中文版 | English
题名

微电子封装用铜互连材料的制备、组织调控及可靠性

其他题名
PREPARATION, MICROSTRUCTURE CONTROL AND RELIABILITY OF COPPER INTERCONNECT MATERIALS FOR MICROELECTRONIC PACKAGING
姓名
姓名拼音
LIU Jinhao
学号
12233283
学位类型
硕士
学位专业
0856 材料与化工
学科门类/专业学位类别
08 工学
导师
高丽茵
导师单位
中国科学院深圳先进技术研究院
外机构导师
符显珠
外机构导师单位
深圳大学
论文答辩日期
2024-05-07
论文提交日期
2024-07-05
学位授予单位
南方科技大学
学位授予地点
深圳
摘要

       集成电路系统发展迅速,电子封装结构逐渐趋于小型化,作为导电桥 梁的铜互连结构的特征尺寸随之减小,致使电子器件的可靠性问题越发显 著。然而铜微观组织与电镀图案尺寸的相关性研究却少有报道。此外,特 殊织构的新型铜互连材料,如具有(111)取向的纳米孪晶铜(NT-Cu)等 以其优异的电学性能,更是传统铜(Cu)材料非常有潜力的替代品。NTCu 作为互连材料与焊料界面的可靠性问题机理尚不明晰,仍需深入研究。 本研究通过控制电镀配方及工艺,深入研究了织构对 Cu/Sn 界面反应 的影响。首先,加速剂分子构型(碳链长度、巯基数量)及浓度会改变 Cu 膜内部晶粒的形状(等轴晶或柱状晶),择优取向为(111)或(220)。浓 度的增加使得界面柯肯达尔孔洞(Kirkendall void, KV)数量明显增多。对 于 NT-Cu 制备来说,孪晶促进剂的选择也对孪晶形态有一定的影响,但不 同促进剂所制备的孪晶组织对柯肯达尔孔洞均有抑制作用;而且当电流密 度从 20 mA/cm2 上升至 50 mA/cm2 时,老化实验后期界面 Cu3Sn 层厚度明 显减小。此外,NT-Cu 和普通铜在 1.1×104 A/cm2条件下的电迁移测试结果 表明,NT-Cu 具有更薄的 Cu3Sn 层与更少的 KV,抗电迁移能力更强。 进一步地,在多种尺寸的焊盘、再布线及盲孔结构中制备了具有不同 织构的铜材料,研究了图形尺寸对铜材料组织及可靠性的影响。结果表明 随着图案尺寸的减小,材料的组织及轮廓均发生改变。具体地,当凸点焊 盘的直径由 40 μm 增加至 105 μm,等轴晶铜(EG-Cu)的平整性由 34.5% 降低至 23.5%,表现出强尺寸依赖效应。而对于孪晶铜而言,随着焊盘直径 增加,(111)织构由 9.6%增加至 38.1%;冷热冲击测试结果表明,随着铜 材料织构的改变,其失效也表现出不同的尺寸相关性,EG-Cu 主要集中在 小焊盘,而 NT-Cu 小焊盘的失效率较低。 本课题研究了添加剂、电流密度以及电镀工艺对铜材料微观组织的影 响,证明了铜互连材料内部微观组织调控可以提升可靠性,为实际互连结 构应用中铜材料的选择及优化提供参考,并为封装小型化趋势下可靠性的 提升提供了理论指导。

关键词
语种
中文
培养类别
独立培养
入学年份
2022
学位授予年份
2024-07
参考文献列表

[1] ROSHANGHIAS A, DREISSIGACKER M, SCHERF C, et al. On the Feasibility of Fan-Out Wafer-Level Packaging of Capacitive Micromachined Ultrasound Transducers (CMUT) by Using Inkjet-Printed Redistribution Layers [J]. MICROMACHINES, 2020, 11(6), 564.
[2] WU K B, KUO T Y, HUNG C C, et al. Novel RDL Design of Wafer-Level Packaging for Signal/Power Integrity in LPDDR4 Application [J]. IEEE TRANSACTIONS ON COMPONENTS PACKAGING AND MANUFACTURING TECHNOLOGY, 2018, 8(8): 1431-1439.
