[1] VEENSTRA T D. Omics in systems biology: current progress and future outlook[J]. Proteomics, 2021, 21(3-4): 2000235.
[2] LIU K, THEUSCH E, ZHOU Y, et al. GeneFishing to reconstruct context specific portraits of biological processes[J]. Proceedings of the National Academy of Sciences, 2019, 116(38): 18943-18950.
[3] MOREAU Y, TRANCHEVENT L C. Computational tools for prioritizing candidate genes: boosting disease gene discovery[J]. Nature Reviews Genetics, 2012, 13(8): 523-536.
[4] YU B. Stability[J]. Bernoulli, 2013, 19(4): 1484-1500.
[5] YU W, WULF A, LIU T, et al. Gene Prospector: an evidence gateway for evaluating potential susceptibility genes and interacting risk factors for human diseases[J]. BMC Bioinformatics, 2008, 9(1): 1-8.
[6] AERTS S, LAMBRECHTS D, MAITY S, et al. Gene prioritization through genomic data fusion [J]. Nature Biotechnology, 2006, 24(5): 537-544.
[7] TRANCHEVENT L C, BARRIOT R, YU S, et al. E ndeavour update: a web resource for gene prioritization in multiple species[J]. Nucleic Acids Research, 2008, 36(suppl_2): W377-W384.
[8] GREENE C S, KRISHNAN A, WONG A K, et al. Understanding multicellular function and disease with human tissue-specific networks[J]. Nature Genetics, 2015, 47(6): 569-576.
[9] CRICK F. Central dogma of molecular biology[J]. Nature, 1970, 227(5258): 561-563.
[10] GIBNEY E, NOLAN C. Epigenetics and gene expression[J]. Heredity, 2010, 105(1): 4-13.
[11] BUCCITELLI C, SELBACH M. mRNAs, proteins and the emerging principles of gene expression control[J]. Nature Reviews Genetics, 2020, 21(10): 630-644.
[12] KIM M S, PINTO S M, GETNET D, et al. A draft map of the human proteome[J]. Nature, 2014, 509(7502): 575-581.
[13] NIE L, WU G, CULLEY D E, et al. Integrative analysis of transcriptomic and proteomic data: challenges, solutions and applications[J]. Critical Reviews in Biotechnology, 2007, 27(2): 63-75.
[14] VAN DAM S, VOSA U, VAN DER GRAAF A, et al. Gene co-expression analysis for functional classification and gene–disease predictions[J]. Briefings in Bioinformatics, 2018, 19(4): 575-592.
[15] GILLIS J, PAVLIDIS P. “Guilt by association” is the exception rather than the rule in gene networks[J]. PLoS Computational Biology, 2012, 8(3): e1002444.
[16] ZHANG B, HORVATH S. A general framework for weighted gene co-expression network analysis[J]. Statistical Applications in Genetics and Molecular Biology, 2005, 4(1).
[17] D’HAESELEER P. How does gene expression clustering work?[J]. Nature Biotechnology, 2005, 23(12): 1499-1501
[18] HEYER L J, KRUGLYAK S, YOOSEPH S. Exploring expression data: identification and analysis of coexpressed genes[J]. Genome Research, 1999, 9(11): 1106-1115.
[19] KUMARI S, NIE J, CHEN H S, et al. Evaluation of gene association methods for coexpression network construction and biological knowledge discovery[J]. PloS One, 2012, 7(11): e50411.
[20] MUKAKA M M. A guide to appropriate use of correlation coefficient in medical research[J]. Malawi Medical Journal, 2012, 24(3): 69-71.
[21] FUJITA A, SATO J R, DEMASI M A A, et al. Comparing Pearson, Spearman and Hoeffding’s D measure for gene expression association analysis[J]. Journal of Bioinformatics and Computational Biology, 2009, 7(04): 663-684.
[22] HOU J, YE X, FENG W, et al. Distance correlation application to gene co-expression network analysis[J]. BMC Bioinformatics, 2022, 23(1): 1-24.
[23] HAUKE J, KOSSOWSKI T. Comparison of values of Pearson’s and Spearman’s correlation coefficients on the same sets of data[J]. Quaestiones Geographicae, 2011, 30(2): 87-93.
[24] XIAO C, YE J, ESTEVES R M, et al. Using Spearman’s correlation coefficients for exploratory data analysis on big dataset[J]. Concurrency and Computation: Practice and Experience, 2016,28(14): 3866-3878.
[25] WANG H, SUN Q, ZHAO W, et al. Individual-level analysis of differential expression of genes and pathways for personalized medicine[J]. Bioinformatics, 2015, 31(1): 62-68.
