中文版 | English
题名

基于巯基-烯光点击反应的有机硅临时键合材料的制备及其性能研究

其他题名
PREPARATION AND PROPERTIES OF ORGANOSILICON TEMPORARY BONDING MATERIALS BASED ON THIOL-ENE PHOTOCLICK REACTION
姓名
姓名拼音
LIU Yanting
学号
12233321
学位类型
硕士
学位专业
0856 材料与化工
学科门类/专业学位类别
08 工学
导师
张国平
导师单位
中国科学院深圳先进技术研究院
论文答辩日期
2024-05-07
论文提交日期
2024-07-05
学位授予单位
南方科技大学
学位授予地点
深圳
摘要

本研究致力于解决超薄晶圆加工过程中因机械性能下降导致的破片问 题,特别针对现有临时键合材料无法满足半导体加工高温需求的挑战。为 此,我们提出并实施了采用巯基-烯有机硅材料开发高耐热型临时键合粘结 层的创新策略。 在研究过程中,利用巯基-烯体系开发出了具有优异高温性能的临时键 合粘结层。通过对合成产物巯基硅油的详细分析,我们验证了其结构,并 深入研究了其分子量、粘度等关键性能指标。进一步,我们将该材料制备 成胶,并对其反应速率、热稳定性、粘结强度等性能进行了全面评估,由 此得到了综合性 能 优异的 临时键合 材 料。该临时键合材 料 Td ,5%值高于 447 ℃,满足高温制程要求,并在三层模型的临时键合与解键合工艺中得 到验证。 在带有释放层的四层模型中,我们成功攻克了机械解键合过程中残胶 黏附的难题。通过调节添加剂的配比,并优化后烘烤工艺,我们实现了键 合对的高效分离,从而避免了繁琐的清洗步骤。此外,我们还成功通过了 激光解键合的验证,并且利用正涂工艺的紫外激光解键合也取得了良好的 验证结果,充分证明了其在实际应用中的可行性。 针对减薄过程中出现的边缘小破碎现象,我们进行了深入研究。通过 增加乙烯基含量和引入刚性基团,我们成功提升了材料的杨氏模量,从而 改善了其机械性能。最终,我们成功开发出高模量有机硅临时键合材料, 杨氏模量达 28.56 MPa,并通过临时键合与解键合工艺验证了其优异性能。 本研究取得了一系列创新性成果,不仅为超薄晶圆加工提供了有效的 技术支持,也为半导体行业的持续发展做出了积极贡献。

关键词
语种
中文
培养类别
独立培养
入学年份
2022
学位授予年份
2024-07
参考文献列表

[1] MATSUBARA H, SHIBATA T, AKASU Y, et al. Novel Temporary Bonding Film Adapted to Xenon Flash Lamp De-bonding System for FOWLP Application[J]. IMAPSource Proceedings, 2023, 2022(1): 000249-000252.
[2] GURNETT K, ADAMS T. Ultra-thin semiconductor wafer applications and processes[J]. III-Vs Review, 2006, 19(4): 38-40.
[3] SAKAMOTO Y, WATANABE R, DAIDO I, et al. A Temporary Bonding De-Bonding Tape with High Thermal Resistance and Excellent TTV for 3DIC[C]//2023 International Conference on Electronics Packaging (ICEP). IEEE, 2023: 39-40.
[4] OLBRECHTS B, RASKIN J P. PECVD oxide as intermediate film for wafer bonding: Impact of residual stress[J]. Microelectronic Engineering, 2010, 87(11): 2178-2186.
[5] 刘强, 夏建文, 李绪军. 面向超薄器件加工的临时键合材料解决方案[J]. 集成技术, 2021, 10(1): 23-24.
[6] ZHANG H, LIU X, RICKARD S, et al. Novel Temporary Adhesive Materials for RDL-First Fan-Out Wafer-Level Packaging[C]//2018 IEEE 68th Electronic Components and Technology Conference (ECTC). IEEE, 2018: 1931-1936.
[7] HERMANOWSKI J. Thin wafer handling — Study of temporary wafer bonding materials and processes[C]//2009 IEEE International Conference on 3D System Integration. IEEE, 2009: 1-5.