[3] LIANG C L, LIN Y S, KAO C L, et al. Athermal and thermal coupling electromigration effects on the microstructure and failure mechanism in advanced fine -pitch Cu interconnects under extremely high current density [J]. MATERIALS CHEMISTRY AND PHYSICS, 2020, 256.
[4] LAU J H, CHEN G C F, HUANG J Y C, et al. Hybrid Substrate by Fan-Out RDL-FirstPanel-Level Packaging [J]. IEEE TRANSACTIONS ON COMPONENTS PACKAGING AND MANUFACTURING TECHNOLOGY, 2021, 11(8): 1301-1309.
[5] CHERY E, DUVAL F F C, STUCCHI M, et al. Reliability Study of Polymers Used in Sub-4-μm Pitch RDL Applications [J]. IEEE TRANSACTIONS ON COMPONENTS PACKAGING AND MANUFACTURING TECHNOLOGY, 2021, 11(7): 1073-1080.
[6] 张玉博. 微电子封装用纳米孪晶铜互连材料的制备及可靠性研究 [D]; 哈尔滨理工大学, 2023.
[7] CHEN K X, GAO L Y, LI Z, et al. Research Progress of Electroplated Nanotwinned Copper in Microelectronic Packaging [J]. MATERIALS, 2023, 16(13), 4614.
[8] GAO L Y, LI C F, WAN P, et al. The diffusion barrier effect of Fe -Ni UBM as compared to the commercial Cu UBM during high temperature storage [J]. JOURNAL OF ALLOYS AND COMPOUNDS, 2018, 739: 632-642.
[9] ZHANG Y X, ZHANG J C, WANG Y, et al. Effect of Grain Structure and Ni/Au-UBMLayer on Electromigration-Induced Failure Mechanism in Sn-3.0Ag-0.5Cu Solder Joints [J]. MICROMACHINES, 2022, 13(6), 953.
[10] DOW W P, HUANG H S, YEN M Y, et al. Influence of convection-dependent adsorption of additives on microvia filling by copper electroplating [J]. JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2005, 152(6): C425-C434.
[11] LONG X J, SHANG J T, ZHANG L. Design Optimization of Pillar Bump Structure for Minimizing the Stress in Brittle Low K Dielectric Material Layer [J]. ACTA METALLURGICA SINICA-ENGLISH LETTERS, 2020, 33(4): 583-594.
[12] TANAKA T, HATABE M, YAMADA H, et al. Advanced Under-Bump-Metal ScalingSolder Micro-Bump Interconnect Down to 10μm Pitch [Z]. 2022 INTERNATIONAL CONFERENCE ON ELECTRONICS PACKAGING (ICEP 2022). 2022: 121-122
[13] 李溯杰. 锂电池用纳米孪晶铜箔的电沉积制备、性能和表征 [D]; 江苏科技大学,2020.
[14] SYED A, TEE T Y, NG H S, et al. Advanced analysis on board trace reliability of WLCSP under drop impact [J]. MICROELECTRONICS RELIABILITY, 2010, 50(7):928-936.
[15] CHENG H Y, TRAN D P, TU K N, et al. Effect of deposition temperature on mechanical properties of nanotwinned Cu fabricated by rotary electroplating [J]. MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2021, 811.
[16] WANG Q, LIU J X, LEI Z Y, et al. Computational and experiments exploration ofconvection on Cu filling characteristics of multiple aspect-ratio micro through-holes[J]. ELECTROCHIMICA ACTA, 2022, 416.
[17] ISAEV V A, GRISHENKOVA O V, KOSOV A V, et al. Simulation of 3D Electrochemical Phase Formation: Mixed Growth Control [J]. MATERIALS, 2021, 14(21), 6330.
[18] TRAN D P, CHEN K J, TU K N, et al. Electrodeposition of slanted nanotwinned Cufoils with high strength and ductility [J]. ELECTROCHIMICA ACTA, 2021, 389.
[19] WANG Q, WANG Z, WANG Y T, et al. Combined fluid flow simulation with electrochemical measurement for mechanism investigation of high-rate Cu pattern electroplating [J]. JOURNAL OF THE TAIWAN INSTITUTE OF CHEMICAL ENGINEERS, 2022, 139.