[26] BALDI P, LONG A D. A Bayesian framework for the analysis of microarray expression data: regularized t-test and statistical inferences of gene changes[J]. Bioinformatics, 2001, 17(6): 509-519.
[27] JEANMOUGIN M, DE REYNIES A, MARISA L, et al. Should we abandon the t-test in the analysis of gene expression microarray data: a comparison of variance modeling strategies[J]. PloS One, 2010, 5(9): e12336.
[28] CUI X, CHURCHILL G A. Statistical tests for differential expression in cDNA microarray experiments[J]. Genome Biology, 2003, 4: 1-10.
[29] CONSORTIUM G O. The Gene Ontology (GO) database and informatics resource[J]. Nucleic Acids Research, 2004, 32(suppl_1): D258-D261.
[30] CONSORTIUM G O. The gene ontology resource: 20 years and still GOing strong[J]. Nucleic Acids Research, 2019, 47(D1): D330-D338.
[31] SUBRAMANIAN A, TAMAYO P, MOOTHA V K, et al. Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles[J]. Proceedings of the National Academy of Sciences, 2005, 102(43): 15545-15550.
[32] HUNG J H, YANG T H, HU Z, et al. Gene set enrichment analysis: performance evaluation and usage guidelines[J]. Briefings in Bioinformatics, 2012, 13(3): 281-291.
[33] KOROTKEVICH G, SUKHOV V, BUDIN N, et al. Fast gene set enrichment analysis[J]. BioRxiv, 2016: 060012.
[34] KISELEV V Y, ANDREWS T S, HEMBERG M. Challenges in unsupervised clustering of single-cell RNA-seq data[J]. Nature Reviews Genetics, 2019, 20(5): 273-282.
[35] MACQUEEN J, et al. Some methods for classification and analysis of multivariate observations [C]//Proceedings of the fifth Berkeley symposium on mathematical statistics and probability: Vol. 1. Oakland, CA, USA, 1967: 281-297.
[36] VON LUXBURG U. A tutorial on spectral clustering[J]. Statistics and Computing, 2007, 17: 395-416.
[37] NG A, JORDAN M, WEISS Y. On spectral clustering: Analysis and an algorithm[J]. Advances in Neural Information Processing Systems, 2001, 14.
[38] 张宪超. 数据聚类[M]. 科学出版社, 2017.
[39] SALZBERG S L. Open questions: How many genes do we have?[J]. BMC Biology, 2018, 16 (1): 1-3.
[40] AMARAL P, CARBONELL-SALA S, DE LA VEGA F M, et al. The status of the human gene catalogue[J]. Nature, 2023, 622(7981): 41-47.
[41] GUO G, HUSS M, TONG G Q, et al. Resolution of cell fate decisions revealed by single-cell gene expression analysis from zygote to blastocyst[J]. Developmental Cell, 2010, 18(4): 675-685.
[42] VASAIKAR S, HUANG C, WANG X, et al. Proteogenomic analysis of human colon cancer reveals new therapeutic opportunities[J]. Cell, 2019, 177(4): 1035-1049.
[43] JIN L, BI Y, HU C, et al. A comparative study of evaluating missing value imputation methods in label-free proteomics[J]. Scientific Reports, 2021, 11(1): 1760.
[44] MA W, KIM S, CHOWDHURY S, et al. DreamAI: algorithm for the imputation of proteomics data[J]. Biorxiv, 2020: 2020-07.
[45] HICKS S C, IRIZARRY R A. Quantro: a data-driven approach to guide the choice of an appropriate normalization method[J]. Genome Biology, 2015, 16: 1-8.
[46] GAGNON-BARTSCH J A, SPEED T P. Using control genes to correct for unwanted variation in microarray data[J]. Biostatistics, 2012, 13(3): 539-552.
[47] BOLSTAD B M, IRIZARRY R A, ÅSTRAND M, et al. A comparison of normalization methods for high density oligonucleotide array data based on variance and bias[J]. Bioinformatics, 2003, 19(2): 185-193.
[48] MCINNES L, HEALY J, MELVILLE J. UMAP: Uniform Manifold Approximation and Projection for Dimension Reduction[A]. 2020. arXiv: 1802.03426.
[49] NIU L, GAO C, LI Y. Identification of potential core genes in colorectal carcinoma and key genes in colorectal cancer liver metastasis using bioinformatics analysis[J]. Scientific reports, 2021, 11(1): 23938.
