中文版 | English
题名

具有表面增强拉曼散射效应的复合纳米材料的制备及在病毒检测中的应用

其他题名
NANOCOMPOSITES WITH SURFACE- ENHANCED RAMAN SCATTERING EFFECT AND APPLICATION IN VIRUS DETECTION
姓名
姓名拼音
WANG Haoquan
学号
12132795
学位类型
硕士
学位专业
0703 化学
学科门类/专业学位类别
07 理学
导师
韩松柏
导师单位
前沿与交叉科学研究院
论文答辩日期
2024-05-10
论文提交日期
2024-07-06
学位授予单位
南方科技大学
学位授予地点
深圳
摘要

自新型冠状病毒(COVID-19)大流行热点事件之后,公共卫生安全问题愈发成为各国关注的重点。控制传染源是应对类似传染性事件最有效的方法,这需要对传染源进行快速且高灵敏的识别,然而现有的病毒检测技术往往不能同时实现。本论文利用表面增强拉曼光谱(SERS)技术快速精准识别和高灵敏的特点,将SERS技术与现有的病毒检测技术相结合,制备了两种具有表面增强拉曼散射效应的复合纳米材料,并进行病毒检测的应用。主要研究内容和研究成果如下

利用溶剂热法制备了粒径可控的空心结构Fe3O4纳米粒子(NPs),并实现了SiO2壳层以及Au壳层的吸附与生长,通过对各组分的表征调控,最终成功制备出具有SERS效应的磁性Fe3O4@SiO2@Au复合纳米材料。严重急性呼吸系统综合征冠状病毒2型(SARS-CoV-2)的相关核酸片段作为目的片段,分别设计与目的核酸片段半互补的引物1以及引物2(修饰有拉曼报告分子CY5)。将引物1修饰在Fe3O4@SiO2@Au NPs表面,并通过夹心法对目的核酸片段进行捕获,在粒子表面形成(引物1-目的片段-引物2)三明治结构。最后,利用拉曼光谱仪对Fe3O4@SiO2@Au NPs进行检测,成功实现对SARS-CoV-2相关核酸片段浓度为10-6 M的检出。

利用多元醇还原法制备了聚二烯丙基二甲基氯化铵PDDA)修饰的单分散金八面体纳米粒子,并通过静电吸附作用围绕金八面体核心进行Au NPs以及拉曼报告分子吲哚菁绿(ICG)的组装。最后使用SiO2壳层对Au/Au@ICG复合纳米结构进行封装,得到具有ICG分子拉曼信号的金复合纳米材料(Au/Au@ICG@SiO2 NPs)。Au/Au@ICG@SiO2 NPs与侧流免疫层析技术结合,并利用拉曼光谱仪进行检测分析,实现对SARS-CoV-2的核衣壳蛋白500 fg/mL浓度的成功检出。相较于对侧流免疫层析试纸的传统生物识别方式4 pg/mL浓度的检测限,将对SARS-CoV-2核衣壳蛋白的检出能力提高了约1个数量级。这项研究展示了利用Au/Au@ICG@SiO2 NPs结合侧流免疫层析技术对SARS-CoV-2进行高灵敏度检测的潜力,有望在类似传染性病毒的早期防控方面发挥重要作用。

