中文版 | English
题名

甘肃省祁连山地区径流模拟与水资源短缺评价

其他题名
RUNOFF SIMULATION AND WATER SCARCITY ASSESSMENT IN THE QILIAN MOUNTAINS OF GANSU PROVINCE
姓名
姓名拼音
MENG Liangyu
学号
12132213
学位类型
硕士
学位专业
0801 力学
学科门类/专业学位类别
08 工学
导师
刘俊国
导师单位
环境科学与工程学院
论文答辩日期
2024-05-04
论文提交日期
2024-07-04
学位授予单位
南方科技大学
学位授予地点
深圳
摘要

我国的水资源短缺形势十分严峻。水资源短缺严重影响着经济社会的可持续发展。当前很多地区通过虚拟水贸易缓解水资源短缺的问题。但是当前关于虚拟水贸易对水资源短缺影响的研究局限于水量型缺水方面,很少关注虚拟水贸易对“水量-水质-生态”三维水资源短缺的影响。本研究针对“虚拟水贸易如何影响区域的三维水资源短缺程度?”这一科学问题,可以完善三维水资源短缺评价体系框架和科学地评估祁连山地区真实的水资源短缺状况。主要结论如下:
本研究使用 SWAT 模型模拟了甘肃省祁连山地区主要河流的月径流量、蓝水资源量和绿水资源量。研究发现,经过验证 SWAT 模型在该地区具有很好的模拟效果;该地区莺落峡水文站断面月径流量显著高于其他断面;该地区较大的蓝水流和绿水流集中在张掖市的部分地区。
本研究基于三维水资源短缺评价体系评估了祁连山地区的水资源短缺状况。研究发现,该地区在 2009 年~2018 年期间整体上存在着严重的水量型缺水,缺水指标最高可达 3.2;该地区酒泉市存在着严重的水质型缺水,缺水指标最高可达 3.8;该地区在 2009 年~2018 年期间整体存在着严重的生态型缺水,缺水指标最高可达 8.9。
本研究基于多区域投入产出模型评估了虚拟水贸易对该地区三维水资源短缺的影响。研究发现,虚拟水贸易使得该地区三维水资源短缺形势更加严峻;虚拟水贸易缓解了部分地区在 2017 年的的水质型缺水。
本研究使用多目标优化遗传算法(NSGA-Ⅱ)进一步对该地区有限的水资源进行优化配置,所设计的用水方案使得该地区增加值上升幅度最大达7.67%,用水量下降幅度最大达 7.40%,灰水足迹下降幅度最大达 6.09%。
本研究推动了水资源短缺评价理论体系的发展,科学地评价了区域的“水量-水质-生态”三维水资源短缺现状,对于摸清区域的水资源家底有着重要意义,为合理制定水资源管理政策提供了理论基础和科学依据。

关键词
语种
中文
培养类别
独立培养
入学年份
2021
学位授予年份
2024-06
参考文献列表

[1]WU F, YANG X, CUI Z, et al. The impact of human activities on blue-green water resources and quantification of water resource scarcity in the Yangtze River Basin[J]. Science of The Total Environment, 2024, 909(10): 168550-168561.
[2]VOLLSET S E, GOREN E, YUAN C W, et al. Fertility, mortality, migration, and population scenarios for 195 countries and territories from 2017 to 2100: a forecasting analysis for the Global Burden of Disease Study[J]. Lancet, 2020, 396(10258): 1285-1306.
[3]KOLAHI M, DAVARY K, OMRANIAN KHORASANI H. Integrated approach to water resource management in Mashhad Plain, Iran: actor analysis, cognitive mapping, and roadmap development[J]. Scientific Reports, 2024, 14(1): 162-178.
[4]KUMMU M, GUILLAUME J H, DE MOEL H, et al. The world's road to water scarcity: shortage and stress in the 20th century and pathways towards sustainability[J]. Scientific Reports, 2016, 6(10): 38495-38510.
[5]宋先松, 石培基, 金蓉. 中国水资源空间分布不均引发的供需矛盾分析[J]. 干旱区研究, 2005, (02): 162-166.
[6]LIU J, YANG W. Water Sustainability for China and Beyond[J]. Science, 2012, 337(6095): 649-650.
[7]JIANG Y. China's water scarcity[J]. Journal of Environmental Management, 2009, 90(11): 3185-3196.
[8]WEI J, LEI Y, LIU L, et al. Water scarcity risk through trade of the Yellow River Basin in China[J]. Ecological Indicators, 2023, 154(2): 110893-110904.
[9]PASTOR A V, LUDWIG F, BIEMANS H, et al. Accounting for environmental flow requirements in global water assessments[J]. Hydrology and Earth System Sciences, 2014, 18(12): 5041-5059.