[50] YUAN S, WANG P, ZHOU X, et al. Differential proteomics mass spectrometry of melanosis coli[J]. American Journal of Translational Research, 2020, 12(7): 3133.
[51] YUZHALIN A, GORDON-WEEKS A, TOGNOLI M, et al. Colorectal cancer liver metastatic growth depends on PAD4-driven citrullination of the extracellular matrix[J]. Nature Commu nications, 2018, 9(1): 4783.
[52] XING S, WANG Y, HU K, et al. WGCNA reveals key gene modules regulated by the combined treatment of colon cancer with PHY906 and CPT11[J]. Bioscience Reports, 2020, 40(9): BSR20200935.
[53] BUTTACAVOLI M, DI CARA G, ROZ E, et al. Integrated multi-omics investigations of metal loproteinases in colon cancer: Focus on MMP2 and MMP9[J]. International Journal of Molec ular Sciences, 2021, 22(22): 12389.
[54] DAVIS M E. Glioblastoma: overview of disease and treatment[J]. Clinical Journal of Oncology Nursing, 2016, 20(5): S2.
[55] WANG L B, KARPOVA A, GRITSENKO M A, et al. Proteogenomic and metabolomic characterization of human glioblastoma[J]. Cancer Cell, 2021, 39(4): 509-528.
[56] TANG F, ISHWARAN H. Random forest missing data algorithms[J]. Statistical Analysis and Data Mining: The ASA Data Science Journal, 2017, 10(6): 363-377.
[57] STEKHOVEN D J, BÜHLMANN P. MissForest—non-parametric missing value imputation for mixed-type data[J]. Bioinformatics, 2012, 28(1): 112-118.
[58] WALJEE A K, MUKHERJEE A, SINGAL A G, et al. Comparison of imputation methods for missing laboratory data in medicine[J]. BMJ Open, 2013, 3(8): e002847.
[59] YANG A, WANG X, HU Y, et al. Identification of hub gene GRIN1 correlated with histological grade and prognosis of glioma by weighted gene coexpression network analysis[J]. BioMed Research International, 2021, 2021.
[60] QI C, LEI L, HU J, et al. Identification of a five-gene signature deriving from the vacuolar AT Pase (V-ATPase) sub-classifies gliomas and decides prognoses and immune microenvironment alterations[J]. Cell Cycle, 2022, 21(12): 1294-1315.
[61] DAUBON T, GUYON J, RAYMOND A A, et al. The invasive proteome of glioblastoma revealed by laser-capture microdissection[J]. Neuro-Oncology Advances, 2019, 1(1): vdz029.
[62] NELSON J S, BURCHFIEL C M, FEKEDULEGN D, et al. Potential risk factors for incident glioblastoma multiforme: the Honolulu Heart Program and Honolulu-Asia Aging Study [J]. Journal of Neuro-oncology, 2012, 109: 315-321.
[63] TAN A C, ASHLEY D M, LÓPEZ G Y, et al. Management of glioblastoma: State of the art and future directions[J]. CA: A Cancer Journal for Clinicians, 2020, 70(4): 299-312.
[64] HASAN T, CARAGHER S P, SHIREMAN J M, et al. Interleukin-8/CXCR2 signaling regulates therapy-induced plasticity and enhances tumorigenicity in glioblastoma[J]. Cell Death & Disease, 2019, 10(4): 292.
[65] GENG H, AN Q, ZHANG Y, et al. Role of Peptidylarginine Deiminase 4 in Central Nervous System Diseases[J]. Molecular Neurobiology, 2023, 60(11): 6748-6756.
[66] ARAUJO-ABAD S, FUENTES-BAILE M, RIZZUTI B, et al. The intrinsically disordered, epigenetic factor RYBP binds to the citrullinating enzyme PADI4 in cancer cells[J]. International Journal of Biological Macromolecules, 2023, 246: 125632.
[67] MANOU D, BOURIS P, KLETSAS D, et al. Serglycin activates pro-tumorigenic signaling and controls glioblastoma cell stemness, differentiation and invasive potential[J]. Matrix Biology Plus, 2020, 6: 100033.
[68] DONG W, LI L, TENG X, et al. End processing factor APLF promotes NHEJ efficiency and contributes to TMZ-and ionizing radiation-resistance in glioblastoma cells[J]. OncoTargets and Therapy, 2020: 10593-10605.
[69] SCHMITT C, LUCIUS R, SYNOWITZ M, et al. APOBEC3B is expressed in human glioma, and influences cell proliferation and temozolomide resistance[J]. Oncology Reports, 2018, 40 (5): 2742-2749.
修改评论