[8] DENG L, FANG H, SHUAI X, et al. Preparation of reversible thermosets and their application in temporary adhesive for thin wafer handling[C]//2015 IEEE 65th Electronic Components and Technology Conference (ECTC). IEEE, 2015: 1197-1201.
[9] KUBO A, TAMURA K, IMAI H, et al. Development of new concept thermoplastic temporary adhesive for 3D-IC integration[C]//2014 IEEE 64th Electronic Components and Technology Conference (ECTC). IEEE, 2014: 899-905.
[10] VIAL K, FOURNEL F, WIMPLINGER M, et al. Delamination Root Cause in Temporary Bonding[J]. ECS Transactions, 2014, 64(5): 187-195.
[11] LI K, BAI Y, LIU Q, et al. A Novel High Temperature Resistant Temporary Bonding Material for Ultra-thin Wafer Handling: Superior Room Temperature Bonding, Heat Curing and Mechanical De-bonding Performances[C]//2022 23rd International Conference on Electronic Packaging Technology (ICEPT). IEEE, 2022: 1-4.
[12] VUDAYAGIRI S, ZAKARIA S, YU L, et al. High breakdown-strength composites from liquid silicone rubbers[J]. Smart Materials and Structures, 2014, 23(10): 105017.
[13] WANG F, LI Y, WANG D. Adhesion enhancement for liquid silicone rubber and different surface by organosilane and Pt catalyst at room temperature[J]. Bulletin of Materials Science, 2013, 36(6): 1013-1017. https://doi.org/10.1007/s12034-013-0575-8.
[14] RÖSCH L, JOHN P, REITMEIER R. Silicon Compounds, Organic[M]//Ullmann’s Encyclopedia of Industrial Chemistry. Wiley, 2000.
[15] LIU Z, XIONG Y, HAO J, et al. Liquid Crystal-Based Organosilicone Elastomers with Supreme Mechanical Adaptability[J]. Polymers, 2022, 14(4): 789.
[16] BEVAN M G, ROMENESKO B M. Modern electronic packaging technology[J]. Johns Hopkins APL Technical Digest, 1999, 20(1): 22-23.
[17] SU Y, FU G, WAN B, et al. Fatigue reliability design for metal dual inline packages under random vibration based on response surface method[J]. Microelectronics Reliability, 2019, 100: 113404.
[18] MANSOR N H, ABDUL AZIZ M S, MARJI N A, et al. Effect of Temperature on Solder Paste During Surface Mount Technology Printing[J]. Journal of Advanced Research in Fluid Mechanics and Thermal Sciences, 2020, 75(3): 99-107.
[19] YIM B S, LEE J Il, LEE B H, et al. Bonding Characteristics of Underfilled Ball Grid Array Packaging[J]. Materials transactions, 2015, 56(7): 974-980.
[20] SOLBERG V, GRAY G. Performance evaluations of stacked CSP memory modules[C]//IEEE/CPMT/SEMI 29th International Electronics Manufacturing Technology Symposium (IEEE Cat. No.04CH37585): Vol. 29. IEEE, 2004: 301-308.
[21] PETROSYANTS K O, RYABOV N I. Quasi-3D Thermal Simulation of Integrated Circuit Systems in Packages[J]. Energies, 2020, 13(12): 3054.
[22] ZWEBEN C. Advanced electronic packaging materials: revolutionary advances have recently been made in advanced monolithic and composite packaging materials for microelectronics and optoelectronics[J]. Advanced materials & processes, 2005, 165(10): 33-38.
[23] HUANG Y, YIN Z, WAN X. Advanced Electronic Packaging[M]//Modeling and Application of Flexible Electronics Packaging. Singapore: Springer Singapore, 2019: 1-27.
[24] GU Y, HUO Y. Advanced Electronic Packaging Technology: From Hard to Soft[J]. Materials, 2023, 16(6): 2346.
[25] CHEN Z, ZHANG J, WANG S, et al. Challenges and prospects for advanced packaging[J]. Fundamental Research, 2023.