[20] MAHIKO T, YOSHIKAWA T, NAGATA M. Development of electro-copper platingwith nanodiamonds for electronic interconnects in advanced packaging [J]. JapaneseJournal of Applied Physics, 2020, 59(SL).
[21] LI S, ZHU Q, ZHENG B, et al. Nano-scale twinned Cu with ultrahigh strength prepared by direct current electrodeposition [J]. MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2019, 758: 1-6.
[22] TSAI S-T, CHIANG P-C, LIU C, et al. Suppression of Void Formation at Sn/Cu Joint Due to Twin Formation in Cu Electrodeposit [J]. Jom, 2019, 71(9): 3012 -3022.
[23] FANG C Y, TRAN D P, LIU H C, et al. Effect of Electroplating Current Density onTensile Properties of Nanotwinned Copper Foils [J]. JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2022, 169(4).
[24] 孟媛. 电-热-结构耦合下倒装芯片封装的电迁移失效研究 [D]; 南京邮电大学, 2022.
[25] LI L L, YEH H C. Effect of the functional group of polyethylene glycol on the characteristics of copper pillars obtained by electroplating [J]. JOURNAL OF MATERIALS SCIENCE-MATERIALS IN ELECTRONICS, 2021, 32(11): 14358-14367.
[26] LIMA F G D, MESCHEDER U, LEISTE H, et al. Influence of current density on theadhesion of seedless electrodeposited copper layers on silicon [J]. SURFACE & COATINGS TECHNOLOGY, 2019, 375: 554-564.
[27] SHI Z X, WANG Z, GAO L Y, et al. Improving Electromigration Resistance of FinePitch Redistributed Layer Using Graphene-Doped Twinned Copper Composites [J]. Advanced Engineering Materials, 2024, 26(6).
[28] TRAN D P, LI H H, TSENG I H, et al. Enhancement of electromigration lifetime ofcopper lines by eliminating nanoscale grains in highly 111-oriented nanotwinnedstructures [J]. JOURNAL OF MATERIALS RESEARCH AND TECHNOLOGYJMR&T, 2021, 15: 6690-6699.
[29] LUO G, YUAN Y, LI D Y, et al. Current Transition of Nucleation and Growth underDiffusion-Controlled Electrocrystallization: A Brief Review [J]. COATINGS, 2022, 12(8).
[30] 邹建. 微焊点界面的柯肯达尔孔洞生长及其抑制研究 [D]; 华中科技大学, 2012.
[31] 丁梓峰. 晶圆铜柱凸点电镀添加剂及其对焊点界面可靠性的影响 [D]; 江苏科技大学, 2023.
[32] ZHOU S Q, ZHANG Y B, GAO L Y, et al. The self-healing of Kirkendall voids on the interface between Sn and (111) oriented nanotwinned Cu under thermal aging [J].APPLIED SURFACE SCIENCE, 2022, 588.
[33] ZHANG M H, GAO L Y, LI J J, et al. Characterization of Cu-Cu direct bonding inambient atmosphere enabled using (111)-oriented nanotwinned-copper [J]. MATERIALS CHEMISTRY AND PHYSICS, 2023, 306.
[34] SUN F L, GAO L Y, LIU Z Q, et al. Electrodeposition and growth mechanism ofpreferentially orientated nanotwinned Cu on silicon wafer substrate [J]. JOURNALOF MATERIALS SCIENCE & TECHNOLOGY, 2018, 34(10): 1885-1890.
[35] LI Z G, GAO L Y, LIU Z Q. The effect of transition layer on the strength of nanotwinned copper film by DC electrodeposition; proceedings of the 2020 21st International Conference on Electronic Packaging Technology (ICEPT), F 12 -15 Aug. 2020, [C].
[36] ZHANG Y B, GAO L Y, LI X, et al. Electroplating nanotwinned copper for ultrafinepitch redistribution layer (RDL) of advanced packaging technology; proceedings ofthe 2021 22nd International Conference on Electronic Packaging Technology (ICEPT),F 14-17 Sept. 2021, [C].
[37] ZHAO S H, PANG K N, WANG X J, et al. Function of Sulfhydryl (-HS) Group During Microvia Filling by Copper Plating [J]. JOURNAL OF THE ELECTROCHEMICALSOCIETY, 2020, 167(11).
