中文版 | English
题名

硫铁化物/红壤基沸石复合材料在 Cr(VI) 污染地下水修复中的应用

其他题名
IRON SULFIDE AND RED SOIL-BASED ZEOLITE COMPOSITE FOR Cr(VI)- CONTAMINATED GROUNDWATER REMEDIATION
姓名
姓名拼音
TANG Huan
学号
12132218
学位类型
硕士
学位专业
0703 化学
学科门类/专业学位类别
07 理学
导师
陈洪
导师单位
环境科学与工程学院
论文答辩日期
2024-05-10
论文提交日期
2024-07-05
学位授予单位
南方科技大学
学位授予地点
深圳
摘要

地下水重金属污染严重威胁人类饮用水安全,受到人们的广泛关注。Cr(VI)因其高毒性、易迁移和难治理等特性,已成为地下水中重金属污染的重要议题之一。对于Cr(VI)污染水体的修复,传统的方法是先将Cr(VI)化学还原为Cr(III),再添加其它试剂将Cr(III)固定。这种先还原后固定的方式会使得Cr(VI)的修复过程复杂化,造成多余的能源和试剂消耗,并有可能引发严重的二次污染。因此,开发既能还原Cr(VI)又能同时将还原后的Cr(III)固定的双功能材料,对Cr(VI)污染地下水的修复有重要意义。

本研究从Cr(VI)污染地下水修复角度出发,旨在同时实现Cr(VI)的还原以及Cr(III)的固定。以我国南方地区广泛分布的红壤为原料,采用水热法合成红壤基ANA型沸石分子筛(Re-ANA)。然后以该具有优良阳离子交换性能的ANA型沸石为基底材料,以具有化学还原性能和潜在光还原性能的硫铁化物为改性物质,分别采用水热法和溶剂热法开发了FeS2/Re-ANA(PM/RA)和Fe3S4/Re-ANA(GRA)两种复合材料用于Cr(VI)污染地下水的修复。得到主要结果如下:

(1)在初始浓度为1 mg/L、pH值为6的Cr(VI)溶液中,PM/RA-3 对Cr(VI)的去除率达到98.90%,Cr(VI)残留浓度为0.011 mg/L,达到GB/T 14848-2017《地下水质量标准》第III类标准,也满足世界卫生组织规定的饮用水质量控制准则。整个去除过程中,Cr(III)的浓度始终维持在0.05 mg/L以下,同时实现了Cr(VI)的还原以及Cr(III)的固定。环境因素影响研究表明,较高的PM/RA-3投加剂量、较低的初始Cr(VI)浓度、较低的初始溶液pH值有助于Cr(VI)的去除。机理研究表明,PM/RA-3中的FeS2,既能作为还原剂实现对Cr(VI)的化学还原,也能作为光催化剂实现对部分Cr(VI)的光还原。还原后的Cr(III)与Re-ANA孔道中的Na+发生离子交换并固定在其中,或被吸附在PM/RA-3的表面。固定床柱吸附实验研究表明,PM/RA-3填充量为1 g、进水流速为1 mL/min时,可使70 mL左右的实际Cr(VI)污染地下水达到标准排放,该材料有望在可渗透反应墙等实际应用场景中修复Cr(VI)污染地下水。Thomas、Yoon-Nelson和Adams-Bohart模型均能很好地描述固定床柱吸附实验研究中PM/RA-3处理Cr(VI)污染地下水的过程,Thomas模型预测PM/RA-3对Cr(VI)的最大去除容量为146.210 mg/kg,Yoon-Nelson模型的拟合结果得出获得50%穿透率的时间为150.267 min,Adams-Bohart模型的拟合结果得出单位柱体积去除Cr(VI)的容量为93.080 mg/L,表面扩散是Cr(VI)去除过程中的限速步骤。

(2)在初始浓度为1 mg/L、pH值为6的Cr(VI)溶液中,GRA-3对Cr(VI) 的去除率达到99.40%,Cr(VI)残留浓度为0.006 mg/L,达到GB/T 14848-2017《地下水质量标准》第III类标准,也满足世界卫生组织规定的饮用水质量控制准则。整个去除过程中,Cr(III)的浓度始终维持在0.01 mg/L以下,同时 实现了Cr(VI)的还 原以及Cr(III)的固定。环境因素影响研究表明,较高的GRA-3投加剂量、较低的初始Cr(VI)浓度、较低的初始溶液pH值有助于Cr(VI)的去除。机理研究表明,GRA-3中的Fe3S4,既能作为还原剂实现对Cr(VI)的化学还原,也能作为光催化剂实现对部分Cr(VI)的光还原。还原后的Cr(III)阳离子与Re-ANA孔道中的Na+发生离子交换并固定在其中,或被吸附在GRA-3的表面。固定床柱吸附实验研究表明,GRA-3填充量为0.2 g、进水流速为1 mL/min时,可使100 mL左右的实际Cr(VI)污染地下水达到标准排放,该材料有望在可渗透反应墙等实际应用场景中修复Cr(VI)污染地下水。Yan模型能很好地描述固定床柱吸附实验研究中GRA-3处理Cr(VI)污染地下水的过程,表明该过程中存在多个限速步骤,如固体表面的扩散和传质等。

其他摘要

The severe contamination of groundwater by heavy metals poses a significant threat to the safety of drinking water for humans. Due to its high toxicity, facile migration, and resistance to degradation, Cr(VI) has emerged as a critical issue in groundwater pollution. Traditional methods for remediating Cr(VI)-contaminated water involve chemically reducing Cr(VI) to Cr(III) followed by the addition of absorbents to immobilize the reduced Cr(III) products. With the traditional reduction combined with post-immobilization methods, the further Cr(III) immobilization will complicate the processes of Cr(VI) remediation and lead to excessive energy and reagent consumption along with potential secondary pollution. Therefore, it is of paramount importance to develop bifunctional materials to simultaneously reduce Cr(VI) and immobilize the reduced Cr(III) for the Cr(VI)-contaminated groundwater remediation.

