中文版 | English
题名

硫酸铁钠正极材料的改性制备与性能研究

其他题名
MODIFICATION PREPARATION AND PROPERTIES OF Na2Fe2(SO4)3 CATHODE MATERIALS
姓名
姓名拼音
XU Yinan
学号
12233342
学位类型
硕士
学位专业
0856 材料与化工
学科门类/专业学位类别
08 工学
导师
唐永炳
导师单位
中国科学院深圳先进技术研究院
论文答辩日期
2024-05-07
论文提交日期
2024-07-06
学位授予单位
南方科技大学
学位授予地点
深圳
摘要

  在电化学储能技术中,锂离子电池已得到了广泛的应用,但资源紧张和成本问题限制了其进一步发展。钠作为锂同主族、相邻周期的元素,与锂的电化学性质相似,储量丰富,成本较低,钠离子电池的开发具有广阔的前景。对于钠离子电池来说,目前研究的关键是寻找合适的电极材料。

  聚阴离子型化合物Na2Fe2(SO4)3是一种极具应用前景的钠离子电池正极材料,具有工作电压较高、钠离子脱嵌过程体积变化小、原材料资源丰富等优点;然而材料较低的电子导电率和比容量限制了其实际应用。近年来,石墨材料也发展成为一种新型正极材料,其较高的导电性以及在高电压下良好的阴离子存储能力使基于该类正极材料的电池通常具有更高的能量密度和动力学性能。因此,本论文拟将膨胀石墨与Na2Fe2(SO4)3复合,以提高材料导电性并同时利用阴阳离子进行储能,实现高性能复合正极材料的开发。具体研究内容如下:

  (1)在硫酸铁钠的制备过程中加入膨胀石墨,通过低温固相法合成得到硫酸铁钠/膨胀石墨(NFS/EG)复合材料,得到分布在层状膨胀石墨基底上的Na2Fe2(SO4)3颗粒网络结构,提高了材料的电子导电性;通过对导电剂、 集流体、负载量以及电解液组分进行筛选适配,以提高材料导电性和循环稳定性,优化了复合材料的电极/电池制备条件:在导电剂为科琴黑,集流体为涂碳铝箔,提高极片厚度增加负载量时,电解液为 1M NaPF6/EC DEC+2 vol% FEC 时,得到 NFS材料的初始容量为 71.8 mAh g-1,经过200 圈循环后,容量保持率为80.3%。

  (2)对硫酸铁钠和膨胀石墨进行组分优化,确认在膨胀石墨/硫酸铁钠比例为 40:60 时,电化学性能最佳:NFS/EG-40%在钠离子半电池中能够 提供79 mAh g-1的放电容量,在24 mA g-1的电流密度下经 200 圈循环后容 量几乎不存在衰减,在20 C(1 C=120 mA g-1)的电流密度下,仍具有 60.7 mAh g-1的放电容量,而原始的NFS材料容量仅为23 mAh g-1;然后通过电化学表征及非原位拉曼测试,验证了高压下材料的阴阳离子共存储储能机制以及更佳的电化学性能。