[26] KONARSKI M M, HEATON J. Electronic packaging design advances miniaturization[J]. Circuits Assembly, 1996, 7(8): 32-35.
[27] NAGARAJAN R, DING L, COCCIOLI R, et al. 2.5D Heterogeneous Integration for Silicon Photonics Engines in Optical Transceivers[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2023, 29(3): 1-10.
[28] LAU J H. Recent advances and trends in heterogeneous integrations[J]. Journal of Microelectronics and Electronic Packaging, 2019, 16(2): 45-77.
[29] LIU S, XUE S, LIAN P, et al. Data-driven electronic packaging structure inverse design with an adaptive surrogate model[J]. Soldering and Surface Mount Technology, 2023, 35(5): 288-304.
[30] LANCASTER A, KESWANI M. Integrated circuit packaging review with an emphasis on 3D packaging[J]. Integration, 2018, 60: 204-212.
[31] SEAL S, MANTOOTH H. High Performance Silicon Carbide Power Packaging—Past Trends, Present Practices, and Future Directions[J]. Energies, 2017, 10(3): 341.
[32] MORRISSEY A, KELLY G, ALDERMAN J. Low-stress 3D packaging of a microsystem[J]. Sensors and Actuators, A: Physical, 1998, 68(1-3): 404-409.
[33] TU K N. Reliability challenges in 3D IC packaging technology[J]. Microelectronics Reliability, 2011, 51(3): 517-523.
[34] FOWLER M, APANIUS C, YESS BREWER K. High-Temperature Survivability and the Processes It Enables[J]. Chip Scale Review, 2018, 22(6): 14-17.
[35] LIU P, WANG J, TONG L, et al. Advances in the fabrication processes and applications of wafer level packaging[J]. Journal of Electronic Packaging, Transactions of the ASME, 2014, 136(2): 024002.
[36] JAYARAM V, MEHTA V, BAI Y, et al. Solutions to Overcome Warpage and Voiding Challenges in Fanout Wafer-level Packaging[C]//Proceedings - Electronic Components and Technology Conference. 2022: 1511-1517.
[37] MA B, TONG Q K, ZHANG E, et al. Materials challenges for wafer-level flip chip packaging[J]. Proceedings - Electronic Components and Technology Conference, 2000: 170-174.
[38] LIU X, HUANG B, ZHANG H, et al. A Versatile Fan-Out Infrastructure Based on Die-Stencil Substrate Promoted by an Advanced Multifunctional Temporary Bonding Material[C]//2019 IEEE 69th Electronic Components and Technology Conference (ECTC). IEEE, 2019: 1722-1728.
[39] SHOMRAT T, GRAINDORGE N, BELLANGER C, et al. Alternative sites of synaptic plasticity in two homologous “fan-out fan-in” learning and memory networks[J]. Current Biology, 2011, 21(21): 1773-1782.
[40] LAU J H, KO C T, PENG C Y, et al. Chip-Last (RDL-First) Fan-Out Panel-Level Packaging (FOPLP) for heterogeneous integration[J]. Journal of Microelectronics and Electronic Packaging, 2020, 17(3): 89-98.
[41] WU Q, LIU X, HAN K, et al. Temporary Bonding and Debonding Technologies for Fan-Out Wafer-Level Packaging[C]//2017 IEEE 67th Electronic Components and Technology Conference (ECTC). IEEE, 2017: 890-895.
[42] FOWLER M, MASSEY J P, KOCH M, et al. Advances in Temporary Bonding and Debonding Technologies for use with Wafer-Level System-in-Package (WLSiP) and Fan-Out Wafer-Level Packaging (FOWLP) Processes[J]. International Symposium on Microelectronics, 2018(1): 000051-000056.
[43] YANG Y suk, HWANG K sung, GORRELL R. Laser Releasable Temporary Bonding Film with High Thermal Stability[C]//2019 IEEE 69th Electronic Components and Technology Conference (ECTC). IEEE, 2019: 330-333.
