[1] WANG C, LIU M, WANG Z, et al. Point-of-care diagnostics for infectious diseases: From methods to devices[J]. Nano Today, 2021, 37: 101092.
[2] OROOJI Y, SOHRABI H, HEMMAT N, et al. An overview on SARS-CoV-2 (COVID-19) and other human coronaviruses and their detection capability via amplification assay, chemical sensing, biosensing, immunosensing, and clinical assays. Nano-Micro Letters, 2021, 13: 18.
[3] PRWPA B, PDLH A, YYTD C, et al. Diagnostics for COVID-19: moving from pandemic response to control[J]. The Lancet. Infectious diseases, 2021, 21(10): 1334-1335.
[4] ORLANDO A, FRANCESCHINI F, MUSCAS C, et al. A comprehensive review on Raman spectroscopy applications [J]. Chemosensors, 2021, 9(9): 262.
[5] FLEISCHMANN M, HENDRA P J, MCQUILLAN A J. Raman spectra of pyridine adsorbed at a silver electrode [J]. Chemical Physics Letters, 1974, 26(2): 163-166.
[6] ALBRECHT M G, CREIGHTON J A. Anomalously intense Raman-spectra of pyridine at a silver electrode [J]. Journal of the American Chemical Society, 1977, 99(15): 5215-5217.
[7] JEANMAIRE D L, VANDUYNE R P. Surface Raman spectroelectrochemistry. Part 1. Heterocyclic, aromatic, and aliphatic-amines adsorbed on anodized silver electrode [J]. Journal of Electroanalytical Chemistry, 1977, 84(1): 1-20.
[8] DING S Y, YI J, LI J F. et al. Nanostructure-based plasmon-enhanced Raman spectroscopy for surface analysis of materials[J]. Nature Review Materials, 2016, 21: 16021.
[9] JENSEN L, AIKENS C M, SCHATZ G C. Electronic structure methods for studying surface-enhanced Raman scattering [J]. Chemical Society Reviews, 2008, 37(5): 1061-1073.
[10] HUTTER E, FENDLER J H. Exploitation of localized surface plasmon resonance [J]. Advanced Materials, 2004, 16(19): 1685-1706.
[11] HAN X X, RODRIGUEZ R S, HAYNES C L, et al. Surface-enhanced Raman spectroscopy [J]. Nature Reviews Methods Primers, 2022, 1(1): 87.
[12] PIENPINIJTHAM P, KITAHAMA Y, OZAKI Y. Progress of tip-enhanced Raman scattering for the last two decades and its challenges in very recent years [J]. Nanoscale, 2022, 14(14): 5265-5288.
[13] ZHANG K, BAO Y, CAO M, et al. Low-background tip-enhanced Raman spectroscopy enabled by a plasmon thin-film waveguide probe [J]. Analytical Chemistry, 2021, 93(21): 7699-7706.
[14] LI J F, HUANG Y F, DING Y, et al. Shell-isolated nanoparticle-enhanced Raman spectroscopy [J]. Nature, 2010, 464(7287): 392-395.
[15] LI J F, TIAN X D, LI S B, et al. Surface analysis using shell-isolated nanoparticle-enhanced Raman spectroscopy [J]. Nature Protocols, 2013, 8(1): 52-65.
[16] FANG P-P, LU X, LIU H, et al. Applications of shell-isolated nanoparticles in surface-enhanced Raman spectroscopy and fluorescence [J]. TrAC Trends in Analytical Chemistry, 2015, 66: 103-117.
[17] REN B, LIU G K, LIAN X B, et al. Raman spectroscopy on transition metals [J]. Analytical and Bioanalytical Chemistry, 2007, 388(1): 29-45.
[18] WANG X T, GUO L. SERS activity of semiconductors: Crystalline and Amorphous Nanomaterials [J]. Angewandte Chemie-International Edition, 2020, 59(11): 4231-4239.
[19] YIN Z, XU K, JIANG S, et al. Recent progress on two-dimensional layered materials for surface enhanced Raman spectroscopy and their applications [J]. Materials Today Physics, 2021, 18: 100378.