关键词
语种
中文
培养类别
独立培养
入学年份
2021
学位授予年份
2024-06
参考文献列表

[1] WANG C, LIU M, WANG Z, et al. Point-of-care diagnostics for infectious diseases: From methods to devices[J]. Nano Today, 2021, 37: 101092.
[2] OROOJI Y, SOHRABI H, HEMMAT N, et al. An overview on SARS-CoV-2 (COVID-19) and other human coronaviruses and their detection capability via amplification assay, chemical sensing, biosensing, immunosensing, and clinical assays. Nano-Micro Letters, 2021, 13: 18.
[3] PRWPA B, PDLH A, YYTD C, et al. Diagnostics for COVID-19: moving from pandemic response to control[J]. The Lancet. Infectious diseases, 2021, 21(10): 1334-1335.
[4] ORLANDO A, FRANCESCHINI F, MUSCAS C, et al. A comprehensive review on Raman spectroscopy applications [J]. Chemosensors, 2021, 9(9): 262.
[5] FLEISCHMANN M, HENDRA P J, MCQUILLAN A J. Raman spectra of pyridine adsorbed at a silver electrode [J]. Chemical Physics Letters, 1974, 26(2): 163-166.
[6] ALBRECHT M G, CREIGHTON J A. Anomalously intense Raman-spectra of pyridine at a silver electrode [J]. Journal of the American Chemical Society, 1977, 99(15): 5215-5217.
[7] JEANMAIRE D L, VANDUYNE R P. Surface Raman spectroelectrochemistry. Part 1. Heterocyclic, aromatic, and aliphatic-amines adsorbed on anodized silver electrode [J]. Journal of Electroanalytical Chemistry, 1977, 84(1): 1-20.
[8] DING S Y, YI J, LI J F. et al. Nanostructure-based plasmon-enhanced Raman spectroscopy for surface analysis of materials[J]. Nature Review Materials, 2016, 21: 16021.
[9] JENSEN L, AIKENS C M, SCHATZ G C. Electronic structure methods for studying surface-enhanced Raman scattering [J]. Chemical Society Reviews, 2008, 37(5): 1061-1073.
[10] HUTTER E, FENDLER J H. Exploitation of localized surface plasmon resonance [J]. Advanced Materials, 2004, 16(19): 1685-1706.
[11] HAN X X, RODRIGUEZ R S, HAYNES C L, et al. Surface-enhanced Raman spectroscopy [J]. Nature Reviews Methods Primers, 2022, 1(1): 87.
[12] PIENPINIJTHAM P, KITAHAMA Y, OZAKI Y. Progress of tip-enhanced Raman scattering for the last two decades and its challenges in very recent years [J]. Nanoscale, 2022, 14(14): 5265-5288.
[13] ZHANG K, BAO Y, CAO M, et al. Low-background tip-enhanced Raman spectroscopy enabled by a plasmon thin-film waveguide probe [J]. Analytical Chemistry, 2021, 93(21): 7699-7706.
[14] LI J F, HUANG Y F, DING Y, et al. Shell-isolated nanoparticle-enhanced Raman spectroscopy [J]. Nature, 2010, 464(7287): 392-395.
[15] LI J F, TIAN X D, LI S B, et al. Surface analysis using shell-isolated nanoparticle-enhanced Raman spectroscopy [J]. Nature Protocols, 2013, 8(1): 52-65.
[16] FANG P-P, LU X, LIU H, et al. Applications of shell-isolated nanoparticles in surface-enhanced Raman spectroscopy and fluorescence [J]. TrAC Trends in Analytical Chemistry, 2015, 66: 103-117.
[17] REN B, LIU G K, LIAN X B, et al. Raman spectroscopy on transition metals [J]. Analytical and Bioanalytical Chemistry, 2007, 388(1): 29-45.
[18] WANG X T, GUO L. SERS activity of semiconductors: Crystalline and Amorphous Nanomaterials [J]. Angewandte Chemie-International Edition, 2020, 59(11): 4231-4239.
[19] YIN Z, XU K, JIANG S, et al. Recent progress on two-dimensional layered materials for surface enhanced Raman spectroscopy and their applications [J]. Materials Today Physics, 2021, 18: 100378.
[20] LI B Z, LIU S J, HUANG L J, et al. Nanohybrid SERS substrates intended for food supply chain safety [J]. Coordination Chemistry Reviews, 2023, 494: 215349.