[44] MASUDA S, YAMAUCHI A, IWAI Y, et al. Temporary bonding and debonding study with the newly developed room temperature mechanical debonding material[J]. Journal of Photopolymer Science and Technology, 2019, 32(2): 203-208.
[45] LAU J H, CHIEN H C, WU S T, et al. Thin-Wafer Handling with a Heat-Spreader Wafer for 2.5D/3D IC Integration[J]. International Symposium on Microelectronics, 2013, 2013(1): 000389-000396.
[46] CHANG H H, LAU J H, TSAI W L, et al. Thin Wafer Handling of 300mm Wafer for 3D IC Integration[J]. International Symposium on Microelectronics, 2011, 2011(1): 000202-000207.
[47] CHEN C, SU M, MA R, et al. Investigation of Warpage for Multi-Die Fan-Out Wafer-Level Packaging Process[J]. Materials, 2022, 15(5): 1683.
[48] ZHOU S. Influence of face-down and face-up bonding on the degree of polarization of superluminescent diode[J]. International Journal of Modern Physics B, 2017, 31(30): 1750229.
[49] LAU J H. FOWLP: Chip-First and Die Face-Down[M]//Fan-Out Wafer-Level Packaging. 2018: 127-143.
[50] WIETSTRUCK M, MAUSOLF T, LEHMANN J, et al. BiCMOS Integrated Temperature Sensor for Thermal Evaluation of Fan-out Wafer-level Packaging (FOWLP) including Hot Spot Analysis[C]//2022 IMAPS Nordic Conference on Microelectronics Packaging, NordPac. 2022: 1-5.
[51] SUKANEK P C, RYAN J G, SEKIGUCHI A, et al. Integrated Circuit Manufacture[M]//Encyclopedia of Physical Science and Technology: Vol. 45. Elsevier, 2003: 861-882.
[52] MARTIN TAYLOR D. Progress in organic integrated circuit manufacture[M]//Japanese Journal of Applied Physics. 2016: 02BA01.
[53] ZENG Y, ZHANG J, ZHOU H, et al. A new processing technique for fabrication of ultra-thin wafer[J]. The International Journal of Advanced Manufacturing Technology, 2019, 100(5-8): 1287-1298.
[54] DONG Z, LIN Y. Ultra-thin wafer technology and applications: A review[J]. Materials Science in Semiconductor Processing, 2020, 105: 104681.
[55] FEIL M, ADLER C, KLINK G, et al. Ultra thin ICs and MEMS elements: Techniques for wafer thinning, stress-free separation, assembly and interconnection[J]. Microsystem Technologies, 2003, 9(3): 176-182.
[56] PARES G, KAROUI C, ZAID A, et al. Full integration of a 3D demonstrator with TSV first interposer, ultra thin die stacking and wafer level packaging[C]//2013 IEEE 63rd Electronic Components and Technology Conference. IEEE, 2013: 305-306.
[57] MO Z, WANG F, LI J, et al. Temporary Bonding and Debonding in Advanced Packaging: Recent Progress and Applications[J]. Electronics, 2023, 12(7): 1666.
[58] PODPOD A, PHOMMAHAXAY A, BEX P, et al. Advances in Temporary Carrier Technology for High-Density Fan-Out Device Build-up[C]//2019 IEEE 69th Electronic Components and Technology Conference (ECTC). IEEE, 2019: 340-345.
[59] TECHNOLOGY D. Research on Temporary Bonding and Debonding Technology[J]. 2021: 45-48.
[60] MU F, SUGA T, UOMOTO M, et al. Temporary SiC-SiC Wafer Bonding Compatible with High Temperature Annealing[C]//2019 IEEE 69th Electronic Components and Technology Conference (ECTC). IEEE, 2019: 989-994.
[61] BAI Y, LI K, HUANG S, et al. A Novel Process to Reduce the Warpage of Bond Pair for Temporary Bonding and De-bonding Technique[C]//2022 23rd International Conference on Electronic Packaging Technology (ICEPT). IEEE, 2022: 1-4.
[62] SHUAI X, SUN R, ZHANG G, et al. A novel temporary adhesive for thin wafer handling[C]//2014 15th International Conference on Electronic Packaging Technology. IEEE, 2014: 256-261.
