中文版 | English
题名

1H/13C磁共振人工电磁媒质性能与兼容性研究

其他题名
RESEARCH ON THE PERFORMANCE AND COMPATIBILITY OF 1H/13C MAGNETIC RESONANCE ARTIFICIAL ELECTROMAGNETIC MEDIA
姓名
姓名拼音
SONG Erwen
学号
12233272
学位类型
硕士
学位专业
0856 材料与化工
学科门类/专业学位类别
08 工学
导师
李烨
导师单位
中国科学院深圳先进技术研究院
论文答辩日期
2024-05-07
论文提交日期
2024-07-05
学位授予单位
南方科技大学
学位授予地点
深圳
摘要

   本文在磁共振人工电磁媒质这一磁共振学科与电磁材料学科的交叉领域,通过对现有磁共振双频人工电磁媒质的分析,发现现有双频人工电磁媒质存在工作频率不可调、工作原理(电激励)不适于磁共振环境的问题,随后提出了一种基于磁响应的1H/13C双频人工电磁媒质结构。并通过引入外加电容元件,改善了传统人工电磁媒质设计中对结构自身电容需求极高的问题,同时获得了对结构谐振频率的宽频调整能力。

   在仿真设计部分,提出了一种基于电容近似估计的外加电容容值计算方法,利用此方法,仅通过一次迭代即可将结构调整至目标共振频率,调整后实际共振频率与目标值误差不超过1%。此外,通过对人工电磁媒质与磁共振线圈的异同点分析,提出了一种用于人工电磁媒质仿真的软件仿真方法。并通过对1H/13C双频人工电磁媒质的实测结果,发现在相同目标频率下仿真与实际外加电容容值差异不超过4.3%,证明了此仿真方法可较准确的模拟实际人工电磁媒质共振频率。

   在线圈的人工电磁媒质兼容性测试部分,分别测试了1H/13C双频人工电磁媒质距射频发射、接收线圈不同距离、角度下对线圈的传输增益、反射系数的影响。发现距离越近、人工电磁媒质平面与线圈平面角度越小,人工电磁媒质与射频发射、接收线圈间的耦合效果越强。这种耦合可使人工电磁媒质发挥其作为负载的作用,进而改善线圈匹配状态;但过强的耦合也可能会导致线圈出现谐振频率偏移、匹配变差等问题。在1H/13C双频人工电磁媒质成像实验部分,分别探究了1H/13C双频人工电磁媒质对13C波谱成像与1H成像效果的影响与机理。结果显示1H/13C双频人工电磁媒质对13C波谱成像有较好的信号增幅效果,最高信号增幅超过30倍。而在1H频率下的测试则显示,其对1H成像的信噪比也有较强的增幅效果,增幅最强处的图像信噪比提升了近6倍。