[38] KAO Y J, LI Y J, SHEN Y A, et al. Significant Hall-Petch effect in micro-nanocrystalline electroplated copper controlled by SPS concentration [J]. SCIENTIFIC REPORTS, 2023, 13(1).
[39] HUANG Q, AVEKIANS A, AHMED S, et al. Impurities in the Electroplated sub -50nm Cu Lines: The Effects of the Plating Additives [J]. JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2014, 161(9): D388-D394.
[40] ZHU Q S, DING Z F, WEI X F, et al. Effect of leveler on performance and reliabilityof copper pillar bumps in wafer electroplating under large current density [J]. MICROELECTRONICS RELIABILITY, 2023, 146.
[41] WU J Y, LEE H, WU C H, et al. Effects of Electroplating Additives on the InterfacialReactions between Sn and Cu Electroplated Layers [J]. JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2014, 161(10): D522-D557.
[42] CHEN Y M, HE W, CHEN X M, et al. Plating Uniformity of Bottom-up Copper Pillars and Patterns for IC Substrates with Additive-assisted Electrodeposition [J]. ELECTROCHIMICA ACTA, 2014, 120: 293-301.
[43] DOW W P, YEN M Y, LIU C W, et al. Enhancement of filling performance of a copper plating formula at low chloride concentration [J]. ELECTROCHIMICA ACTA, 2008,53(10): 3610-3619.
[44] JING H, ZHONGGUO L I, LIYIN G A O, et al. Effect of Methylene Blue on the Microstructure and Mechanical Properties of Nanotwinned Copper during DC Electroplating [J]. Journal of Integration Technology, 10(1): 55 -62.
[45] LIU C M, LIN H W, LU C L, et al. Effect of grain orientations of Cu seed layers onthe growth of <111>-oriented nanotwinned Cu [J]. SCIENTIFIC REPORTS, 2014, 4, 6123.
[46] DA FONSECA G D, SIQUEIRA F D, ALVES A L M, et al. Computer simulation ofsite saturation and constant nucleation rate transformations on a network of Kelvinpolyhedra [J]. JOURNAL OF MATERIALS RESEARCH AND TECHNOLOGYJMR&T, 2019, 8(5): 4534-4539.
[47] ZHANG X, ZHAO J F, KANG G Z, et al. Geometrically necessary dislocations andrelated kinematic hardening in gradient grained materials: A nonlocal crystal plasticity study [J]. INTERNATIONAL JOURNAL OF PLASTICITY, 2023, 163.
[48] BROWN D A, MORGAN S, PELDZINSKI V, et al. Crystal growth patterns in DC and pulsed plated galvanic copper films on (111), (100) and (110) copper surfaces [J].JOURNAL OF CRYSTAL GROWTH, 2017, 478: 220-228.
[49] ZHU Q S, ZHANG X, LI S J, et al. Communication-Electrodeposition of NanoTwinned Cu in Void-Free Filling for Blind Microvia of High Density Interconnect [J]. JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2018, 166(1): D3097-D3099.
[50] LI S J, ZHU Q S, ZHENG B D, et al. Nano-scale twinned Cu with ultrahigh strength prepared by direct current electrodeposition [J]. MATERIALS SCIENCE ANDENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2019, 758: 1-6.
[51] CHANG T R, JIN Y, WEN L, et al. Synergistic effects of gelatin and convection oncopper foil electrodeposition [J]. ELECTROCHIMICA ACTA, 2016, 211: 245 -254.

所在学位评定分委会
材料与化工
国内图书分类号
TQ153.1
来源库
人工提交
成果类型学位论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/779026
专题中国科学院深圳理工大学(筹)联合培养
推荐引用方式
GB/T 7714
刘瑾昊. 微电子封装用铜互连材料的制备、组织调控及可靠性[D]. 深圳. 南方科技大学,2024.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
12233283-刘瑾昊-中国科学院深圳(8725KB)----限制开放--请求全文
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[刘瑾昊]的文章
百度学术
百度学术中相似的文章
[刘瑾昊]的文章
必应学术
必应学术中相似的文章
[刘瑾昊]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。