[1] BAGGALEY A W. Model flocks in a steady vortical flow[J]. Physical Review E, 2015, 91(5):053019.
[2] 赵强; 王刚;. 关于经典Vicsek 模型及其改进模型的研究综述[J]. 白城师范学院学报, 35:29.
[3] VICSEK T, ZAFEIRIS A. Collective motion[J]. Physics reports, 2012, 517(3-4): 71-140.
[4] VICSEK T. A question of scale[J]. Nature, 2001, 411(6836): 421-421.
[5] 张何朋, 施夏清, 杨明成. 涌现于交叉科学的新方向——活性物质[J]. 物理.
[6] BLAIR D L, NEICU T, KUDROLLI A. Vortices in vibrated granular rods[J]. Physical ReviewE, 2003, 67(3): 031303.
[7] IBELE M, MALLOUK T E, SEN A. Schooling behavior of light-powered autonomous micromotorsin water[J]. Angewandte Chemie, 2009, 121(18): 3358-3362.
[8] DESEIGNE J, DAUCHOT O, CHATÉ H. Collective motion of vibrated polar disks[J]. Physicalreview letters, 2010, 105(9): 098001.
[9] WEBER C A, HANKE T, DESEIGNE J, et al. Long-range ordering of vibrated polar disks[J].Physical review letters, 2013, 110(20): 208001.
[10] BUHL J, SUMPTER D J, COUZIN I D, et al. From disorder to order in marching locusts[J].Science, 2006, 312(5778): 1402-1406.
[11] YATES J R, RUSE C I, NAKORCHEVSKY A. Proteomics by mass spectrometry: approaches,advances, and applications[J]. Annual review of biomedical engineering, 2009, 11: 49-79.
[12] COUZIN I D, KRAUSE J, et al. Self-organization and collective behavior in vertebrates[J].Advances in the Study of Behavior, 2003, 32(1): 10-1016.
[13] VÁSÁRHELYI G, VIRÁGH C, SOMORJAI G, et al. Optimized flocking of autonomous dronesin confined environments[J]. Science Robotics, 2018, 3(20): eaat3536.
[14] LIU X, XIANG X, CHANG Y, et al. Hierarchical weighting vicsek model for flocking navigationof drones[J]. Drones, 2021, 5(3): 74.
[15] 李东方. 二维湍流中的拉格朗日统计[J]. 哈尔滨工业大学工学硕士学位论文.
[16] KESSLER J O. Hydrodynamic focusing of motile algal cells[J]. Nature, 1985, 313(5999):218-220.
[17] DURHAM W M, KESSLER J O, STOCKER R. Disruption of vertical motility by shear triggersformation of thin phytoplankton layers[J]. science, 2009, 323(5917): 1067-1070.
[18] CISNEROS L H, CORTEZ R, DOMBROWSKI C, et al. Fluid dynamics of self-propelledmicroorganisms, from individuals to concentrated populations[J]. Animal Locomotion, 2010:99-115.
[19] CZIRÓK A, SCHLETT K, MADARÁSZ E, et al. Exponential distribution of locomotion activityin cell cultures[J]. Physical Review Letters, 1998, 81(14): 3038.
[20] BECCO C, VANDEWALLE N, DELCOURT J, et al. Experimental evidences of a structural anddynamical transition in fish school[J]. Physica A: Statistical Mechanics and its Applications,2006, 367: 487-493.
[21] SZABO B, SZÖLLÖSI G, GÖNCI B, et al. Phase transition in the collective migration of tissuecells: experiment and model[J]. Physical Review E, 2006, 74(6): 061908.
[22] MAKRIS N C, RATILAL P, JAGANNATHAN S, et al. Critical population density triggersrapid formation of vast oceanic fish shoals[J]. Science, 2009, 323(5922): 1734-1737.
[23] HOLUBEC V, GEISS D, LOOS S A, et al. Finite-size scaling at the edge of disorder in atime-delay Vicsek model[J]. Physical review letters, 2021, 127(25): 258001.
[24] REYNOLDS C W. Flocks, herds and schools: A distributed behavioral model[C]//Proceedingsof the 14th annual conference on Computer graphics and interactive techniques. 1987: 25-34.
[25] 青木一郎. A simulation study on the schooling mechanism in fish.[J]. 日本水産学会誌, 1982,48(8): 1081-1088.
[26] VICSEK T, CZIRÓK A, BEN-JACOB E, et al. Novel type of phase transition in a system ofself-driven particles[J]. Physical review letters, 1995, 75(6): 1226.
[27] BAGLIETTO G, ALBANO E V. Finite-size scaling analysis and dynamic study of the criticalbehavior of a model for the collective displacement of self-driven individuals[J]. PhysicalReview E, 2008, 78(2): 021125.