This study focuses on the Cr(VI)-contaminated groundwater remediation, aiming to achieve simultaneous Cr(VI) reduction and Cr(III) immobilization. Utilizing red soil widely distributed in southern China as the raw material, red soil-based ANA-type zeolite (Re-ANA) was synthesized via a hydrothermal method. Subsequently, benefiting from the excellent cation exchange properties within ANA-type zeolite and the chemical reduction and potential photoreduction capabilities within iron sulfide, FeS2/Re-ANA (PM/RA) and Fe3S4/Re-ANA (GRA) composite materials were developed for the remediation of Cr(VI)-contaminated groundwater via hydrothermal and solvothermal methods, respectively. The main outcomes are summarized as follows:

(1) In a Cr(VI) solution with an initial concentration of 1 mg/L and pH of 6, PM/RA-3 achieved a removal efficiency of 98.90% for Cr(VI), resulting in a residual concentration of 0.011 mg/L, meeting the Class III standard of GB/T 14848-2017 for groundwater quality and satisfying the drinking water quality control criteria specified by WHO. During the whole removal process, the concentration of Cr(III) was less than 0.05 mg/L, indicating the Cr(III) immobilization along with the Cr(VI) reduction. Environmental factor studies indicated that a higher dosage of PM/RA-3, lower initial Cr(VI) concentration, and lower initial solution pH value contributed to the Cr(VI) removal. Mechanistic studies revealed that Cr(VI) was partially chemically reduced and partially photoreduced by FeS2 in PM/RA-3, acting as a reducing agent and a photocatalyst, respectively. The as-reduced Cr(III) was either ion-exchanged with Na+ in the pores of Re-ANA and immobilized therein or adsorbed on the surface of PM/RA-3. Fixed-bed column adsorption experiments illustrated that approximately 70 mL of actual Cr(VI)-contaminated groundwater could meet the discharge standards, with the PM/RA-3 filling amount of 1 g and the inlet flow rate of 1 mL/min, indicating the material's potential for Cr(VI)-contaminated groundwater remediation in practical applications such as permeable reactive barriers. The Thomas, Yoon-Nelson, and Adams-Bohart models adequately described the treatment process, with the Thomas model predicting a maximum removal capacity of 146.210 mg/kg for Cr(VI), the Yoon-Nelson model yielding a time of 150.267 min to achieve 50% breakthrough, and the Adams-Bohart model indicating a capacity of 93.080 mg/L for the removal of Cr(VI) per unit column volume, with surface diffusion being the limiting step in the Cr(VI) removal process.

(2) In a Cr(VI) solution with an initial concentration of 1 mg/L and pH of 6, GRA-3 achieved a removal efficiency of 99.40% for Cr(VI), resulting in a residual concentration of 0.006 mg/L, meeting the Class III standard of GB/T 14848-2017 for groundwater quality and satisfying the drinking water quality control criteria specified by WHO. During the whole removal process, the concentration of Cr(III) was below 0.01 mg/L, indicating the Cr(III) immobilization along with the Cr(VI) reduction.  Environmental factor studies indicated that a higher dosage of GRA-3, lower initial Cr(VI) concentration, and lower initial solution pH value contributed to the Cr(VI) removal. Mechanistic studies revealed that Cr(VI) was partially chemically reduced and partially photoreduced by Fe3S4 in GRA-3, serving as a reducing agent and a photocatalyst, respectively. The as-reduced Cr(III) was either ion-exchanged with Na+ in the pores of Re-ANA and immobilized therein or adsorbed on the surface of GRA-3. Fixed-bed column adsorption experiments demonstrated that approximately 100 mL of actual Cr(VI)-contaminated groundwater could meet the discharge standards, with the GRA-3 filling amount of 0.2 g and the inlet flow rate of 1 mL/min, indicating the material's potential for Cr(VI)-contaminated groundwater remediation in practical applications such as permeable reactive barriers. The Yan model adequately described the treatment process, indicating the existence of multiple limiting steps in the process, such as surface diffusion and mass transfer.