[10]VIRKKI V, ALANäRä E, PORKKA M, et al. Globally widespread and increasing violations of environmental flow envelopes[J]. Hydrology and Earth System Sciences, 2022, 26(12): 3315-3336.
[11]YAN M, KOU J, MA W, et al. Scale effect of population and area exposed to water scarcity based on different recurrence periods: A case study of Gansu Province, China[J]. Ecological Indicators, 2023, 157(11): 111254-111264.
[12]Allan T. Overall perspectives on countries and regions[R]. Water in the Arab World: Perspectives and Prognoses, Massachusetts: Harvard University, 1994:65-100.
[13]ALLAN J A. Virtual Water - the Water, Food, and Trade Nexus. Useful Concept or Misleading Metaphor?[J]. Water International, 2003, 28(1): 106-113.
[14]MEKONNEN M M, HOEKSTRA A Y. A global and high-resolution assessment of the green, blue and grey water footprint of wheat[J]. Hydrology and Earth System Sciences, 2010, 14(7): 1259-1276.
[15]吴普特, 高学睿, 赵西宁, 等. 实体水-虚拟水“二维三元”耦合流动理论基本框架[J]. 农业工程学报, 2016, 32(12): 1-10.
[16]苏军德, 赵晓冏, 李国霞, 等. 祁连山国家自然保护区生境质量时空特征及驱动因素分析[J]. 中国环境科学, 2023, 25(1): 1-12.
[17]刘洪兰, 张俊国, 董安祥, 等. 张掖市水资源利用现状及未来趋势预测[J]. 干旱区研究, 2008, 20(1): 35-40.
[18]DE VENTE J, POESEN J, VERSTRAETEN G, et al. Predicting soil erosion and sediment yield at regional scales: Where do we stand?[J]. Earth-Science Reviews, 2013, 127(2): 16-29.
[19]SONG Y H, CHUNG E S, SHAHID S. Differences in extremes and uncertainties in future runoff simulations using SWAT and LSTM for SSP scenarios[J]. Science of The Total Environment, 2022, 838(3): 156162-1566180.
[20]ZHAO H, LI H, XUAN Y, et al. Improvement of the SWAT Model for Snowmelt Runoff Simulation in Seasonal Snowmelt Area Using Remote Sensing Data[J]. Remote Sensing, 2022, 14(22): 5823–5840.
[21]CAI Y, ZHANG F, SHI J, et al. Enhancing SWAT model with modified method to improve Eco-hydrological simulation in arid region[J]. Journal of Cleaner Production, 2023, 403(11): 136891–136904.
[22]FURONG G, HOSSAIN S. Projection of monthly surface flows by an optimized SWAT–MLP: a case study[J]. Water Supply, 2023, 24(6): 341-360.
[23]FALKENMARK, M. Coping with water scarcity under rapid population growth[R]. Conference of SADC Minister, Pretoria, 1995.
[24]LIU Y, YANG S, MENG L, et al. How did blue and green water resource evolute spatially and temporally in the Meijiang River Basin, China?[J]. Frontiers in Earth Science, 2023, 11(2): 1–12.
[25]CAI Y, ZHANG F, GAO G, et al. Spatio-temporal variability and trend of blue-green water resources in the Kaidu River Basin, an arid region of China[J]. Journal of Hydrology: Regional Studies, 2024, 51(12): 101640-101655.
[26]KANG W, NI F, DENG Y, et al. Drought impacts on blue and green water: A spatial and temporal analysis[J]. Ecological Indicators, 2024, 158(20): 111319-11335.
[27]MALIN F, JAN L, CARL W. Macro-scale water scarcity requires micro-scale approaches[J]. Natural Resources Forum, 1989, 13(2): 258–267.
[28]OHISSON L. Water conflicts and social resource scarcity[J]. Physics and Chemistry of the Earth, Part B: Hydrology, Oceans and Atmosphere, 2000, 25(3): 213-220.
[29]OKI T, KANAE S. Global hydrological cycles and world water resources[J]. Science, 2006, 313(5790): 1068-1072.
[30]KUMMU M, GERTEN D, HEINKE J, et al. Climate-driven interannual variability of water scarcity in food production potential: a global analysis[J]. Hydrology and Earth System Sciences, 2014, 18(2): 447-461.
[31]ZENG Z, LIU J, SAVENIJE H H G. A simple approach to assess water scarcity integrating water quantity and quality[J]. Ecological Indicators, 2013, 34: 441-449.