[21] WEI R, XU Y, XUE M. Hollow iron oxide nanomaterials: synthesis, functionalization, and biomedical applications [J]. Journal of Materials Chemistry B, 2021, 9(8): 1965-1979.
[22] LIU J, QIAO S Z, HU Q H, et al. Magnetic nanocomposites with mesoporous structures: Synthesis and applications [J]. Small, 2011, 7(4): 425-443.
[23] INESTROSA-IZURIETA M J, VILCHES D, URZUA J I. Tailored synthesis of iron oxide nanoparticles for specific applications using a statistical experimental design [J]. Heliyon, 2023, 9(11): e21124.
[24] SMOLKOVA I S, KAZANTSEVA N E, PARMAR H, et al. Correlation between coprecipitation reaction course and magneto-structural properties of iron oxide nanoparticles [J]. Materials Chemistry and Physics, 2015, 155: 178-190.
[25] NIKITIN A A, SHCHETININ I V, TABACHKOVA N Y, et al. Synthesis of iron oxide nanoclusters by thermal decomposition [J]. Langmuir, 2018, 34(15): 4640-4650.
[26] XIANG H, DONG P, PI L, et al. One-pot synthesis of water-soluble and biocompatible superparamagnetic gadolinium-doped iron oxide nanoclusters [J]. Journal of Materials Chemistry B, 2020, 8(7): 1432-1444.
[27] LI Y, WANG Z, ALI Z, et al. Monodisperse Fe3O4 spheres: Large-scale controlled synthesis in the absence of surfactants and chemical kinetic process [J]. Science China Materials, 2019, 62(10): 1488-1495.
[28] DENG H, LI X, PENG Q, et al. Monodisperse magnetic single-crystal ferrite microspheres [J]. Angewandte Chemie International Edition, 2005, 44(18): 2782-2785.
[29] GRANATH T, LöBMANN P, MANDEL K. Oxidative precipitation as a versatile method to obtain ferromagnetic Fe3O4 nano‐ and mesocrystals adjustable in morphology and magnetic properties [J]. Particle & Particle Systems Characterization, 2021, 38(3): 2000307.
[30] VEREDA F, MORALES M D, RODRíGUEZ-GONZáLEZ B, et al. Control of surface morphology and internal structure in magnetite microparticles: from smooth single crystals to rough polycrystals [J]. CrystEngComm, 2013, 15(26): 5236-5244.
[31] XIE W, GUO Z, GAO F, et al. Shape-, size- and structure-controlled synthesis and biocompatibility of iron oxide nanoparticles for magnetic theranostics [J]. Theranostics, 2018, 8(12): 3284-3307.
[32] SUN Z, DU J, YAN L, et al. Multifunctional Fe3O4@SiO2-Au satellite structured SERS probe for charge selective detection of food dyes [J]. ACS Applied Materials & Interfaces, 2016, 8(5): 3056-3062.
[33] LU S, DU J, SUN Z, et al. Hairpin-structured magnetic SERS sensor for tetracycline resistance gene tetA detection [J]. Analytical Chemistry, 2020, 92(24): 16229-16235.
[34] GUAN P C, ZHANG H, LI Z Y, et al. Rapid point-of-care assay by SERS detection of SARS-CoV-2 virus and its variants [J]. Analytical Chemistry, 2022, 94(51): 17795-17802.
[35] DANIEL M C, ASTRUC D. Gold nanoparticles: Assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology [J]. Chemical Reviews, 2004, 104(1): 293-346.
[36] YI J, XIANYU Y. Gold nanomaterials‐implemented wearable sensors for healthcare applications [J]. Advanced Functional Materials, 2022, 32(19): 2113012.
[37] CHAKRABORTY S, ANSAR S M, STROUD J G, et al. Comparison of colloidal versus supported gold nanoparticle catalysis [J]. The Journal of Physical Chemistry C, 2018, 122(14): 7749-7758.
[38] HUANG X H, EL-SAYED I H, QIAN W, et al. Cancer cell imaging and photothermal therapy in the near-infrared region by using gold nanorods [J]. Journal of the American Chemical Society, 2006, 128(6): 2115-2120.