[63] ZHANG G, XIA J, LIU Q, et al. Laser de-bonding solution for ultra-thin flexible device processing[J]. J. Text. Res, 2018, 39: 155-159.
[64] PULIGADDA R. Temporary Bonding Material Requirements[M]//Handbook of 3D Integration: Vol. 3. Wiley, 2014: 135-146.
[65] ARAKI N, MAETANI S, KIM Y, et al. Material Optimization of Permanent and Temporary Adhesives for Wafer-level Three-dimensional Integration[C]//2020 IEEE 70th Electronic Components and Technology Conference (ECTC). IEEE, 2020: 56-61.
[66] LEE C W, SONG J Y, HA T H, et al. Temporary bonder used in vacuum environment to avoid air bubbles[C]//2012 4th Electronic System-Integration Technology Conference. IEEE, 2012: 1-4.
[67] UHRMANN T, BURGGRAF J, WIESBAUER H, et al. Temporary Bonding Cost Of Ownership: The link between low total thickness variation and chip yield[J]. Additional Conferences (Device Packaging, HiTEC, HiTEN, and CICMT), 2014(DPC): 001893-001912.
[68] LIU J, LI J, WANG T, et al. Organosoluble thermoplastic polyimide with improved thermal stability and UV absorption for temporary bonding and debonding in ultra-thin chip package[J]. Polymer, 2022, 244(February): 124660.
[69] HASHIGUCHI H, FUKUSHIMA T, MURUGESAN M, et al. High-Thermoresistant Temporary Bonding Technology for Multichip-to-Wafer 3-D Integration With Via-Last TSVs[J]. IEEE Transactions on Components, Packaging and Manufacturing Technology, 2019, 9(1): 181-188.
[70] JOHN R S E, MEYNEN H, WANG S, et al. Low cost, room temperature debondable spin-on temporary bonding solution: A key enabler for 2.5D/3D IC packaging[C]//2013 IEEE 63rd Electronic Components and Technology Conference. IEEE, 2013: 107-112.
[71] FRITZ N, DAO H, ALLEN S A B, et al. Polycarbonates as temporary adhesives[J]. International Journal of Adhesion and Adhesives, 2012.
[72] XU D, WANG H W, PATEL J, et al. A Novel Design of Temporary Bond Debond Adhesive Technology for Wafer-Level Assembly[C]//2020 IEEE 70th Electronic Components and Technology Conference (ECTC): Vols. 2020-June. IEEE, 2020: 68-74.
[73] SHI G X, WU J, QIAN K Q, et al. Research of temporary bonding for 3D integrational Microsystem[J]. Journal of Physics: Conference Series, 2018, 986: 012001.
[74] LEE A, SU J, MCCUTCHEON J, et al. Optimization of temporary bonding through high-resolution metrologies to realize ultrathin wafer handling[C]//2012 IEEE 14th Electronics Packaging Technology Conference (EPTC). IEEE, 2012: 322-325.
[75] 钱柯. 临时键合技术在晶圆级封装工艺运用的研究[J]. 电子世界, 2020.
[76] SHIT S C, SHAH P. A Review on Silicone Rubber[J]. National Academy Science Letters, 2013, 36(4): 355-365.
[77] CLASS J B, GRASSO R P. Efficiency of peroxides for curing silicone elastomers[J]. Rubber Chemistry and Technology, 1993, 66(4): 605-622.
[78] ULITZSCH S, BÄUERLE T, STEFANAKIS M, et al. Synthesis of an Addition-Crosslinkable, Silicon-Modified Polyolefin via Reactive Extrusion Monitored by In-Line Raman Spectroscopy[J]. Polymers, 2021, 13(8): 1246.
[79] LI K, ZHOU H, QIN Y, et al. ω-Alkenylmethyldichlorosilane-assisted propylene polymerization with Ziegler-Natta catalyst to long chain-branched polypropylene[J]. Polymer, 2020, 202: 122737.
[80] MADDUMA‐BANDARAGE U S K, MADIHALLY S V. Synthetic hydrogels: Synthesis, novel trends, and applications[J]. Journal of Applied Polymer Science, 2021, 138(19): 50376.