[32]MA T, SUN S, FU G, et al. Pollution exacerbates China's water scarcity and its regional inequality[J]. Nature Communications, 2020, 11(1): 650-658.
[33]LIU K, CAO W, ZHAO D, et al. Assessment of ecological water scarcity in China[J]. Environmental Research Letters, 2022, 17(10): 1-10.
[34]LIU J, LIU Q, YANG H. Assessing water scarcity by simultaneously considering environmental flow requirements, water quantity, and water quality[J]. Ecological Indicators, 2016, 60(16): 434-441.
[35]LIU J, ZHAO D. Three-dimensional water scarcity assessment by considering water quantity, water quality, and environmental flow requirements: Review and prospect[J]. Chinese Science Bulletin, 2020, 65(36): 4251-4261.
[36]张信信. 黑河流域实体水—虚拟水转化规律及其对水资源保护的启示[D]. 北京: 北京林业大学, 2017.
[37]LIU J, SAVENIJE H H G. Food consumption patterns and their effect on water requirement in China [J]. Hydrology and Earth System Sciences, 2008, 12(3): 887-898.
[38]龙爱华, 徐中民, 张志强. 虚拟水理论方法与西北4省(区)虚拟水实证研究[J]. 地球科学进展, 2004, (04): 577-584.
[39]WILLIAMS E D, AYRES R U, HELLER M. The 1.7 kilogram microchip: energy and material use in the production of semiconductor devices[J]. Environmental Science & Technology, 2002, 36(24): 5504-5510.
[40]马忠, 张芯瑀, 冯浩源. 基于混合LCA模型的酒店服务业水足迹量化研究——以张掖市为例[J]. 环境科学学报, 2018, 38(09): 3780-3786.
[41]KAN D, HUANG W. An Empirical Study of the Impact of Urbanization on Industry Water Footprint in China[J]. Sustainability, 2020, 12(6): 2263-2278.
[42]LI J S, CHEN G Q. Water footprint assessment for service sector: A case study of gaming industry in water scarce Macao[J]. Ecological Indicators, 2014, 47(09): 164-170.
[43]ZHANG Y, ZHANG J H, TIAN Q. Virtual Water Trade in the Service Sector: China's Inbound Tourism as a Case Study[J]. International Journal of Environmental Research and Public Health, 2021, 18(4): 1769-1780.
[44]CAZCARRO I, HOEKSTRA A Y, SáNCHEZ CHóLIZ J. The water footprint of tourism in Spain[J]. Tourism Management, 2014, 40(5): 90-101.
[45]LEE L-C, WANG Y, ZUO J, et al. Water footprint of Chinese tourists: Directions and structure[J]. Journal of Hydrology, 2021, 603(50): 127151-127160.
[46]HOEKSTRA A Y, MEKONNEN M M. The water footprint of humanity[J]. Proceedings of The National Academy of Sciences of The United States of America, 2012, 109(9): 3232-3237.
[47]DALIN C, HANASAKI N, QIU H, et al. Water resources transfers through Chinese interprovincial and foreign food trade[J]. Proceedings of The National Academy of Sciences of The United States of America, 2014, 111(27): 9774-9779.
[48]GUAN D, HUBACEK K. Assessment of regional trade and virtual water flows in China[J]. Ecological Economics, 2007, 61(1): 159-170.
[49]ZHAO X, LIU J, LIU Q, et al. Physical and virtual water transfers for regional water stress alleviation in China[J]. Proceedings of The National Academy of Sciences of The United States of America, 2015, 112(4): 1031-1035.
[50]李克恭, 张斌才. 河西走廊土地利用时空变化特征及驱动因素分析[J]. 测绘与空间地理信息, 2023, 46(07): 75-81.
[51]ARNOLD J G, SRINIVASAN R, MUTTIAH R S, et al. Large Area Hydrologic Modeling and Assessment Part I: Model Development[J]. Journal of the American Water Resources Association, 1998, 34(1): 73-89.
[52]DECHMI F, BURGUETE J, SKHIRI A. SWAT application in intensive irrigation systems: Model modification, calibration and validation[J]. Journal of Hydrology, 2012, 470(5): 227-238.
[53]NASH J E, SUTCLIFFE J V. River flow forecasting through conceptual models part I — A discussion of principles[J]. Journal of Hydrology, 1970, 10(1): 282-290.
[54]臧传富. 黑河流域蓝绿水时空变化研究[D], 北京: 北京林业大学, 2013.
[55]李文. 黑河流域上游历史及未来极端径流特征研究[D], 北京: 中国地质大学, 2021.
[56]WU F, ZHAN J, SU H, et al. Scenario-Based Impact Assessment of Land Use/Cover and Climate Changes on Watershed Hydrology in Heihe River Basin of Northwest China[J]. Advances in Meteorology, 2015, 2015(1): 1-11.