[39] MIAO X, CHENG Z, MA H, et al. Label-free platform for microRNA detection based on the fluorescence quenching of positively charged gold nanoparticles to silver nanoclusters [J]. Analytical Chemistry, 2018, 90(2): 1098-1103.
[40] LI C C, SHUFORD K L, CHEN M H, et al. A facile polyol route to uniform gold octahedra with tailorable size and their optical properties [J]. ACS Nano, 2008, 2(9): 1760-1769.
[41] SANCHEZ-IGLESIAS A, WINCKELMANS N, ALTANTZIS T, et al. High-yield seeded growth of monodisperse pentatwinned gold nanoparticles through thermally induced seed twinning [J]. Journal of the American Chemical Society, 2017, 139(1): 107-110.
[42] QIN Y, LU Y, YU D, et al. Controllable synthesis of Au nanocrystals with systematic shape evolution from an octahedron to a truncated ditetragonal prism and rhombic dodecahedron [J]. CrystEngComm, 2019, 21(37): 5602-5609.
[43] NIU W, CHUA Y A, ZHANG W, et al. Highly symmetric gold nanostars: Crystallographic control and surface-enhanced Raman scattering property [J]. Journal of the American Chemical Society, 2015, 137(33): 10460-10463.
[44] HONG X, TAN C, CHEN J, et al. Synthesis, properties and applications of one- and two-dimensional gold nanostructures [J]. Nano Research, 2014, 8(1): 40-55.
[45] GRZELCZAK M, PEREZ-JUSTE J, MULVANEY P, et al. Shape control in gold nanoparticle synthesis [J]. Chemical Society Reviews, 2008, 37(9): 1783-1791.
[46] LIU Y, ZHOU J, YUAN X, et al. Hydrothermal synthesis of gold polyhedral nanocrystals by varying surfactant concentration and their LSPR and SERS properties [J]. RSC Advances, 2015, 5(84): 68668-68675.
[47] ZHANG Q, LARGE N, WANG H. Gold nanoparticles with tipped surface structures as substrates for single-particle surface-enhanced Raman spectroscopy: concave nanocubes, nanotrisoctahedra, and nanostars [J]. ACS Applied Materials & Interfaces, 2014, 6(19): 17255-17267.
[48] WANG K L, WANG Y P, WANG C W, et al. Facile synthesis of high-performance SiO2@Au core-shell nanoparticles with high SERS activity [J]. RSC Advances, 2018, 8(54): 30825-30831.
[49] YANG M, CHEN T, LAU W S, et al. Development of polymer-encapsulated metal nanoparticles as surface-enhanced Raman scattering probes [J]. Small, 2009, 5(2): 198-202.
[50] MULVANEY S P, MUSICK M D, KEATING C D, et al. Glass-coated, analyte-tagged nanoparticles: A new tagging system based on detection with surface-enhanced Raman scattering [J]. Langmuir, 2003, 19(11): 4784-4790.
[51] RODRíGUEZ-FERNáNDEZ D, LANGER J, HENRIKSEN-LACEY M, et al. Hybrid Au–SiO2 core–satellite colloids as switchable SERS tags [J]. Chemistry of Materials, 2015, 27(7): 2540-2545.
[52] SEBBA D, LASTOVICH A G, KURODA M, et al. A point-of-care diagnostic for differentiating Ebola from endemic febrile diseases [J]. Science Translational Medicine, 2018, 10: 471.
[53] STOBER W, FINK A, BOHN E. Controlled growth of monodisperse silica spheres in micron size range [J]. Journal of Colloid and Interface Science, 1968, 26(1): 62-69.
[54] LAMER V K, DINEGAR R H. Theory, production and mechanism of formation of monodispersed hydrosols [J]. Journal of the American Chemical Society, 1950, 72(11): 4847-4854.

所在学位评定分委会
化学
国内图书分类号
O69
来源库
人工提交
成果类型学位论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/779038
专题理学院_化学系
推荐引用方式
GB/T 7714
王昊全. 具有表面增强拉曼散射效应的复合纳米材料的制备及在病毒检测中的应用[D]. 深圳. 南方科技大学,2024.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
12132795-王昊全-化学系.pdf(7627KB)----限制开放--请求全文
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[王昊全]的文章
百度学术
百度学术中相似的文章
[王昊全]的文章
必应学术
必应学术中相似的文章
[王昊全]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。