[81] ZHAO M, FENG Y, LI Y, et al. Preparation and Performance of Phenyl-Vinyl-POSS/Addition-Type Curable Silicone Rubber Hybrid Material[J]. Journal of Macromolecular Science, Part A, 2014, 51(8): 639-645.
[82] FRY B E, NECKERS D C. Rapid Photoactivated Hydrosilation Polymerization of Vinyldimethylsilane[J]. Macromolecules, 1996, 29(16): 5306-5312.
[83] LEWIS K M, COUDERC S. 1946 and the Early History of Hydrosilylation[J]. Molecules, 2022, 27(14): 4341.
[84] YANG G, WEI Y, HUANG Z, et al. Rapid and Efficient Collection of Platinum from Karstedt’s Catalyst Solution via Ligands-Exchange-Induced Assembly[J]. ACS Applied Materials & Interfaces, 2018, 10(7): 6778-6784.
[85] TROEGEL D, STOHRER J. Recent advances and actual challenges in late transition metal catalyzed hydrosilylation of olefins from an industrial point of view[J]. Coordination Chemistry Reviews, 2011, 255(13-14): 1440-1459.
[86] SAKAKI S, MIZOE N, SUGIMOTO M. Theoretical study of platinum(0)-catalyzed hydrosilylation of ethylene. Chalk-Harrod mechanism or modified Chalk-Harrod mechanism[J]. Organometallics, 1998, 17(12): 2510-2523.
[87] FAGLIONI F, BLANCO M, GODDARD W A, et al. Heterogeneous inhibition of homogeneous reactions: Karstedt catalyzed hydrosilylation[J]. Journal of Physical Chemistry B, 2002, 106(7): 1714-1721.
[88] SANGERMANO M, MARCHI S, MEIER P, et al. UV‐activated hydrosilation reaction for silicone polymer crosslinking[J]. Journal of Applied Polymer Science, 2013, 128(3): 1521-1526.
[89] MARCHI S, SANGERMANO M, LIGORIO D, et al. Impressive Rate Raise of the Hydrosilation Reaction Through UV‐Activation: Energy and Time Saving[J]. Macromolecular Materials and Engineering, 2016, 301(5): 610-613.
[90] MARCHI S, SANGERMANO M, MEIER P, et al. A Comparison of the Reactivity of Two Platinum Catalysts for Silicone Polymer Cross‐Linking by UV‐Activated Hydrosilation Reaction[J]. Macromolecular Reaction Engineering, 2015, 9(4): 360-365.
[91] SANGERMANO M, MARCHI S, LIGORIO D, et al. UV‐Induced Frontal Polymerization of a Pt‐Catalyzed Hydrosilation Reaction[J]. Macromolecular Chemistry and Physics, 2013, 214(8): 943-947.
[92] WANG F, NECKERS D C. Photoactivated isomerization of linear olefins[J]. Journal of Organic Chemistry, 2003, 68(2): 634-636.
[93] SANGERMANO M, ROPPOLO I, MESSORI M. UV-cured functional coatings[J]. RSC Smart Materials, 2015, 2015-Janua(13): 121-133.
[94] RISSING C, SON D Y. Thiol-ene chemistry of vinylsilanes[J]. Main Group Chemistry, 2009, 8(4): 251-262.
[95] XI W, SCOTT T F, KLOXIN C J, et al. Click Chemistry in Materials Science[J]. Advanced Functional Materials, 2014, 24(18): 2572-2590.
[96] WANG C, YANG J, LU Y. Click chemistry as a connection tool: Grand opportunities and challenges[J]. Chinese Journal of Catalysis, 2023, 49: 8-15.
[97] TAKAYAMA Y, KUSAMORI K, NISHIKAWA M. Click chemistry as a tool for cell engineering and drug delivery[J]. Molecules, 2019, 24(1): 172.
[98] MENG L, CHEN Z, FENG S. Synthesis and properties of sodium carboxylate silicone surfactant via thiol-ene “click” reaction[J]. Colloid and Interface Science Communications, 2022, 49(February): 100642.
