence Analysis of the Ferripyoverdine Receptor Gene Fpva of Pseudomonas-Aeruginosa [J]. Journal of Bacteriology, 1993, 175(15): 4597-604.
[76] GHYSELS B, DIEU B T M, BEATSON S A, et al. FpvB, an alternative type I ferripyoverdine receptor of Pseudomonas aeruginosa [J]. Microbiol-Sgm, 2004, 150: 1671-80.
[77] BRILLET K, JOURNET L, CELIA H, et al. A beta strand lock exchange for signal transduction in TonB-dependent transducers on the basis of a common structural motif [J]. Structure, 2007, 15(11): 1383-91.
[78] BRILLET K, RUFFENACH F, ADAMS H, et al. An ABC Transporter with Two Periplasmic Binding Proteins Involved in Iron Acquisition in Pseudomonas aeruginosa [J]. Acs Chem Biol, 2012, 7(12): 2036-45.
[79] GANNE G, BRILLET K, BASTA B, et al. Iron Release from the Siderophore Pyoverdine in Pseudomonas aeruginosa Involves Three New Actors: FpvC, FpvG, and FpvH [J]. Acs Chem Biol, 2017, 12(4): 1056-65.
[80] IMPERI F, TIBURZI F, VISCA P. Molecular basis of pyoverdine siderophore recycling in Pseudomonas aeruginosa [J]. P Natl Acad Sci USA, 2009, 106(48): 20440-5.
[81] YETERIAN E, MARTIN L W, LAMONT I L, et al. An efflux pump is required for siderophore recycling by Pseudomonas aeruginosa [J]. Env Microbiol Rep, 2010, 2(3): 412-8.
[82] CUNRATH O, GASSER V, HOEGY F, et al. A cell biological view of the siderophore pyochelin iron uptake pathway in Pseudomonas aeruginosa [J]. Environ Microbiol, 2015, 17(1): 171-85.
[83] ROCHE B, GARCIA-RIVERA M A, NORMANT V, et al. A role for PchHI as the ABC transporter in iron acquisition by the siderophore pyochelin in Pseudomonas aeruginosa [J]. Environmental Microbiology, 2022, 24(2): 866-77.
[84] KEATING T A, EHMANN D E, KOHLI R M, et al. Chain termination steps in nonribosomal peptide synthetase assembly lines: directed acyl-S-enzyme breakdown in antibiotic and siderophore biosynthesis [J]. Chembiochem, 2001, 2(2): 99-107.
[85] QUADRI L E, KEATING T A, PATEL H M, et al. Assembly of the Pseudomonas aeruginosa nonribosomal peptide siderophore pyochelin: In vitro reconstitution of aryl-4, 2-bisthiazoline synthetase activity from PchD, PchE, and PchF [J]. Biochemistry-Us, 1999, 38(45): 14941-54.
[86] HEUSIPP G, FALKER S, SCHMIDT M A. DNA adenine methylation and bacterial pathogenesis [J]. Int J Med Microbiol, 2007, 297(1): 1-7.
[87] REISENAUER A, SHAPIRO L. DNA methylation affects the cell cycle transcription of the CtrA global regulator in Caulobacter [J]. Embo J, 2002, 21(18): 4969-77.
[88] ATACK J M, GUO C, YANG L, et al. DNA sequence repeats identify numerous Type I restriction-modification systems that are potential epigenetic regulators controlling phase-variable regulons; phasevarions [J]. FASEB J, 2020, 34(1): 1038-51.
[89] HUANG W, HAMOUCHE J E, WANG G, et al. Integrated Genome-Wide Analysis of an Isogenic Pair of Pseudomonas aeruginosa Clinical Isolates with Differential Antimicrobial Resistance to Ceftolozane/Tazobactam, Ceftazidime/Avibactam, and Piperacillin/Tazobactam [J]. Int J Mol Sci, 2020, 21(3).
[90] LI Z, ZHOU X, LIAO D, et al. Comparative genomics and DNA methylation analysis of Pseudomonas aeruginosa clinical isolate PA3 by single-molecule real-time sequencing reveals new targets for antimicrobials [J]. Front Cell Infect Microbiol, 2023, 13: 1180194.
[91] QU J, CAI Z, LIU Y, et al. Persistent Bacterial Coinfection of a COVID-19 Patient Caused by a Genetically Adapted Pseudomonas aeruginosa Chronic Colonizer [J]. Front Cell Infect Microbiol, 2021, 11: 641920.