关键词
其他关键词
语种
中文
培养类别
独立培养
入学年份
2021
学位授予年份
2024-06
参考文献列表

[1] LI Y, PANG J, BU X H. Multi-functional met al-organi c frameworks for detection and removal of wat er pollutions[J]. Chemi cal Communi cations, 2022, 58(57): 7890-7908.
[2] WANG M, BODIRSKY B L, RIJNEVELD R, et al. A tripl e increase in global river basins with wat er scarcity due to future pollution[J]. Nature Communications, 2024, 15(1): 1-13.
[3] 赵玲子. CMC 改性硫化纳米零价铁原位反应带修复 Cr(VI)污染地下水研究[D]. 长春: 吉林大学, 2020.
[4] 寇莉青. 活性碳纤维负载纳米零价铁去除地下水中六价铬的研究[D]. 咸阳: 西北农林科技大学, 2017.
[5] 王园园. 基于 S-nZVI 的场地地下水 Cr(VI)污染修复机理研究[D]. 长春: 吉林大学, 2023.
[6] WU J, WANG X B, ZENG R J. Reactivity enhancement of iron sulfide nanoparti cl es st abili zed by sodium alginat e: t aking Cr(VI) removal as a n exampl e[J]. Journal of Hazardous Mat eri als, 2017, 333: 275 -284.
[7] ACHARYYA S, DAS A, THAKER T P. Remedi ation processes of hexa val ent chromium from groundwat er: a short revi ew[J]. AQUA -Wat er Infrastructure, Ecosyst ems and Soci ety, 2023, 72(5): 648 -662.
[8] LIU S, CHEN K, XIAO H, et al. Effi ci ent reduction of Cr(VI) and elimination of tot al Cr with S -bridged Ni 3S2 /MoS2 nanowire el ectrode[J]. Journal of Environment al Chemi cal Engineering, 2023, 11(3): 109647.
[9] TAO R, LI H, LIU Z, et al. The adsorbent preparation of FeOOH@PU for effective chromium (VI) removal[J]. Environment al Sci ence and Pollution Research, 2022, 30: 33160 -33169.
[10] 韩旭. 硫化纳米铁修复地下水 Cr(Ⅵ)污染的效能研究[D]. 长春: 吉林大学, 2018.
[11] 何娴. 羧甲基纤维素稳定纳米零价铁修复水中 Cr(Ⅵ)和 TCE 研究[D]. 北京: 中国地质大学, 2014.
[12] SHARMA P, SINGH S P, PARAKH S K, et al. Health hazards of hexaval ent chromium (Cr (VI)) and its mi crobi al reduction[J]. Bioengineered, 2022, 13(3): 4923-4938.
[13] SHANGGUAN Y Z, ZHENG R J, GE Q Y, et al. Int erfaci al engineering of CuFeS2 quantum dots vi a pl atinum decoration with enhanced Cr(VI) reduction dynami cs under UV-Vis-NIR radi ation[J]. Journal of Hazardous Mat eri als, 2022, 421: 126701. 参考文献 85
[14] SINHA V, PAKSHIRAJAN K, CHATURVEDI R. Chromium tol erance, bioaccumul ation and locali zation in pl ants: an overvi ew[J]. Journal of Environment al Management, 2018, 206: 715 -730.
[15] 杨慧萍. 改性纳米 FeS 原位修复 Cr(Ⅵ)污染地下水的研究[D]. 长春: 吉林大学, 2018.
[16] OLIVEIRA H. Chromium as an environment al pollut ant: insights on induced pl ant toxi city[J]. Journal of Bot any, 2012, 2012: 1 -8.
[17] SHANKER A K, B VENKATESWARLU. Chromium: environment al pollution, health effects and mode of action[J]. Encyclopedi a of Environment al Health, 2019: 650-659.
[18] 李克, 王芳, 陈瑛. 我国铬渣污染地块现状与政策建议[C]//中国环境科学学会. 2018 中国环境科学学会科学技术年会论文集(第一卷). 2018: 433-438.
[19] 王兴润, 李磊, 颜湘华, 等. 铬污染场地修复技术进展[J]. 环境工程, 2020, 38(06): 1-8+23.
[20] 孔超佩. 石墨烯铁氧化物吸附材料制备及其去除地下水中 Cr(VI)的研究[D]. 北京: 中国地质大学, 2019.
[21] MONTREEMUK J, STEWART T N, PRAPAGDEE B. Bact eri al -assist ed phytoremedi ation of heavy met als: concepts, current knowl edge, and future directions[J]. Environment al Technology and Innovation, 2024, 33: 103488.
[22] 刁志强. PAA/HEC 包覆型纳米铁去除地下水中 Cr(Ⅵ)的研究[D]. 成都: 成都理工大学, 2019.