[28] CAMBUI D S, GODOY M, DE ARRUDA A. Finite-size effects in simulations of self-propelledparticles system[J]. Physica A: Statistical Mechanics and its Applications, 2017, 467: 129-136.
[29] CAVAGNA A, DI CARLO L, GIARDINA I, et al. Dynamical renormalization group approachto the collective behavior of swarms[J]. Physical Review Letters, 2019, 123(26): 268001.
[30] GRÉGOIRE G, CHATÉ H. Onset of collective and cohesive motion[J]. Physical review letters,2004, 92(2): 025702.
[31] CHIKAZUMI S, GRAHAM C D. Physics of ferromagnetism: No. 94[M]. Oxford universitypress, 1997.
[32] CHATÉ H, GINELLI F, GRÉGOIRE G, et al. Collective motion of self-propelled particlesinteracting without cohesion[J]. Physical Review E, 2008, 77(4): 046113.
[33] NATTAGH NAJAFI M, ZAYED R M A, NABAVIZADEH S A. Swarming Transition in Super-Diffusive Self-Propelled Particles[J]. Entropy, 2023, 25(5): 817.
[34] COUZIN I D, KRAUSE J, JAMES R, et al. Collective memory and spatial sorting in animalgroups[J]. Journal of theoretical biology, 2002, 218(1): 1-11.
[35] CUCKER F, SMALE S. Emergent behavior in flocks[J]. IEEE Transactions on automaticcontrol, 2007, 52(5): 852-862.
[36] YATES C A, BAKER R E, ERBAN R, et al. Refining self-propelled particle models for collectivebehaviour[Z]. 2010.
[37] DURHAM W M, CLIMENT E, BARRY M, et al. Turbulence drives microscale patches ofmotile phytoplankton[J]. Nature communications, 2013, 4(1): 2148.
[38] KHURANA N, OUELLETTE N T. Stability of model flocks in turbulent-like flow[J]. NewJournal of Physics, 2013, 15(9): 095015.
[39] BAGGALEY A. Stability of model flocks in a vortical flow[J]. Physical Review E, 2016, 93(6): 063109.
[40] CHOUDHARY A, VENKATARAMAN D, RAY S S. Effect of inertia on model flocks in aturbulent environment[J]. Europhysics Letters, 2015, 112(2): 24005.
[41] GUPTA A, ROY A, SAHA A, et al. Flocking of active particles in a turbulent flow[J]. PhysicalReview Fluids, 2020, 5(5): 052601.
[42] QIU J, CUI Z, CLIMENT E, et al. Clustering of settling microswimmers in turbulence[J].EGUsphere, 2023, 2023: 1-12.
[43] SI X, FANG L. Interaction between swarming active matter and flow: the impact on Lagrangiancoherent structures[J]. Physical Review Fluids, 2024, 9(3): 033101.
[44] 沈惠川. 统计力学[M]. 中国科学技术大学出版社, 2011.
[45] 杨展如. 量子统计物理学[M]. 高等教育出版社, 2007.
[46] 汪志诚. 热力学统计物理[M]. 高等教育出版社, 2013.
[47] TSYPIN M, BLÖTE H. Probability distribution of the order parameter for the three-dimensionalIsing-model universality class: A high-precision Monte Carlo study[J]. Physical Review E,2000, 62(1): 73.
[48] 李博. 自推进粒子系统的集体运动与临界行为的研究[D]. 兰州大学, 2019.
[49] BINDER K. Finite size scaling analysis of Ising model block distribution functions[J].Zeitschrift für Physik B Condensed Matter, 1981, 43: 119-140.
[50] PRIVMAN V. Finite size scaling and numerical simulation of statistical systems[M]. WorldScientific, 1990.
[51] NEWMAN M E, BARKEMA G T. Monte Carlo methods in statistical physics[M]. ClarendonPress, 1999.
[52] BINDER K, HEERMANN D W, BINDER K. Monte Carlo simulation in statistical physics:Vol. 8[M]. Springer, 1992.
[53] FISHER M E, BARBER M N. Scaling theory for finite-size effects in the critical region[J].Physical Review Letters, 1972, 28(23): 1516.
[54] CARDY J. Scaling and renormalization in statistical physics: Vol. 5[M]. Cambridge universitypress, 1996.
[55] GOLDENFELD N. Lectures on phase transitions and the renormalization group[M]. CRCPress, 2018.
[56] CAMBUI D, DE ARRUDA A, GODOY M. Monte Carlo simulations of a disordered binaryIsing model[J]. International Journal of Modern Physics C, 2012, 23(08): 1240015.