关键词
语种
中文
培养类别
独立培养
入学年份
2022
学位授予年份
2024-06
参考文献列表

[1] MA J, LI Y, GRUNDISH N S, et al. The 2021 battery technology roadmap[J]. Journal of Physics D: Applied Physics, 2021, 54(18): 183001.
[2] HUANG B, PAN Z F, SU X Y, et al. Recycling of lithium-ion batteries: Recent advances and perspectives[J]. Journal of Power Sources, 2018, 399: 274-286.
[3] GOODENOUGH J B, PARK K S. The Li-Ion Rechargeable Battery: A Perspective[J]. Journal of the American Chemical Society, 2013, 135(4): 1167-1176.
[4] XU X Q, JIANG F N, YANG S J, et al. Dual-layer vermiculite nanosheet based hybrid film to suppress dendrite growth in lithium metal batteries[J]. Journal of Energy Chemistry, 2022, 69: 205-210.
[5] USISKIN R, LU Y, POPOVIC J, et al. Fundamentals, status and promise of sodium-based batteries[J]. Nature reviews. Materials, 2021. 6(11): 1020-1035.
[6] NAYAK P K, YANG L, BREHM W, et al. From Lithium-Ion to Sodium-Ion Batteries: Advantages, Challenges, and Surprises[J]. Angewandte Chemie-International Edition, 2018, 57(1): 102-120.
[7] DELMAS C. Sodium and Sodium-Ion Batteries: 50 Years of Research[J]. Advanced Energy Materials, 2018, 8(17): 1703137.
[8] WANG L P, YU L H, WANG X, et al. Recent developments in electrode materials for sodium-ion batteries[J]. Journal of Materials Chemistry A, 2015, 3(18): 9353-9378.
[9] ABATE I, KIM S Y, PEMMARAJU C D, et al. The Role of Metal Substitution in Tuning Anion Redox in Sodium Metal Layered Oxides Revealed by X-Ray Spectroscopy and Theory[J]. Angewandte Chemie-International Edition, 2021, 60(19): 10880-10887.
[10] ABRAHAM K M. How Comparable Are Sodium-Ion Batteries to Lithium-Ion Counterparts?[J]. ACS Energy Letters, 2020, 5(11): 3544-3547.
[11] ASSAT G, TARASCON J M. Fundamental understanding and practical challenges of anionic redox activity in Li-ion batteries[J]. Nature Energy, 2018, 3(5): 373-386.
[12] ESHETU G G, ELIA G A, ARMAND M, et al. Electrolytes and Interphases in Sodium-Based Rechargeable Batteries: Recent Advances and Perspectives[J]. Advanced Energy Materials, 2020, 10(20): 2000093.
[13] YANG C, XIN S, MAI L Q, et al. Materials Design for High-Safety Sodium-Ion Battery[J]. Advanced Energy Materials, 2021, 11(2): 2000974.
[14] KIM S, SEO D, MA X, et al. Electrode materials for rechargeable Sodium-Ion batteries: Potential alternatives to current Lithium-Ion batteries[J]. Advanced Energy Materials, 2012, 2(7): 710-721.
[15] PAN H, HU Y, CHEN L. Room-temperature stationary sodium-ion batteries for large-scale electric energy storage[J]. Energy & Environmental Science, 2013, 6(8): 2338.
[16] THOMPSON A H, WHITTINGHAM M S. Transition metal phosphorus trisulfides as battery cathodes.[J]. Materials Research Bulletin, 1977, 12: 741-744.
[17] LEE H W, WANG R Y, PASTA M, et al. Manganese hexacyanomanganate open framework as a high capacity positive electrode material for sodium-ion batteries[J]. Nature Communications, 2014, 5(1): 5280.
[18] WANG P F, YOU Y, YIN Y X, et al. Layered Oxide Cathodes for Sodium-Ion Batteries: Phase Transition, Air Stability, and Performance[J]. Advanced Energy Materials, 2018, 8(8): 1701912.
[19] ZHOU Q B, WANG L L, LI W Y, et al. Sodium superionic conductors (NASICONs) as cathode materials for Sodium-Ion batteries[J]. Electrochemical Energy Reviews, 2021. 4(4): 793-823.
[20] WANG Q, CHU S Y, GUO S H. Progress on multiphase layered transition metal oxide cathodes of sodium ion batteries[J]. Chinese Chemical Letters, 2020, 31(9): 2167-2176.

[21] QIAN J F, WU C, CAO Y L, et al. Prussian Blue Cathode Materials for Sodium-Ion Batteries and Other Ion Batteries[J]. Advanced Energy Materials, 2018, 8(17): 1702619.

[22] PADHI A K, NANJUNDASWAMY K S, GOODENOUGH J B. Phospho-olivines as positive electrode materials for rechargeable lithium batteries[J]. Electrochem. Soc. 1997, 144, 1188–1194.

[23] ELLIS B L, MAKAHNOUK W, MAKIMURA Y, et al. A multifunctional 3.5 V iron-based phosphate cathode for rechargeable batteries[J]. Nature Materials, 2007. 6(10): 749-753.

[24] WEN Y, HE K, ZHU Y, et al. Expanded graphite as superior anode for sodium-ion batteries[J]. Nature Communications, 2014, 5: 4033.

[25] ELLIS B L, NAZAR L F. Sodium and sodium-ion energy storage batteries[J]. Current Opinion in Solid State and Materials Science, 2012, 16(4): 168-177.

[26] MUÑOZ-MÁRQUEZ M Á, SAUREL D, GÓMEZ-CÁMER J L, et al. Na-Ion Batteries for Large Scale Applications: A Review on Anode Materials and Solid Electrolyte Interphase Formation[J]. Advanced Energy Materials, 2017, 7(20): 1700463.

[27] LI L, ZHENG Y, ZHANG S, et al. Recent progress on sodium ion batteries: potential high -performance anodes[J]. Energy & Environmental Science, 2018, 11(9): 2310 -2340.

[28] KIM Y, HA K H, OH S M, et al. High-capacity anode materials for sodium-ion batteries[J]. Chemistry-A European Journal, 2014, 20(38): 11980-92.