[23] SINGH R, KUMAR A, KIRROLIA A, et al. Removal of sulphat e, COD and Cr(VI) in simul at ed and real wast ewat er by sulphat e reducing bact eri a enri chment in small bioreactor and FTIR study[J]. Bioresource Technology, 2011, 102(2): 677 -682.
[24] 韩伟, 赵瑞锋, 石一辰, 等. 铬污染场地原位修复技术应用现状与展望[J]. 环境工程技术学报, 2023, 13(4): 1486 -1496.
[25] FUKUDA T, ISHINO Y, OGAWA A, et al. Cr(VI) reduction from cont aminat ed soils by Aspergillus sp. N2 and Peni cillium sp. N3 isol at ed from chromium deposits[J]. Journal of General and Appli ed Mi crobiology, 2008, 54(5): 295 -303.
[26] GU Y, CHEN X, LIU L, et al. Cr(VI)-bioremedi ation mechanism of a novel strain Bacillus paramycoides Cr6 with the powerful ability to remove Cr(VI) from cont aminat ed wat er[J]. Journal of Hazardous Mat eri als, 2023, 455, 131519.
[27] BAJPAI S, DEY A, JHA M K, et al. Removal of hazardous hexaval ent chromium from aqueous solution using divinylbenzene copolymer resin[J]. Int ernational Journal of Environment al Sci ence and Technology, 2012, 9(4): 683-690.
[28] FU F, MA J, XIE L, et al. Chromium removal using resin support ed nanoscal e zero-val ent iron[J]. Journal of Environment al Management, 2013, 128: 822 -827.
[29] KORAK J A, HUGGINS R, MIGUEL A P. Regeneration of pilot -scal e ion exchange columns for hexaval ent chromium removal[J]. Wat er Research, 2017, 118: 141-151.
[30] HAMDAN S S, EL-NAAS M H. Charact eri zation of the removal of chromium(VI) from groundwat er by el ectrocoagul ation[J]. Journal of Industri al and Engineering Chemistry, 2014, 20(5): 2775 -2781.
[31] 柳听义. 包埋型纳米铁(NZVI)的制备及其去除废水中铬(Cr(Ⅵ))的研究[D]. 天津: 天津大学, 2011.
[32] KARIMI-MALEH H, AYATI A, GHANBARI S, et al. Recent advances in removal t echniques of Cr(VI) toxi c ion from aqueous solution: A comprehensive revi ew[J]. Journal of Mol ecul ar Liquids, 2021, 329: 115062.
[33] GANJI R, PEYRAVI M, KHALILI S, et al. Bil ayer adsorptive cerami c membranes support ed cage -like mesoporous sili ca for hexaval ent chromium removal: experiment al and DFT studi es[J]. Process Safety and Environment al Prot ection, 2020, 143: 45 -54.
[34] KAZEMI M, PEYRAVI M, JAHANSHAHI M. Multil ayer UF membran e assist ed by photocat alyti c NZVI@TiO2 nanoparti cl e for removal and reduction of hexaval ent chromium[J]. Journal of Wat er Process Engineering, 2020, 37: 101183.
[35] ABDULLAH N, YUSOF N, LAU W J, et al. Recent trends of heavy met al removal from wat er/wast ewat er by membrane t echnologi es[J]. Journal of Industri al and Engineering Chemistry, 2019, 76: 17 -38.
[36] LIU Y, YANG D, XU T, et al. Continuous photocat alyti c removal of chromium (VI) with structurally st abl e and porous Ag/Ag 3PO4 /reduced graphene oxide mi crospheres[J]. Chemi cal Engineering Journal, 2020, 379: 122200.
[37] LIU X H, XING Z H, CHEN Q Y, et al. Multi-functional photocat alyti c fuel cell for simult aneous removal of organi c pollut ant and chromium (VI) accompani ed with el ectri city production[J]. Chemosphere, 2019, 237: 124457.
[38] ZHAO Z, AN H, LIN J, et al. Progress on the photocat alyti c reduction removal of chromium cont amination[J]. Chemi cal Record, 2019, 19(5): 873 -882.
[39] SHI L, WANG T, ZHANG H, et al. An amine -functionali zed iron(III) met alorganic framework as effi ci ent visibl e -light photocat alyst for Cr(VI) reduction[J]. Advanced Sci ence, 2015, 2(3): 1 -8.
[40] ZHANG B, LI J, WANG Y S, et al. Inexpensive semi conductive hybrid cuprous iodide for photocat alyti c reduction of Cr(VI)[J]. Inorgani c Chemistry Communi cations, 2021, 129: 108652. 参考文献 87
[41] 刘 芳. 还 原 沉淀 法 对含 铬 重金 属 废水 的 处理 研究[J]. 环 境 污染 与 防治, 2014, 36(04): 54-59.
[42] LIU W, YANG L, XU S, et al. Effi ci ent removal of hexaval ent chromium from wat er by an adsorption -reduction mechanism with sandwi ched nanocomposit es[J]. RSC Advances, 2018, 8(27): 15087 -15093.