[57] BINDER K. Theory of first-order phase transitions[J]. Reports on progress in physics, 1987,50(7): 783.
[58] BINDER K. Applications of Monte Carlo methods to statistical physics[J]. Reports on Progressin Physics, 1997, 60(5): 487.
[59] GODOY M, FIGUEIREDO W. Nonequilibrium antiferromagnetic mixed-spin Ising model[J].Physical Review E, 2002, 66(3): 036131.
[60] KOLMOGOROV A N. Dissipation of energy in the locally isotropic turbulence[J]. Proceedingsof the Royal Society of London. Series A: Mathematical and Physical Sciences, 1991, 434(1890): 15-17.
[61] KOLMOGOROV A N. The local structure of turbulence in incompressible viscous fluid forvery large Reynolds numbers[J]. Proceedings of the Royal Society of London. Series A: Mathematicaland Physical Sciences, 1991, 434(1890): 9-13.
[62] KRAICHNAN R H. Inertial ranges in two-dimensional turbulence[J]. Physics of fluids, 1967,10(7): 1417.
[63] ALEXAKIS A, BIFERALE L. Cascades and transitions in turbulent flows[J]. Physics Reports,2018, 767: 1-101.
[64] KREISS H O, OLIGER J. Comparison of accurate methods for the integration of hyperbolicequations[J]. Tellus, 1972, 24(3): 199-215.
[65] ORSZAG S A. Comparison of pseudospectral and spectral approximation[J]. Studies in AppliedMathematics, 1972, 51(3): 253-259.
[66] PARTRIDGE B L, PITCHER T J. The sensory basis of fish schools: relative roles of lateralline and vision[J]. Journal of comparative physiology, 1980, 135: 315-325.
[67] XIAO Z, WAN M, CHEN S, et al. Physical mechanism of the inverse energy cascade of twodimensionalturbulence: a numerical investigation[J]. Journal of Fluid Mechanics, 2009, 619:1-44.
[68] SPYKSMA K, MAGCALAS M, CAMPBELL N. Quantifying effects of hyperviscosity onisotropic turbulence[J]. Physics of Fluids, 2012, 24(12): 125102.
[69] ALDANA M, LARRALDE H, VÁZQUEZ B. On the emergence of collective order in swarmingsystems: a recent debate[J]. International Journal of Modern Physics B, 2009, 23(18):3661-3685.
[70] YANGSAN. [EB/OL]. 2014
[2014]. https://github.com/yangsan/vicsekmodel.
[71] 吕一轩. 集体运动的相变行为分析与动力学建模研究[D]. 兰州大学, 2021.
[72] CZIRÓK A, STANLEY H E, VICSEK T. Spontaneously ordered motion of self-propelledparticles[J]. Journal of Physics A: Mathematical and General, 1997, 30(5): 1375.
[73] CZIRÓK A, BARABÁSI A L, VICSEK T. Collective motion of self-propelled particles: Kineticphase transition in one dimension[J]. Physical Review Letters, 1999, 82(1): 209.
[74] BALACHANDAR S, MAXEY M. Methods for evaluating fluid velocities in spectral simulationsof turbulence[J]. Journal of Computational Physics, 1989, 83(1): 96-125.
[75] PROVENZALE A, VILLONE B, BABIANO A, et al. Intermittency, phase randomization andgeneralized fractal dimensions[J]. International Journal of Bifurcation and Chaos, 1993, 3(03):729-736.
[76] CLUSELLA P, PASTOR-SATORRAS R. Phase transitions on a class of generalized Vicseklikemodels of collective motion[J]. Chaos: An Interdisciplinary Journal of Nonlinear Science,2021, 31(4).
[77] BARBERIS L, ALBANO E V. Evidence of a robust universality class in the critical behaviorof self-propelled agents: Metric versus topological interactions[J]. Physical Review E, 2014,89(1): 012139.
[78] SAMPAIO FILHO C I, ANDRADE JR J S, HERRMANN H J, et al. Elastic backbone definesa new transition in the percolation model[J]. Physical review letters, 2018, 120(17): 175701.
[79] PARTRIDGE B L. The structure and function of fish schools[J]. Scientific american, 1982,246(6): 114-123.
[80] KRAUSE J, HENSOR E, RUXTON G. 13 Fish as Prey[J]. Handbook of Fish Biology andFisheries: Fish Biology, 2002: 284.
[81] TUNSTRØM K, KATZ Y, IOANNOU C C, et al. Collective states, multistability and transitionalbehavior in schooling fish[J]. PLoS computational biology, 2013, 9(2): e1002915.66
修改评论