[29] ORTIZ-VITORIANO N, DREWETT N E, GONZALO E, et al. High performance manganese -based layered oxide cathodes: overcoming the challenges of sodium ion batteries[J]. Energy & Environmental Science, 2017, 10(5): 1051-1074.

[30] 杨绍斌,董伟,沈丁等.钠离子电池正极的研究进展[J]. 功能材料,2015, 13(46), 13001-06.

[31] 方永进, 陈重学, 艾新平等. 钠离子电池正极材料的研究进展[J]. 物理化学学报, 2017, 33(1), 211-241.

[32] NANBA Y, IWAO T, BOISSE B M D, et al. Redox Potential Paradox in NaxMO2 for Sodium-Ion Battery Cathodes [J]. Chemistry of Materials, 2016, 28(4): 1058-1065.

[33] HAN M H, GONZAKO E, SINGH G, et al. A comprehensive review of sodium layered oxides: powerful cathodes for Na-ion batteries [J]. Energy & Environmental Science, 2015, 8(1): 81-102.

[34] LIU Q N, HU Z, CHEN M Z, et al. The Cathode Choice for Commercialization of Sodium-Ion Batteries: Layered Transition Metal Oxides versus Prussian Blue Analogs[J]. Advanced Functional Materials, 2020, 30(14): 1909530

[35] DELMAS C, BRACONNIER J, FOUASSIER C, et al. Electrochemical intercalation of sodium in NaxCoO2 bronzes[J]. Solid State Ionics, 1981, 3-4: 165-169.

[36] WEI F L, ZHANG Q P, ZHANG P, et al. Review-Research Progress on Layered Transition Metal Oxide Cathode Materials for Sodium Ion Batteries[J]. Journal of the Electrochemical Society, 2021, 168(5): 050524.

[37] MO Y, ONG S P, CEDER G. Insights into Diffusion Mechanisms in P2 Layered Oxide Materials by First-Principles Calculations[J]. Chemistry of Materials, 2014, 26(18): 5208-5214.

[38] SHACKLETTE L W, JOW T R, TOWNSEND L. Rechargeable Electrodes from Sodium Cobalt Bronzes[J]. Journal of The Electrochemical Society, 1988, 135(11): 2669-2674.

[39] BERTHELOT R, CARLIER D, DELMAS C. Electrochemical investigation of the P2-NaxCoO2 phase diagram[J]. Nature Materials, 2011, 10(1): 74-80.

[40] CABALLERO A, HERNÁN L, MORALES J, et al. Synthesis and characterization of high-temperature hexagonal P2-Na0.6MnO2 and its electrochemical behavior as cathode in sodium cells[J]. Journal of Materials Chemistry, 2002, 12(4): 1142-1147.

[41] DOEFF M, RICHARDSON T, HOLLINGSWORTH J, et al. Synthesis and characterization of a copper-substituted manganese oxide with the Na0.44MnO2 structure[J]. Journal of Power Sources, 2002, 112: 294-297.

[42] HAN D W, KU J H, KIM R H, et al. Aluminum Manganese Oxides with Mixed Crystal Structure: High-Energy-Density Cathodes for Rechargeable Sodium Batteries[J]. Chemsuschem, 2014, 7(7): 1870-1875.

[43] KONAROV A, KIM H J, VORONINA N, et al. P2-Na2/3MnO2 by co incorporation: As a cathode material of high capacity and long cycle life for Sodium-Ion batteries[J]. ACS Applied Materials & Interfaces, 2019. 11(32): 28928-28933.

[44] ZHENG C, RADHAKRISHNAN B, CHU I H, et al. Effects of Transition-Metal Mixing on Na Ordering and Kinetics in Layered P2 Oxides[J]. Physical Review Applied, 2017, 7(6): 064003.

[45] LI X, WANG Y, WU D, et al. Jahn-Teller Assisted Na Diffusion for High Performance Na Ion Batteries[J]. Chemistry of Materials, 2016, 28(18): 6575-6583.

[46] BUCHER N, HARTUNG S, FRANKLIN J B, et al. P2-NaxCoyMn1-yO2 (y = 0, 0.1) as Cathode Materials in Sodium-Ion Batteries-Effects of Doping and Morphology To Enhance Cycling Stability [J]. Chemistry of Materials, 2016, 28(7): 2041-2051.

[47] WANG L, SUN Y G, HU L L, et al. Copper-substituted Na0.67Ni0.3-xCuxMn0.7O2 cathode materials for sodium-ion batteries with suppressed P2-O2 phase transition [J]. Journal of Materials Chemistry A, 2017, 5(18): 8752-8761.