[43] WANG H, CAI J, LIAO Z, et al. Bl ack liquor as biomass feedstock to prepar e zero-val ent iron embedded biochar with red mud for Cr(VI) removal: Mechanisms insights and engineering practi cality[J]. Bioresource Technology, 2020, 311: 123553
[44] FENG Z, CHEN N, FENG C, et al. Mechanisms of Cr(VI) removal by FeCl 3 -modifi ed lotus st em-based biochar (FeCl 3@LS-BC) using mass-bal ance and functional group expressions[J]. Colloids and Surfaces A: Physi cochemi cal and Engineering Aspects, 2018, 551: 17 -24.
[45] LI Y, YU J. New stori es of zeolit e structures: their descriptions, det erminations, predi ctions, and Evaluations[J]. 2014, 114: 7268 -7316.
[46] CHEN L H, SUN M H, WANG Z, et al. Hi erarchi cally structured zeolit es: from design to appli cation[J]. 2020, 120: 11194 -11294.
[47] Structure Commission of the Int ernational Zeolit e Associ ation[EB].
[2024 -03-06]. https:// asi a.i za -structure.org/IZA-SC/ft c_t abl e.php.
[48] 王绪绪, 陈旬, 徐海兵, 等. 沸石分子筛的表面改性技术进展[J]. 无机化学学报, 2002, 18(6): 541 -549.
[49] MA Y, HAN S, WU Q, et al. One -pot fabri cation of met al-zeolit e cat alysts from a combination of solvent-free and sodium-free rout es[J]. Cat alysis Today, 2021, 371: 64 -68.
[50] KASNERYK V, SHAMZHY M, ZHOU J, et al. Vapour-phase-transport rearrangement t echnique for the synthesis of new zeolit es[J]. Nature Communi cations, 2019, 10: 5129.
[51] LIU Y, HAN S, JIANG N, et al. Rapid green synthesis of ZSM-5 zeolit e from l eached illit e cl ay[J]. Mi croporous and Mesoporous Mat eri als, 2019, 28: 324 -330.
[52] MENG Q, CHEN H, LIN J, et al. Zeolit e A synthesi zed from alkaline assist ed pre-activat ed halloysit e for effi ci ent heavy met al removal in pollut ed river wat er and industri al wast ewat er[J]. Journal of Environment al Sci ences, 2016, 56: 254-262.
[53] MAIA A Á B, NEVES R F, ANGÉLICA R S, et al. Synthesis, optimisation and charact erisation of the zeolit e NaA using kaolin wast e from the Amazon Region. Production of Zeolit es KA, MgA and CaA[J]. Appli ed Cl ay Sci ence, 2015, 108: 55 -60.
[54] XIE W M, ZHOU F P, BI X L, et al. Accel erat ed cryst alli zation of magnetic4A-zeolit e synthesi zed from red mud for appli cation in removal of mixed heavy met al ions[J]. Journal of Hazardous Mat eri als, 2018, 358: 441 -449.
[55] GARCIA G, CARDENAS E, CABRERA S, et al. Mat eri als Synthesis of zeolit e Y from di atomit e as sili ca source[J]. Mi croporous and Mesoporous Mat eri als, 2016, 219: 29 -37.
[56] BELVISO C, CAVALCANTE F, FIORE S. Synthesis of zeolit e from It ali an coal fly ash: differences in cryst alli zation t emperature using seawat er inst ead of distill ed wat er[J]. Wast e Management, 2010, 30(5): 839 -847.
[57] QIU W, ZHENG Y. Removal of l ead, copper, ni ckel, cobalt, and zinc from wat er by a cancrinit e -type zeolit e synthesi zed from fly ash[J]. Chemi cal Engineering Journal, 2009, 145: 483 -488.
[58] YANG D, WANG R, FENG X, et al. Transferring wast e red mud into ferri c oxide decorat ed ANA-type zeolit e for multipl e heavy met als pollut ed soil remedi ation[J]. Journal of Hazardous Mat eri als, 2022, 424: 127244.
[59] YANG D, CHU Z, ZHENG R, et al. Remedi ation of Cu -pollut ed soil with anal cime synthesi zed from engineering abandoned soils through gree n chemistry approaches[J]. Journal of Hazardous Mat eri als, 2021, 406: 124673.
[60] ZHENG R, FENG X, ZOU W, et al. Converting loess into zeolit e for heavy met al pollut ed soil remedi ation based on “soil for soil -remedi ation” strat egy[J]. Journal of Hazardous Mat eri als, 2021, 412: 125199.
[61] SAIFUDDIN M, BAE J, KIM K S. Rol e of Fe, Na and Al in Fe -Zeolit e-A for adsorption and desorption of phosphat e from aqueous solution[J]. Wat er Research, 2019, 158: 246 -256.
[62] ZHAO Y, ZHANG B, ZHANG Y, et al. Removal of ammonium from wast ewat er by pure form low-sili ca zeolit e Y synthesi zed from halloysit e minera l[J]. Separation Sci ence and Technology, 2010, 45: 1066 -1075.