关键词
语种
中文
培养类别
独立培养
入学年份
2022
学位授予年份
2024-07
参考文献列表

[1] ZANETTI M, GERBER C, HODLER J. Quantitative assessment of the muscles of the rotator cuff with magnetic resonance imaging[J]. Investigative radiology, 1998, 33(3): 163-170.
[2] JERNIGAN T L, PRESS G A, HESSELINK J R. Methods for measuring brain morphologic features on magnetic resonance images: validation and normal aging[J]. Archives of Neurology, 1990, 47(1): 27-32.
[3] WILLIAMS D S, DETRE J A, LEIGH J S, et al. Magnetic resonance imaging of perfusion using spin inversion of arterial water[J]. Proceedings of the National Academy of Sciences, 1992, 89(1): 212-216.
[4] ASANO H, ELHELALY A E, HYODO F, et al. Deuterium Magnetic Resonance Imaging Using Deuterated Water-Induced 2H-Tissue Labeling Allows Monitoring Cancer Treatment at Clinical Field Strength[J]. Clinical Cancer Research, 2023, 29(24): 5173-5182.
[5] KURHANEWICZ J, VIGNERON D B, ARDENKJAER-LARSEN J H, et al. Hyperpolarized 13C MRI: path to clinical translation in oncology[J]. Neoplasia, 2019, 21(1): 1-16.
[6] KAMP B, FRENKEN M, KLEIN-SCHMEINK L, et al. Evaluation of sodium relaxation times and concentrations in the achilles tendon using MRI[J]. International Journal of Molecular Sciences, 2022, 23(18): 10890.
[7] 王宇路, 钱银锋. 超极化 13C MRI 研究进展[J]. 中国医学影像技术, 2020, 36(02): 303-306.
[8] TUNGGAL B, HOFMANN K, STOFFEL W. In vivo 13C nuclear magnetic resonance investigations of choline metabolism in rabbit brain[J]. Magnetic resonance in medicine, 1990, 13(1): 90-102.
[9] DONG Y, ESKANDARI R, RAY C, et al. Hyperpolarized MRI Visualizes Warburg Effects and Predicts Treatment Response to mTOR Inhibitors in Patient -Derived ccRCC Xenograft ModelsHP MRI Predicts mTOR Inhibitor Response in ccRCC[J]. Cancer research, 2019, 79(1): 242-250.
[10] CHEN H Y, AGGARWAL R, BOK R A, et al. Hyperpolarized 13C-pyruvate MRI detects real-time metabolic flux in prostate cancer metastases to bone and liver: a clinical feasibility study[J]. Prostate cancer and prostatic diseases, 2020, 23(2): 269-276.
[11] TRAN D H, WINKLER-SCHWARTZ A, TUZNIK M, et al. Quantitation of tissue resection using a brain tumor model and 7-T magnetic resonance imaging technology[J]. World Neurosurgery, 2021, 148: e326 -e339.
[12] RIDER O J, APPS A, MILLER J J J J, et al. Noninvasive in vivo assessment of cardiac metabolism in the healthy and diabetic human heart using hyperpolarized 13C MRI[J]. Circulation research, 2020, 126(6): 725-736.
[13] LI Y, CRAFT J, CHENG Y, et al. Left Ventricle Wall Motion Analysis with Real-Time MRI Feature Tracking in Heart Failure Patients: A Pilot Study[J]. Diagnostics, 2022, 12(12): 2946.
[14] YE Z, SONG B, LEE P M, et al. Hyperpolarized carbon 13 MRI in liver diseases: Recent advances and future opportunities[J]. Liver International, 2022, 42(5): 973-983.
[15] OESTREICH L K L, O’SULLIVAN M J. Transdiagnostic in vivo magnetic resonance imaging markers of neuroinflammation[J]. Biological Psychiatry: Cognitive Neuroscience and Neuroimaging, 2022, 7(7): 638-658.
[16] BRIDGE H, CLARE S. High-resolution MRI: in vivo histology?[J]. Philosophical Transactions of the Royal Society B: Biological Sciences, 2006, 361(1465): 137 -146.
[17] TAYLOR F G M, QUIRKE P, HEALD R J, et al. Preoperative high-resolution magnetic resonance imaging can identify good prognosis stage I, II, and III rectal cancer best managed by surgery alone: a prospective, multicenter, European study[J]. Annals of surgery, 2011, 253(4): 711-719.
[18] ROEMER P B, EDELSTEIN W A, HAYES C E, et al. The NMR phased array[J]. Magnetic resonance in medicine, 1990, 16(2): 192 -225.
[19] DREGELY I, RUSET I C, WIGGINS G, et al. 32-channel phased-array receive with asymmetric birdcage transmit coil for hyperpolarized xenon -129 lung imaging[J]. Magnetic Resonance in Medicine, 2013, 70(2): 576 -583.
[20] MINALGA E, PAYNE A, MERRILL R, et al. An 11‐channel radio frequency phased array coil for magnetic resonance guided high‐intensity focused ultrasound of the breast[J]. Magnetic Resonance in Medicine, 2013, 69(1): 295 -302.
[21] LATTANZI R, GRANT A K, POLIMENI J R, et al. Performance evaluation of a 32‐element head array with respect to the ultimate intrinsic SNR[J]. NMR in Biomedicine: An International Journal Devoted to the Development and Application of Magnetic Resonance In vivo, 2010, 23(2): 142-151.
[22] WIGGINS G C, TRIANTAFYLLOU C, POTTHAST A, et al. 32‐channel 3 Tesla receive ‐ only phased ‐ array head coil with soccer ‐ ball element geometry[J]. Magnetic Resonance in Medicine: An Official Journal of the International Society for Magnetic Resonance in Medicine, 2006, 56(1): 216-223.
[23] WIGGINS G C, POLIMENI J R, POTTHAST A, et al. 96‐Channel receive‐only head coil for 3 Tesla: design optimization and evaluation[J]. Magnetic Resonance in Medicine: An Official Journal of the International Society for Magnetic Resonance in Medicine, 2009, 62(3): 754-762.