[99] LIU Z, HONG P, HUANG Z, et al. Self-healing, reprocessing and 3D printing of transparent and hydrolysis-resistant silicone elastomers[J]. Chemical Engineering Journal, 2020, 387: 124142.
[100]XUE L, ZHANG Y, ZUO Y, et al. Preparation and characterization of novel UV-curing silicone rubber via thiol-ene reaction[J]. Materials Letters, 2013, 106: 425-427.
[101]XUE L, WANG D, YANG Z, et al. Facile, versatile and efficient synthesis of functional polysiloxanes via thiol–ene chemistry[J]. European Polymer Journal, 2013, 49(5): 1050-1056.
[102]姚臻, 戴博恩, 于云飞, et al. 巯基-环氧点击化学及其在高分子材料中的应用[J]. 化学进展, 2016, 28(7): 1062.
[103]KADE M J, BURKE D J, HAWKER C J. The power of thiol-ene chemistry[J]. Journal of Polymer Science, Part A: Polymer Chemistry, 2010, 48(4): 743-750.
[104]VAN DEN BERG O, NGUYEN L T T, TEIXEIRA R F A, et al. Low Modulus Dry Silicone-Gel Materials by Photoinduced Thiol–Ene Chemistry[J]. Macromolecules, 2014, 47(4): 1292-1300.
[105]ZHANG Q, ZHOU X, XU Y. Xylooligosaccharides Production from Xylan Hydrolysis Using Recyclable Strong Acidic Cationic Exchange Resin as Solid Acid Catalyst[J]. Applied Biochemistry and Biotechnology, 2022, 194(8): 3609-3620.
[106]PHOMMAHAXAY A, PODPOD A, SLABBEKOORN J, et al. Advances in Temporary Bonding and Release Technology for Ultrathin Substrate Processing and High-Density Fan-Out Device Build-up[C]//2018 IEEE 68th Electronic Components and Technology Conference (ECTC). IEEE, 2018: 985-992.
[107]ISHIDA H, LUTTER S. Permanent Wafer Bonding and Temporary Wafer Bonding / De-Bonding Technology Using Temperature Resistant Polymers[J]. Journal of Photopolymer Science and Technology, 2014, 27(2): 173-176.
[108]RUAN M, YANG D, GUO W, et al. Improved electromechanical properties of brominated butyl rubber filled with modified barium titanate[J]. RSC Advances, 2017, 7(59): 37148-37157.
[109]LEE S W, LEE T H, PARK J W, et al. The effect of laser irradiation on peel strength of temporary adhesives for wafer bonding[J]. International Journal of Adhesion and Adhesives, 2015, 57: 9-12.
[110]XI L, LIU Z, SU J, et al. UV‐activated hydrosilylation of (Me‐Cp)Pt(Me) 3 : Enhanced photocatalytic activity, polymerization kinetics, and photolithography[J]. Journal of Applied Polymer Science, 2019, 136(47): 1-9.
[111]张继静, 连军莉. 超声扫描技术及设备[J]. 电子工业专用设备, 2011, 40(5): 32-36.
[112]范春帅, 陈林, 张文辉. 基于超声扫描的塑封器件结构异常案例分析[J]. 电子质量, 2019(8): 27-29.
[113]李青松, 罗向阳, 王瑞崧. 塑封微电路超声扫描检测的局限性[J]. 电子封装, 2018, 18(12): 8.

所在学位评定分委会
材料与化工
国内图书分类号
TQ433.4+3
来源库
人工提交
成果类型学位论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/779031
专题中国科学院深圳理工大学(筹)联合培养
推荐引用方式
GB/T 7714
刘彦婷. 基于巯基-烯光点击反应的有机硅临时键合材料的制备及其性能研究[D]. 深圳. 南方科技大学,2024.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
12233321-刘彦婷-中国科学院深圳(8973KB)----限制开放--请求全文
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[刘彦婷]的文章
百度学术
百度学术中相似的文章
[刘彦婷]的文章
必应学术
必应学术中相似的文章
[刘彦婷]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。