[63] MATITO-MARTOS I, MARTIN-CALVO A, ANIA C O, et al. Rol e of hydrogen bonding in the capture and storage of ammoni a in zeolit es[J]. Chemi cal Engineering Journal, 2020, 387: 124062.
[64] LIU G H, WANG Y Y, ZHANG Y K, et al. Modifi cation of natural zeolit e and its appli cation to advanced recovery of organi c matt er from an ultra -short-SRT activat ed sludge process effluent[J]. Sci ence of the Tot al Environment, 2019, 652: 1366-1374.
[65] PIZARRO C, ESCUDEY M, CAROCA E, et al. Evaluation of zeolit e, nanomagnetit e, and nanomagnetit e -zeolit e composit e mat eri als as arseni c (V) adsorbents in hydroponi c tomato cultures[J]. Sci ence of the Tot al Environment, 2021, 751: 141623.
[66] MA Y, CHENG L, ZHANG D, et al. St abili zation of Pb, Cd, and Zn in soil by modifi ed-zeolit e: mechanisms and evaluation of effectiveness[J]. Sci ence of the Total Environment, 2022, 814: 152746.
[67] CHAI Y C, DAI W L, WU G J, et al. Confinement in a zeolit e and zeolit e cat alysis[J]. Accounts of Chemi cal Research, 2021, 54: 2894 -2904.
[68] KUMAR M M, JENA H. Direct singl e -st ep synthesis of phase pure zeolit e Na -P1, hydroxy sodalit e and anal cime from coal fly ash and assessment of their Cs+and Sr2+removal effi ci enci es[J]. Mi croporous and Mesoporous Mat eri als, 2022, 333: 111738.
[69] DANG V M, VAN H T, VINH N D, et al. Enhancement of exchangeabl e Cd and Pb immobili zation in cont aminat ed soil using Mg/Al LDH -zeolit e as an effective adsorbent[J]. RSC Advances, 2021, 11(28): 17007 -17019.
[70] LI Y, BAI P, YAN Y, et al. Removal of Zn2+, Pb2+, Cd2+, and Cu2+ from aqueous solution by syntheti c clinoptilolit e[J]. Mi croporous and Mesoporous Mat eri als, 2019, 273: 203 -211.
[71] GARCÍA-CHIRINO J, JIMÉNEZ D A, BRUGGEN B V. Hybrid Na -A zeolit e/oxycut residue thin film composit e nanofiltration membrane for Cr (III) removal[J]. Journal of Environment al Chemi cal Engineering, 2023, 11(2): 109351.
[72] KONG F, ZHANG Y, WANG H, et al. Removal of Cr(VI) from wast ewat er by artifi ci al zeolit e spheres loaded with nano Fe -Al bimet alli c oxide in construct ed wetl and[J]. Chemosphere, 2020, 257: 127224.
[73] WANG W X, QIAO Y, LI T, et al. Improved removal of Cr(VI) from aqueous solution using zeolit e synthesi zed from coal fly ash vi a mechano -chemi cal treatment[J]. Asi a -Pacifi c Journal of Chemi cal Engineering, 2017, 12(2): 259 -267.
[74] 杨梅. 硫铁化物对水体钼酸盐的去除性能及其机理研究[D]. 马鞍山: 安徽工业大学, 2020.
[75] 李丹. 硫铁化物体系下典型卤代阻燃剂的非生物降解过程与机制[D]. 广州: 中国科学院广州地球化学研究所, 2017.
[76] 卢贞晓. FeS2 基复合材料的结构设计及其储钠性能的研究[D]. 太原: 太原理工大学, 2022.
[77] SHADIKE Z, ZHOU Y N, DING F, et al. The new el ectrochemi cal reaction mechanism of Na/FeS2 cell at ambi ent t emperature[J]. Journal of Power Sources, 2014, 260: 72 -76.
[78] 张君杰. 黄铁矿和白铁矿氧化及药剂吸附的密度泛函理论研究[D]. 南宁: 广西大学, 2022.
[79] 田兴华. 白铁矿 FeS2 掺杂改性的第一性原理研究[D]. 西安: 陕西师范大学, 2020.
[80] 王晓伟. 浅谈白铁矿、黄铁矿和磁黄铁矿的电子结构及其可浮性[J]. 电子测试, 2016, 11: 166-167.
[81] 国键铭. 四硫化三铁及其复合吸波材料的制备与性能研究[D]. 南京: 南京理工大参考文献 90 学, 2021.
[82] 罗文和. 四硫化三铁纳米片的制备及其电磁波吸收性能研究[D]. 哈尔滨: 哈尔滨工程大学, 2016.
[83] 张若然, 吴晓梅, 曾小勤, 等. 镁二次电池正极材料纳米 Fe3S4 的电化学性能[J]. 无机化学学报, 2015, 31(7): 1351 -1356.