[57]YANG L, FENG Q, YIN Z, et al. Identifying separate impacts of climate and land use/cover change on hydrological processes in upper stream of Heihe River, Northwest China[J]. Hydrological Processes, 2017, 31(5): 1100-1112.
[58]LUO K, TAO F, DENG X, et al. Changes in potential evapotranspiration and surface runoff in 1981–2010 and the driving factors in Upper Heihe River Basin in Northwest China[J]. Hydrological Processes, 2016, 31(1): 90-103.
[59]WANG J, HUO A, ZHANG X, et al. Prediction of the response of groundwater recharge to climate changes in Heihe River basin, China[J]. Environmental Earth Sciences, 2019, 79(1): 13-28.
[60]卜睿涵. 环境变化下黑河上游蓝绿水的响应研究[D], 成都: 四川农业大学, 2021.
[61]杨楠. 基于SWAT模型的南小河沟流域绿水对土地利用变化的响应研究[D], 西安: 西安理工大学, 2023.
[62]刘水琴. 武威市水资源生态足迹与可持续利用研究[D], 兰州: 甘肃农业大学, 2016.
[63]曾昭. 基于水足迹的水资源短缺评价[D], 北京: 北京林业大学, 2014.
[64]SCHYNS J F, HOEKSTRA A Y, BOOIJ M J, et al. Limits to the world's green water resources for food, feed, fiber, timber, and bioenergy[J]. Proceedings of The National Academy of Sciences of The United States of America, 2019, 116(11): 4893-4898.
[65]LIU J, ZANG C, TIAN S, et al. Water conservancy projects in China: Achievements, challenges and way forward[J]. Global Environmental Change, 2013, 23(3): 633-643.
[66]ZHANG Z, LIU J, CAI B, et al. City‐level water withdrawal in China: Accounting methodology and applications[J]. Journal of Industrial Ecology, 2020, 24(5): 951-964.
[67]赵丹丹. 基于投入产出和“生态网络”的京津冀水足迹演变趋势与水资源调控研究[D], 北京: 北京林业大学, 2019.
[68]ZHENG H, TöBBEN J, DIETZENBACHER E, et al. Entropy-based Chinese city-level MRIO table framework[J]. Economic Systems Research, 2021, 34(4): 519-544.
[69]WU L, HUANG K, REN Y, et al. Toward a better understanding of virtual water trade: Comparing the volumetric and impact-oriented virtual water transfers in China[J]. Resources, Conservation and Recycling, 2022, 186(8): 106573-106585.
[70]YE Q, WANG R, SCHYNS J F, et al. Effects of production fragmentation and inter-provincial trade on spatial blue water consumption and scarcity patterns in China[J]. Journal of Cleaner Production, 2022, 334(8): 130186-130196.
[71]DENG J, LI C, WANG L, et al. The impact of water scarcity on Chinese inter-provincial virtual water trade[J]. Sustainable Production and Consumption, 2021, 28(11): 1699-1707.
[72]VAN VLIET M T H, FLöRKE M, WADA Y. Quality matters for water scarcity[J]. Nature Geoscience, 2017, 10(11): 800-802.
[73]程廷. 基于多目标遗传算法的京津冀土地利用空间优化[D], 武汉: 武汉大学, 2019.
[74]熊婷. 土地利用结构优化建模与实证研究[D], 南京: 南京农业大学, 2008.
[75]李旭东. 基于虚拟水理论的区域用水结构优化[D], 扬州: 扬州大学, 2015.
[76]程浩. 基于水资源约束下平顶山市产业结构优化研究[D], 开封: 河南大学, 2022.
[77]LIU J, ZEHNDER A J B, YANG H. Global consumptive water use for crop production: The importance of green water and virtual water [J]. Water Resources Research, 2009, 45(5): W05428-W05442.
[78]GOSLING S N, ARNELL N W. A global assessment of the impact of climate change on water scarcity [J]. Climatic Change, 2013, 134(3): 371-385.

所在学位评定分委会
力学
国内图书分类号
TV21
来源库
人工提交
成果类型学位论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/779007
专题工学院_环境科学与工程学院
推荐引用方式
GB/T 7714
孟良宇. 甘肃省祁连山地区径流模拟与水资源短缺评价[D]. 深圳. 南方科技大学,2024.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
12132213-孟良宇-环境科学与工程(3711KB)----限制开放--请求全文
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[孟良宇]的文章
百度学术
百度学术中相似的文章
[孟良宇]的文章
必应学术
必应学术中相似的文章
[孟良宇]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。