[92] QU J, CAI Z, DUAN X, et al. Pseudomonas aeruginosa modulates alginate biosynthesis and type VI secretion system in two critically ill COVID-19 patients [J]. Cell Biosci, 2022, 12(1): 14.
[93] LIU J, ZHANG Y, ZHOU N, et al. Bacmethy: a novel and convenient tool for investigating bacterial DNA methylation pattern and their transcriptional regulation effects [J]. iMeta, 2024, 2(2).
[94] SRIKHANTA Y N, MAGUIRE T L, STACEY K J, et al. The phasevarion: a genetic system controlling coordinated, random switching of expression of multiple genes [J]. Proc Natl Acad Sci U S A, 2005, 102(15): 5547-51.
[95] TESSON F, HERVE A, MORDRET E, et al. Systematic and quantitative view of the antiviral arsenal of prokaryotes [J]. Nat Commun, 2022, 13(1): 2561.
[96] SIEVERS F, WILM A, DINEEN D, et al. Fast, scalable generation of high-quality protein multiple sequence alignments using Clustal Omega [J]. Mol Syst Biol, 2011, 7: 539.
[97] SEEMANN T. Prokka: rapid prokaryotic genome annotation [J]. Bioinformatics, 2014, 30(14): 2068-9.
[98] MINH B Q, SCHMIDT H A, CHERNOMOR O, et al. IQ-TREE 2: New Models and Efficient Methods for Phylogenetic Inference in the Genomic Era [J]. Mol Biol Evol, 2020, 37(5): 1530-4.
[99] LETUNIC I, BORK P. Interactive Tree Of Life (iTOL) v5: an online tool for phylogenetic tree display and annotation [J]. Nucleic Acids Res, 2021, 49(W1): W293-W6.
[100]BLANGA-KANFI S, AMITSUR M, AZEM A, et al. PrrC-anticodon nuclease: functional organization of a prototypical bacterial restriction RNase [J]. Nucleic Acids Res, 2006, 34(11): 3209-19.
[101]LINDER P, DOELZ R, GUBLER M, et al. An anticodon nuclease gene inserted into a hsd region encoding a type I DNA restriction system [J]. Nucleic Acids Res, 1990, 18(23): 7170.
[102]SIROTKIN K, COOLEY W, RUNNELS J, et al. A role in true-late gene expression for the T4 bacteriophage 5' polynucleotide kinase 3' phosphatase [J]. J Mol Biol, 1978, 123(2): 221-33.
[103]SCHAFER A, TAUCH A, JAGER W, et al. Small mobilizable multi-purpose cloning vectors derived from the Escherichia coli plasmids pK18 and pK19: selection of defined deletions in the chromosome of Corynebacterium glutamicum [J]. Gene, 1994, 145(1): 69-73.
[104]KEEN N T, TAMAKI S, KOBAYASHI D, et al. Improved broad-host-range plasmids for DNA cloning in gram-negative bacteria [J]. Gene, 1988, 70(1): 191-7.
[105]WEST S E, SCHWEIZER H P, DALL C, et al. Construction of improved Escherichia-Pseudomonas shuttle vectors derived from pUC18/19 and sequence of the region required for their replication in Pseudomonas aeruginosa [J]. Gene, 1994, 148(1): 81-6.
[106]LOVE M I, HUBER W, ANDERS S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2 [J]. Genome Biol, 2014, 15(12): 550.
[107]TUMMLER B, KOOPMANN U, GROTHUES D, et al. Nosocomial acquisition of Pseudomonas aeruginosa by cystic fibrosis patients [J]. J Clin Microbiol, 1991, 29(6): 1265-7.
[108]WIEHLMANN L, MUNDER A, ADAMS T, et al. Functional genomics of Pseudomonas aeruginosa to identify habitat-specific determinants of pathogenicity [J]. Int J Med Microbiol, 2007, 297(7-8): 615-23.

所在学位评定分委会
生物学
国内图书分类号
N533
来源库
人工提交
成果类型学位论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/778999
专题南方科技大学医学院
推荐引用方式
GB/T 7714
张一舟. 铜绿假单胞菌DNA甲基转移酶调控基因表达和毒力表型的机制研究[D]. 深圳. 南方科技大学,2024.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
12133175-张一舟-南方科技大学医(6080KB)----限制开放--请求全文
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[张一舟]的文章
百度学术
百度学术中相似的文章
[张一舟]的文章
必应学术
必应学术中相似的文章
[张一舟]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。