[84] LI G, ZHANG B, YU F, et al. High-purity Fe3S4 greigit e mi crocryst als for magneti c and el ectrochemi cal performance[J]. Chemistry of Mat eri als, 2014, 26(20): 5821-5829.
[85] DIAO Z H, XU X R, LIU F M, et al. Photocat alyti c degradation of mal a chit e green by pyrit e and its synergism with Cr(VI) reduction: Performance and reaction mechanism[J]. Separation and Purifi cation Technology, 2015, 154: 168-175.
[86] LI L, GAO J, YUAN Y, et al. Study on FeS 2 /g-C3N4 as a photo-Fenton het erojunction cat alyst for t etracycline degradation with H2O2 under visibl e light irradi ation[J]. Journal of the Taiwan Institut e of Chemi cal Engineers, 2021, 126: 134 -144.
[87] 徐文强, 叶恒朋, 毛玉兰, 等. 黄铁矿活化过硫酸钠降解丁基黄药[J]. 环境污染与防治, 2019, 41(05): 531 -535.
[88] HUANG Y, CHEN Y, LI X, et al. One -st ep solvothermal construction of coral reef-like FeS2 /biochar to activat e peroxymonosulfat e for effi ci ent organi c pollut ant removal[J]. Separation and Purifi cation Technology, 2023, 308: 122976.
[89] 迟彦萧, 杨宇轩, 杨昆仑, 等. 黄铁矿及其改性复合材料在水污染处理中的应用[J]. 化学进展, 2023, 35(10): 1544 -1558.
[90] BULUT G, YENIAL Ü, EMIROGLU E, et al. Arseni c removal from aqueous solution using pyrit e[J]. Journal of Cl eaner Production, 2014, 84(1): 526 -532.
[91] HAN D S, BATCHELOR B, ABDEL-WAHAB A. Sorption of sel enium(IV) and sel enium(VI) onto syntheti c pyrit e (FeS2 ): spectroscopi c and mi croscopi c analyses[J]. Journal of Colloid and Int erface Sci ence, 2012, 368(1): 496 -504.
[92] SHARMA V, YAN R, FENG X, et al. Removal of toxi c met als using iron sulfide parti cl es: a bri ef overvi ew of modifi cations and mechanisms[J]. Chemosphere, 2024, 346: 140631.
[93] KONG L, LI Z, HUANG X, et al. Effi ci ent removal of Pb(II) from wat er using magneti c Fe3S4 /reduced graphene oxide composit es[J]. Journal of Mat eri als Chemistry A, 2017, 5(36): 19333 -19342.
[94] 刘伟. 新型异相 Fenton 系统构建及其增强有机污染物降解性能研究[D]. 武汉: 华中师范大学, 2017.
[95] YANG S, LI Q, CHEN L, et al. Synergisti c removal and reduction of U(VI) and Cr(VI) by Fe3S4 mi cro-cryst al[J]. Chemi cal Engineering Journal, 2020, 参考文献 91 385: 123909.
[96] THOMMES M, KANEKO K, NEIMARK A V., et al. Physisorption of gases, with speci al reference to the evaluation of surface area and pore si ze distribution (IUPAC Techni cal Report)[J]. Pure and Appli ed Chemistry, 2015, 87(9-10): 1051-1069.
[97] 刘军伟. 新型聚合物微球的制备及其在高效液相/离子色谱中的应用[D]. 杭州: 浙江大学, 2017.
[98] 楚哲婷. 土基沸石材料合成及修复重金属污染水体的性能与机制[D]. 深圳: 南方科技大学, 2023.
[99] 蒙丽. CQDs/斜发沸石复合材料对 Rh B 和二甲苯光催化降解研究[D]. 合肥: 安徽建筑大学, 2022.
[100]SONG J, ZOU W, BIAN Y, et al. Adsorption charact eristi cs of methyl ene blue by peanut husk in bat ch and column modes[J]. Desalination, 2011, 265(1 -3): 119-125.
[101]TANG L, YANG G D, ZENG G M, et al. Synergisti c effect of iron doped ordered mesoporous carbon on adsorption -coupl ed reduction of hexaval ent chromium and the rel ative mechanism study[J]. Chemi cal Engineering Journal, 2014, 239: 114 -122.
[102]FRANCO M A, CARVALHO C B, BONETTO M M, et al. Removal of amoxi cillin from wat er by adsorption onto activat ed carbon in bat ch process and fixed bed column: kineti cs, isotherms, experiment al design and breakthrough curves modelling[J]. Journal of Cl eaner Pro duction, 2017, 161: 947-956.
[103]THOMAS H C. Het erogeneous ion exchange in a flowing syst em[J]. Journal of the Ameri can Chemi cal Soci ety, 1944, 66: 1664 -1666.
[104]HU A, REN G, CHE J, et al. Phosphat e recovery with granul ar acid -activat ed neutrali zed red mud: fixed -bed column performance and breakthrough curve modelling[J]. Journal of Environment al Sci ences, 2020, 90: 78 -86.
