[1] ZANETTI M, GERBER C, HODLER J. Quantitative assessment of the muscles of the rotator cuff with magnetic resonance imaging[J]. Investigative radiology, 1998, 33(3): 163-170.
[2] JERNIGAN T L, PRESS G A, HESSELINK J R. Methods for measuring brain morphologic features on magnetic resonance images: validation and normal aging[J]. Archives of Neurology, 1990, 47(1): 27-32.
[3] WILLIAMS D S, DETRE J A, LEIGH J S, et al. Magnetic resonance imaging of perfusion using spin inversion of arterial water[J]. Proceedings of the National Academy of Sciences, 1992, 89(1): 212-216.
[4] ASANO H, ELHELALY A E, HYODO F, et al. Deuterium Magnetic Resonance Imaging Using Deuterated Water-Induced 2H-Tissue Labeling Allows Monitoring Cancer Treatment at Clinical Field Strength[J]. Clinical Cancer Research, 2023, 29(24): 5173-5182.
[5] KURHANEWICZ J, VIGNERON D B, ARDENKJAER-LARSEN J H, et al. Hyperpolarized 13C MRI: path to clinical translation in oncology[J]. Neoplasia, 2019, 21(1): 1-16.
[6] KAMP B, FRENKEN M, KLEIN-SCHMEINK L, et al. Evaluation of sodium relaxation times and concentrations in the achilles tendon using MRI[J]. International Journal of Molecular Sciences, 2022, 23(18): 10890.
[7] 王宇路, 钱银锋. 超极化 13C MRI 研究进展[J]. 中国医学影像技术, 2020, 36(02): 303-306.
[8] TUNGGAL B, HOFMANN K, STOFFEL W. In vivo 13C nuclear magnetic resonance investigations of choline metabolism in rabbit brain[J]. Magnetic resonance in medicine, 1990, 13(1): 90-102.
[9] DONG Y, ESKANDARI R, RAY C, et al. Hyperpolarized MRI Visualizes Warburg Effects and Predicts Treatment Response to mTOR Inhibitors in Patient -Derived ccRCC Xenograft ModelsHP MRI Predicts mTOR Inhibitor Response in ccRCC[J]. Cancer research, 2019, 79(1): 242-250.
[10] CHEN H Y, AGGARWAL R, BOK R A, et al. Hyperpolarized 13C-pyruvate MRI detects real-time metabolic flux in prostate cancer metastases to bone and liver: a clinical feasibility study[J]. Prostate cancer and prostatic diseases, 2020, 23(2): 269-276.
[11] TRAN D H, WINKLER-SCHWARTZ A, TUZNIK M, et al. Quantitation of tissue resection using a brain tumor model and 7-T magnetic resonance imaging technology[J]. World Neurosurgery, 2021, 148: e326 -e339.
[12] RIDER O J, APPS A, MILLER J J J J, et al. Noninvasive in vivo assessment of cardiac metabolism in the healthy and diabetic human heart using hyperpolarized 13C MRI[J]. Circulation research, 2020, 126(6): 725-736.
[13] LI Y, CRAFT J, CHENG Y, et al. Left Ventricle Wall Motion Analysis with Real-Time MRI Feature Tracking in Heart Failure Patients: A Pilot Study[J]. Diagnostics, 2022, 12(12): 2946.
[14] YE Z, SONG B, LEE P M, et al. Hyperpolarized carbon 13 MRI in liver diseases: Recent advances and future opportunities[J]. Liver International, 2022, 42(5): 973-983.
[15] OESTREICH L K L, O’SULLIVAN M J. Transdiagnostic in vivo magnetic resonance imaging markers of neuroinflammation[J]. Biological Psychiatry: Cognitive Neuroscience and Neuroimaging, 2022, 7(7): 638-658.
[16] BRIDGE H, CLARE S. High-resolution MRI: in vivo histology?[J]. Philosophical Transactions of the Royal Society B: Biological Sciences, 2006, 361(1465): 137 -146.
[17] TAYLOR F G M, QUIRKE P, HEALD R J, et al. Preoperative high-resolution magnetic resonance imaging can identify good prognosis stage I, II, and III rectal cancer best managed by surgery alone: a prospective, multicenter, European study[J]. Annals of surgery, 2011, 253(4): 711-719.
[18] ROEMER P B, EDELSTEIN W A, HAYES C E, et al. The NMR phased array[J]. Magnetic resonance in medicine, 1990, 16(2): 192 -225.
[19] DREGELY I, RUSET I C, WIGGINS G, et al. 32-channel phased-array receive with asymmetric birdcage transmit coil for hyperpolarized xenon -129 lung imaging[J]. Magnetic Resonance in Medicine, 2013, 70(2): 576 -583.
[20] MINALGA E, PAYNE A, MERRILL R, et al. An 11‐channel radio frequency phased array coil for magnetic resonance guided high‐intensity focused ultrasound of the breast[J]. Magnetic Resonance in Medicine, 2013, 69(1): 295 -302.
[21] LATTANZI R, GRANT A K, POLIMENI J R, et al. Performance evaluation of a 32‐element head array with respect to the ultimate intrinsic SNR[J]. NMR in Biomedicine: An International Journal Devoted to the Development and Application of Magnetic Resonance In vivo, 2010, 23(2): 142-151.
[22] WIGGINS G C, TRIANTAFYLLOU C, POTTHAST A, et al. 32‐channel 3 Tesla receive ‐ only phased ‐ array head coil with soccer ‐ ball element geometry[J]. Magnetic Resonance in Medicine: An Official Journal of the International Society for Magnetic Resonance in Medicine, 2006, 56(1): 216-223.