[20] LI B Z, LIU S J, HUANG L J, et al. Nanohybrid SERS substrates intended for food supply chain safety [J]. Coordination Chemistry Reviews, 2023, 494: 215349.
[21] WEI R, XU Y, XUE M. Hollow iron oxide nanomaterials: synthesis, functionalization, and biomedical applications [J]. Journal of Materials Chemistry B, 2021, 9(8): 1965-1979.
[22] LIU J, QIAO S Z, HU Q H, et al. Magnetic nanocomposites with mesoporous structures: Synthesis and applications [J]. Small, 2011, 7(4): 425-443.
[23] INESTROSA-IZURIETA M J, VILCHES D, URZUA J I. Tailored synthesis of iron oxide nanoparticles for specific applications using a statistical experimental design [J]. Heliyon, 2023, 9(11): e21124.
[24] SMOLKOVA I S, KAZANTSEVA N E, PARMAR H, et al. Correlation between coprecipitation reaction course and magneto-structural properties of iron oxide nanoparticles [J]. Materials Chemistry and Physics, 2015, 155: 178-190.
[25] NIKITIN A A, SHCHETININ I V, TABACHKOVA N Y, et al. Synthesis of iron oxide nanoclusters by thermal decomposition [J]. Langmuir, 2018, 34(15): 4640-4650.
[26] XIANG H, DONG P, PI L, et al. One-pot synthesis of water-soluble and biocompatible superparamagnetic gadolinium-doped iron oxide nanoclusters [J]. Journal of Materials Chemistry B, 2020, 8(7): 1432-1444.
[27] LI Y, WANG Z, ALI Z, et al. Monodisperse Fe3O4 spheres: Large-scale controlled synthesis in the absence of surfactants and chemical kinetic process [J]. Science China Materials, 2019, 62(10): 1488-1495.
[28] DENG H, LI X, PENG Q, et al. Monodisperse magnetic single-crystal ferrite microspheres [J]. Angewandte Chemie International Edition, 2005, 44(18): 2782-2785.
[29] GRANATH T, LöBMANN P, MANDEL K. Oxidative precipitation as a versatile method to obtain ferromagnetic Fe3O4 nano‐ and mesocrystals adjustable in morphology and magnetic properties [J]. Particle & Particle Systems Characterization, 2021, 38(3): 2000307.
[30] VEREDA F, MORALES M D, RODRíGUEZ-GONZáLEZ B, et al. Control of surface morphology and internal structure in magnetite microparticles: from smooth single crystals to rough polycrystals [J]. CrystEngComm, 2013, 15(26): 5236-5244.
[31] XIE W, GUO Z, GAO F, et al. Shape-, size- and structure-controlled synthesis and biocompatibility of iron oxide nanoparticles for magnetic theranostics [J]. Theranostics, 2018, 8(12): 3284-3307.
[32] SUN Z, DU J, YAN L, et al. Multifunctional Fe3O4@SiO2-Au satellite structured SERS probe for charge selective detection of food dyes [J]. ACS Applied Materials & Interfaces, 2016, 8(5): 3056-3062.
[33] LU S, DU J, SUN Z, et al. Hairpin-structured magnetic SERS sensor for tetracycline resistance gene tetA detection [J]. Analytical Chemistry, 2020, 92(24): 16229-16235.
[34] GUAN P C, ZHANG H, LI Z Y, et al. Rapid point-of-care assay by SERS detection of SARS-CoV-2 virus and its variants [J]. Analytical Chemistry, 2022, 94(51): 17795-17802.
[35] DANIEL M C, ASTRUC D. Gold nanoparticles: Assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology [J]. Chemical Reviews, 2004, 104(1): 293-346.
[36] YI J, XIANYU Y. Gold nanomaterials‐implemented wearable sensors for healthcare applications [J]. Advanced Functional Materials, 2022, 32(19): 2113012.
[37] CHAKRABORTY S, ANSAR S M, STROUD J G, et al. Comparison of colloidal versus supported gold nanoparticle catalysis [J]. The Journal of Physical Chemistry C, 2018, 122(14): 7749-7758.