[105]HUANG J, ZIMMERMAN A R, CHEN H, et al. Fixed bed column performance of Al-modifi ed biochar for the removal of sulfamethoxazol e and sulfapyridine antibioti cs from wast ewat er[J]. Chemosphere, 2022, 305: 135475.
[106]WANG W, LI M, ZENG Q. Adsorption of chromium (VI) by strong alkaline anion exchange fiber in a fixed -bed column: experiments and models fitting and evaluating[J]. Separation and Purifi cation Technology, 2015, 149(5): 16 -23.
[107]SATHUPUNYA M, GULARI E, WONGKASEMJIT S. ANA and GIS zeolit e synthesis directly from alumatrane and sil atrane by sol -gel process and mi crowave t echnique[J]. Journal of the European Cerami c Soci ety, 2002, 22(13): 2305-2314.
[108]聂静. 柚子皮生物炭复合材料去除水中锑的效能与机理研究[D]. 长沙: 湖南农业大学, 2021.
[109]李亚飞. 污泥-玉米芯碳化吸附剂制备及其对 Pb2+的吸附特性[D]. 西安: 西安建筑科技大学, 2020.
[110]FU R, YANG Y, XU Z, et al. The removal of chromium (VI) and l ead (II) from groundwat er using sepiolit e-support ed nanoscal e zero -val ent iron (S-NZVI)[J]. Chemosphere, 2015, 138: 726 -734.
[111]ARANDA-GARCÍA E, CRISTIANI-URBINA E. Effect of pH on hexaval ent and tot al chromium removal from aqueous solutions by avocado shell using bat ch and continuous syst ems[J]. Environment al Sci ence and Pollution Research, 2019, 26(4): 3157 -3173.
[112]ZHANG M M, LIU Y G, LI T T, et al. Chitosan modifi cation of magneti c biochar produced from Ei chhorni a crassipes for enhanced sorption of Cr(VI) from aqueous solution[J]. RSC Advances, 2015, 5(58): 46955 -46964.
[113]WANG X, XU J, LIU J, et al. Mechanism of Cr(VI) removal by magneti c greigit e/biochar composit es[J]. Sci ence of the Tot al Environment, 2020, 700: 134414.
[114]MOFFAT T P, LATANISION R M, RUF R R. An X -ray photoel ectron spectroscopy study of chromium-met alloid alloys-III[J]. El ectrochimi ca Act a, 1995, 40(11): 1723 -1734.
[115]LYU H, ZHAO H, TANG J, et al. Immobili zation of hexaval ent chromium in cont aminat ed soils using biochar support ed nanoscal e iron sulfide composit e[J]. Chemosphere, 2018, 194: 360 -369.
[116]LIU W, JIN L, XU J, et al. Insight into pH dependent Cr(VI) removal with magneti c Fe3S4 [J]. Chemi cal Engineering Journal, 2019, 359: 564 -571.
[117]HAN W, GAO M. Investigations on iron sulfide nanosheets prepared via a singl e-source precursor approach[J]. Cryst al Growth and Design, 2008, 8(3): 1023-1030.
[118]张玥雯. 磁性生物炭的制备及其对地下水铬污染的 PRB 修复效果与机理研究[D]. 沈阳: 沈阳大学, 2021.
[119]LI X, XUE Q, CHANG X, et al. Effects of sulfur doping and humidity on CO2 capture by graphit e split pore: a theoreti cal study[J]. ACS Appli ed Mat eri als and Int erfaces, 2017, 9(9): 8336 -8343.
[120]CHU K H. Breakthrough curve analysis by simplisti c models of fixed bed adsorption: In defense of the century -old Bohart-Adams model[J]. Chemi cal Engineering Journal, 2020, 380: 122513.
[121]LIAO P, ZHAN Z, DAI J, et al. Adsorption of t etracycline and chlorampheni col in aqueous solutions by bamboo charcoal: a bat ch and fixed -bed column study[J]. Chemi cal Engineering Journal, 2013, 228: 496 -505.
[122]LI T T, LIU Y G, PENG Q Q, et al. Removal of l ead(II) from aqueous solution with ethyl enedi amine -modifi ed yeast biomass coat ed with magneti c chitosan mi croparti cl es: kineti c and equilibrium modeling[J]. Chemi cal Enginee ring Journal, 2013, 214: 189 -197.

所在学位评定分委会
化学
国内图书分类号
X523
来源库
人工提交
成果类型学位论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/779005
专题工学院_环境科学与工程学院
推荐引用方式
GB/T 7714
唐焕. 硫铁化物/红壤基沸石复合材料在 Cr(VI) 污染地下水修复中的应用[D]. 深圳. 南方科技大学,2024.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
12132218-唐焕-环境科学与工程学(7204KB)----限制开放--请求全文
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[唐焕]的文章
百度学术
百度学术中相似的文章
[唐焕]的文章
必应学术
必应学术中相似的文章
[唐焕]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。