[23] WIGGINS G C, POLIMENI J R, POTTHAST A, et al. 96‐Channel receive‐only head coil for 3 Tesla: design optimization and evaluation[J]. Magnetic Resonance in Medicine: An Official Journal of the International Society for Magnetic Resonance in Medicine, 2009, 62(3): 754-762.
[24] SCHICK F. Whole-body MRI at high field: technical limits and clinical potential[J]. European radiology, 2005, 15: 946-959.
[25] TRUONG T K, CHAKERES D W, BEVERSDORF D Q, et al. Effects of static and radiofrequency magnetic field inhomogeneity in ultra -high field magnetic resonance imaging[J]. Magnetic resonance imaging, 2006, 24(2): 103 -112.
[26] STAFFORD R J. High field MRI: Technology, applications, safety, and limitations[J]. American Association of Physicists in Medicine (AAPM), 2005.
[27] WOOD R, BASSETT K, FOERSTER V, et al. 1.5 tesla magnetic resonance imaging scanners compared with 3.0 tesla magnetic resonance imaging scanners: systematic review of clinical effectiveness[J]. CADTH technology overviews, 2012, 2(2).
[28] Expert Panel on MR Safety:, KANAL E, BARKOVICH A J, et al. ACR guidance document on MR safe practices: 2013[J]. Journal of Magnetic Resonance Imaging, 2013, 37(3): 501-530.
[29] DUBOIS M, LEROI L, RAOLISON Z, et al. Kerker effect in ultrahigh-field magnetic resonance imaging[J]. Physical Review X, 2018, 8(3): 031083.
[30] SMITH D R, PENDRY J B, WILTSHIRE M C K. Metamaterials and negative refractive index[J]. Science, 2004, 305(5685): 788 -792.
[31] Metamaterials: Physics and Engineering Explorations[M]. John Wiley & Sons, 2006.
[32] HOLLOWAY C L, KUESTER E F, GORDON J A, et al. An overview of the theory and applications of metasurfaces: The two-dimensional equivalents of metamaterials[J]. IEEE antennas and propagation magazine, 2012, 54(2): 10 -35.
[33] CAI W, SHALAEV V M. Optical metamaterials[M]. New York: Springer, 2010.
[34] HERRMANN T, LIEBIG T, MALLOW J, et al. Metamaterial-based transmit and receive system for whole-body magnetic resonance imaging at ultra-high magnetic fields[J]. PloS one, 2018, 13(1): e0191719.
[35] ALI H, FORSBERG E, JUN H. Brain imaging with slotted hybridized magnetic metamaterial hat at 7-T MRI[J]. Applied Magnetic Resonance, 2017, 48: 67 -83.
[36] PUCHNIN V, IVANOV V, GULYAEV M, et al. Imaging Capabilities of the ¹H-X-Nucleus Metamaterial-Inspired Multinuclear RF-Coil[J]. IEEE Transactions on Medical Imaging, 2022, 41(6): 1587-1595.
[37] IVANOV V A, HURSHKAINEN A A, SOLOMAKHA G A, et al. RF-coil with variable resonant frequency for multiheteronuclear ultra-high field MRI[J]. Photonics and Nanostructures-Fundamentals and Applications, 2020, 38: 100747.
[38] SLOBOZHANYUK A P, PODDUBNY A N, RAAIJMAKERS A J E, et al. Enhancement of magnetic resonance imaging with metasurfaces[J]. Advanced materials, 2016, 28(9): 1832-1838.
[39] SAHA S, PRICCI R, KOUTSOUPIDOU M, et al. A smart switching system to enable automatic tuning and detuning of metamaterial resonators in MRI scans[J]. Scientific Reports, 2020, 10(1): 1-9.
[40] SCHMIDT R, SLOBOZHANYUK A, BELOV P, et al. Flexible and compact hybrid metasurfaces for enhanced ultra high field in vivo magnetic resonance imaging[J]. Scientific reports, 2017, 7(1): 1-7.
[41] SCHMIDT R, WEBB A. Metamaterial combining electric-and magnetic-dipole-based configurations for unique dual-band signal enhancement in ultrahigh-field magnetic resonance imaging[J]. ACS applied materials & interfaces, 2017, 9(40): 34618 -34624.
[42] SOKOL S L, COLWELL Z A, KANDALA S K, et al. Flexible Metamaterial Wrap for Improved Head Imaging at 3 T MRI With Low -Cost and Easy Fabrication Method[J]. IEEE Antennas and Wireless Propagation Letters, 2022, 21(10): 2075 -2079.
[43] 罗超. 基于超材料的 3T 磁共振射频接收线圈性能研究[D]. 重庆理工大学, 2016.
[44] MOTOVILOVA E , SANDEEP S , HASHIMOTO M , et al. Water-tunable Highly Sub-wavelength Metamaterial-based Spiral Resonator for Magnetic Field Enhancement of MRI Coils at 1.5 T[J]. IEEE Access, 2019, PP(99):1 -1.
[45] ALGARÍN J M, FREIRE M J, BREUER F, et al. Metamaterial magnetoinductive lens performance as a function of field strength[J]. Journal of Magnetic Resonance, 2014, 247: 9-14.
[46] VESELAGO V G. Electrodynamics of substances with simultaneously negative and[J]. Usp. fiz. nauk, 1967, 92(7): 517.
[47] PENDRY J B, SCHURIG D, SMITH D R. Controlling electromagnetic fields[J]. science, 2006, 312(5781): 1780-1782.
[48] YU N, GENEVET P, KATS M A, et al. Light propagation with phase discontinuities: generalized laws of reflection and refraction[J]. science, 2011, 334(6054): 333 -337.
修改评论