[38] HUANG X H, EL-SAYED I H, QIAN W, et al. Cancer cell imaging and photothermal therapy in the near-infrared region by using gold nanorods [J]. Journal of the American Chemical Society, 2006, 128(6): 2115-2120.
[39] MIAO X, CHENG Z, MA H, et al. Label-free platform for microRNA detection based on the fluorescence quenching of positively charged gold nanoparticles to silver nanoclusters [J]. Analytical Chemistry, 2018, 90(2): 1098-1103.
[40] LI C C, SHUFORD K L, CHEN M H, et al. A facile polyol route to uniform gold octahedra with tailorable size and their optical properties [J]. ACS Nano, 2008, 2(9): 1760-1769.
[41] SANCHEZ-IGLESIAS A, WINCKELMANS N, ALTANTZIS T, et al. High-yield seeded growth of monodisperse pentatwinned gold nanoparticles through thermally induced seed twinning [J]. Journal of the American Chemical Society, 2017, 139(1): 107-110.
[42] QIN Y, LU Y, YU D, et al. Controllable synthesis of Au nanocrystals with systematic shape evolution from an octahedron to a truncated ditetragonal prism and rhombic dodecahedron [J]. CrystEngComm, 2019, 21(37): 5602-5609.
[43] NIU W, CHUA Y A, ZHANG W, et al. Highly symmetric gold nanostars: Crystallographic control and surface-enhanced Raman scattering property [J]. Journal of the American Chemical Society, 2015, 137(33): 10460-10463.
[44] HONG X, TAN C, CHEN J, et al. Synthesis, properties and applications of one- and two-dimensional gold nanostructures [J]. Nano Research, 2014, 8(1): 40-55.
[45] GRZELCZAK M, PEREZ-JUSTE J, MULVANEY P, et al. Shape control in gold nanoparticle synthesis [J]. Chemical Society Reviews, 2008, 37(9): 1783-1791.
[46] LIU Y, ZHOU J, YUAN X, et al. Hydrothermal synthesis of gold polyhedral nanocrystals by varying surfactant concentration and their LSPR and SERS properties [J]. RSC Advances, 2015, 5(84): 68668-68675.
[47] ZHANG Q, LARGE N, WANG H. Gold nanoparticles with tipped surface structures as substrates for single-particle surface-enhanced Raman spectroscopy: concave nanocubes, nanotrisoctahedra, and nanostars [J]. ACS Applied Materials & Interfaces, 2014, 6(19): 17255-17267.
[48] WANG K L, WANG Y P, WANG C W, et al. Facile synthesis of high-performance SiO2@Au core-shell nanoparticles with high SERS activity [J]. RSC Advances, 2018, 8(54): 30825-30831.
[49] YANG M, CHEN T, LAU W S, et al. Development of polymer-encapsulated metal nanoparticles as surface-enhanced Raman scattering probes [J]. Small, 2009, 5(2): 198-202.
[50] MULVANEY S P, MUSICK M D, KEATING C D, et al. Glass-coated, analyte-tagged nanoparticles: A new tagging system based on detection with surface-enhanced Raman scattering [J]. Langmuir, 2003, 19(11): 4784-4790.
[51] RODRíGUEZ-FERNáNDEZ D, LANGER J, HENRIKSEN-LACEY M, et al. Hybrid Au–SiO2 core–satellite colloids as switchable SERS tags [J]. Chemistry of Materials, 2015, 27(7): 2540-2545.
[52] SEBBA D, LASTOVICH A G, KURODA M, et al. A point-of-care diagnostic for differentiating Ebola from endemic febrile diseases [J]. Science Translational Medicine, 2018, 10: 471.
[53] STOBER W, FINK A, BOHN E. Controlled growth of monodisperse silica spheres in micron size range [J]. Journal of Colloid and Interface Science, 1968, 26(1): 62-69.
[54] LAMER V K, DINEGAR R H. Theory, production and mechanism of formation of monodispersed hydrosols [J]. Journal of the American Chemical Society, 1950, 72(11): 4847-4854.
修改评论