[24] SCHICK F. Whole-body MRI at high field: technical limits and clinical potential[J]. European radiology, 2005, 15: 946-959.
[25] TRUONG T K, CHAKERES D W, BEVERSDORF D Q, et al. Effects of static and radiofrequency magnetic field inhomogeneity in ultra -high field magnetic resonance imaging[J]. Magnetic resonance imaging, 2006, 24(2): 103 -112.
[26] STAFFORD R J. High field MRI: Technology, applications, safety, and limitations[J]. American Association of Physicists in Medicine (AAPM), 2005.
[27] WOOD R, BASSETT K, FOERSTER V, et al. 1.5 tesla magnetic resonance imaging scanners compared with 3.0 tesla magnetic resonance imaging scanners: systematic review of clinical effectiveness[J]. CADTH technology overviews, 2012, 2(2).
[28] Expert Panel on MR Safety:, KANAL E, BARKOVICH A J, et al. ACR guidance document on MR safe practices: 2013[J]. Journal of Magnetic Resonance Imaging, 2013, 37(3): 501-530.
[29] DUBOIS M, LEROI L, RAOLISON Z, et al. Kerker effect in ultrahigh-field magnetic resonance imaging[J]. Physical Review X, 2018, 8(3): 031083.
[30] SMITH D R, PENDRY J B, WILTSHIRE M C K. Metamaterials and negative refractive index[J]. Science, 2004, 305(5685): 788 -792.
[31] Metamaterials: Physics and Engineering Explorations[M]. John Wiley & Sons, 2006.
[32] HOLLOWAY C L, KUESTER E F, GORDON J A, et al. An overview of the theory and applications of metasurfaces: The two-dimensional equivalents of metamaterials[J]. IEEE antennas and propagation magazine, 2012, 54(2): 10 -35.
[33] CAI W, SHALAEV V M. Optical metamaterials[M]. New York: Springer, 2010.
[34] HERRMANN T, LIEBIG T, MALLOW J, et al. Metamaterial-based transmit and receive system for whole-body magnetic resonance imaging at ultra-high magnetic fields[J]. PloS one, 2018, 13(1): e0191719.
[35] ALI H, FORSBERG E, JUN H. Brain imaging with slotted hybridized magnetic metamaterial hat at 7-T MRI[J]. Applied Magnetic Resonance, 2017, 48: 67 -83.
[36] PUCHNIN V, IVANOV V, GULYAEV M, et al. Imaging Capabilities of the ¹H-X-Nucleus Metamaterial-Inspired Multinuclear RF-Coil[J]. IEEE Transactions on Medical Imaging, 2022, 41(6): 1587-1595.
[37] IVANOV V A, HURSHKAINEN A A, SOLOMAKHA G A, et al. RF-coil with variable resonant frequency for multiheteronuclear ultra-high field MRI[J]. Photonics and Nanostructures-Fundamentals and Applications, 2020, 38: 100747.
[38] SLOBOZHANYUK A P, PODDUBNY A N, RAAIJMAKERS A J E, et al. Enhancement of magnetic resonance imaging with metasurfaces[J]. Advanced materials, 2016, 28(9): 1832-1838.
[39] SAHA S, PRICCI R, KOUTSOUPIDOU M, et al. A smart switching system to enable automatic tuning and detuning of metamaterial resonators in MRI scans[J]. Scientific Reports, 2020, 10(1): 1-9.
[40] SCHMIDT R, SLOBOZHANYUK A, BELOV P, et al. Flexible and compact hybrid metasurfaces for enhanced ultra high field in vivo magnetic resonance imaging[J]. Scientific reports, 2017, 7(1): 1-7.
[41] SCHMIDT R, WEBB A. Metamaterial combining electric-and magnetic-dipole-based configurations for unique dual-band signal enhancement in ultrahigh-field magnetic resonance imaging[J]. ACS applied materials & interfaces, 2017, 9(40): 34618 -34624.
[42] SOKOL S L, COLWELL Z A, KANDALA S K, et al. Flexible Metamaterial Wrap for Improved Head Imaging at 3 T MRI With Low -Cost and Easy Fabrication Method[J]. IEEE Antennas and Wireless Propagation Letters, 2022, 21(10): 2075 -2079.
[43] 罗超. 基于超材料的 3T 磁共振射频接收线圈性能研究[D]. 重庆理工大学, 2016.
[44] MOTOVILOVA E , SANDEEP S , HASHIMOTO M , et al. Water-tunable Highly Sub-wavelength Metamaterial-based Spiral Resonator for Magnetic Field Enhancement of MRI Coils at 1.5 T[J]. IEEE Access, 2019, PP(99):1 -1.
[45] ALGARÍN J M, FREIRE M J, BREUER F, et al. Metamaterial magnetoinductive lens performance as a function of field strength[J]. Journal of Magnetic Resonance, 2014, 247: 9-14.
[46] VESELAGO V G. Electrodynamics of substances with simultaneously negative and[J]. Usp. fiz. nauk, 1967, 92(7): 517.
[47] PENDRY J B, SCHURIG D, SMITH D R. Controlling electromagnetic fields[J]. science, 2006, 312(5781): 1780-1782.
[48] YU N, GENEVET P, KATS M A, et al. Light propagation with phase discontinuities: generalized laws of reflection and refraction[J]. science, 2011, 334(6054): 333 -337.

所在学位评定分委会
材料与化工
国内图书分类号
TH776
来源库
人工提交
成果类型学位论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/779020
专题中国科学院深圳理工大学(筹)联合培养
推荐引用方式
GB/T 7714
宋尔文. 1H/13C磁共振人工电磁媒质性能与兼容性研究[D]. 深圳. 南方科技大学,2024.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
12233272-宋尔文-中国科学院深圳(4638KB)----限制开放--请求全文
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[宋尔文]的文章
百度学术
百度学术中相似的文章
[宋尔文]的文章
必应学术
必应学术中相似的文章
[宋尔文]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。