[48] XU Y X, ZHENG S S, TANG H F, et al. Prussian blue and its derivatives as electrode materials for electrochemical energy storage[J]. Energy Storage Materials, 2017, 9: 11-30.

[49] VAUCHER S, LI M, MANN S. Synthesis of Prussian Blue Nanoparticles and Nanocrystal Superlattices in Reverse Microemulsions[J]. Angewandte Chemie International Edition, 2000, 39(10): 1793-1796.

[50] KAREIS C M, LAPIDUS S H, HER J H, et al. Non-Prussian blue structures and magnetic ordering of Na2Mn(II)[Mn(II)(CN)6] and Na2Mn(II)[Mn(II)(CN)6].2H2O[J]. Journal of the American Chemical Society, 2012, 134(4): 2246-54.

[51] YIN J W, SHEN Y, LI C, et al. In Situ Self-Assembly of Core-Shell Multimetal Prussian Blue Analogues for High-Performance Sodium-Ion Batteries[J]. ChemSusChem, 2019, 12(21): 4786-4790.

[52] XU Y, WAN J, HUANG L, et al. Structure Distortion Induced Monoclinic Nickel Hexacyanoferrate as High-Performance Cathode for Na-Ion Batteries[J]. Advanced Energy Materials, 2019, 9(4): 1803158.

[53] WANG W, GANG Y, HU Z, et al. Reversible structural evolution of sodium-rich rhombohedral Prussian blue for sodium-ion batteries[J]. Nature Communications, 2020, 11(1): 980.

[54] PENG J, ZHANG W, LIU Q N, et al. Prussian Blue Analogues for Sodium-Ion Batteries: Past, Present, and Future[J]. Advanced Materials, 2022, 34(15): 2108384.

[55] ZHOU A, CHENG W, WANG W, et al. Hexacyanoferrate-Type Prussian Blue Analogs: Principles and Advances Toward High-Performance Sodium and Potassium Ion Batteries[J]. Advanced Energy Materials, 2020, 11(2): 2000943.

[56] QIAN J, ZHOU M, CAO Y, et al. Nanosized Na4Fe(CN)6/C composite as a low-cost and high-rate cathode material for sodium-ion batteries [J]. Advanced Energy Materials, 2012, 2(4): 410-414.

[57] WU X, WU C, WEI C, et al. Highly crystallized Na2CoFeCN6 with suppressed lattice defects as superior cathode material for sodium-ion batteries [J]. Applied Mater Interfaces, 2016, 8(8): 5393-5399.

[58] PENG J, OU M, YI H, et al. Defect-free-induced Na+ disordering in electrode materials[J]. Energy & Environmental Science, 2021, 14(5): 3130-3140.

[59] ZHANG H, PENG J, LI L, et al. Low‐Cost Zinc Substitution of Iron‐Based Prussian Blue Analogs as Long Lifespan Cathode Materials for Fast Charging Sodium‐Ion Batteries[J]. Advanced Functional Materials, 2023, 33(2): 2210725.

[60] XIE M, XU M, HUANG Y, et al. Na2NixCo1-xFe(CN)6: A class of Prussian blue analogs with transition metal elements as cathode materials for sodium ion batteries[J]. Electrochemistry Communications, 2015, 59: 91-94.

[61] WANG Z, HUANG Y, LUO R, et al. Ion-exchange synthesis of high-energy-density prussian blue analogues for sodium ion battery cathodes with fast kinetics and long durability[J], Journal of Power Sources, 2019, 436: 226868.

[62] SONG J, WANG L, LU Y H, et al. Removal of Interstitial H2O in Hexacyanometallates for a Superior Cathode of a Sodium-Ion Battery[J]. Journal of the American Chemical Society, 2015, 137(7): 2658-2664.

[63] YUAN Y, WEI Q Y, YANG S K, et al. High-quality Prussian blue crystals as superior cathode materials for room-temperature sodium-ion batteries[J]. Energy & Environmental Science, 2014, 7(5): 1643-1647.

[64] XIE M, XU M, HUANG Y, et al. Na2NixCo1−xFe(CN)6: A class of Prussian blue analogs with transition metal elements as cathode materials for sodium ion batteries[J]. Electrochemistry Communications, 2015, 59: 91-94.

[65] YANG D, XU J, LIAO X Z, et al. Structure optimization of Prussian blue analogue cathode materials for advanced sodium ion batteries[J]. Chemical Communications, 2014, 50(87): 13377-80.

[66] NI Q, BAI Y, WU F, et al. Polyanion-Type Electrode Materials for Sodium-Ion Batteries [J]. Advanced Science, 2017, 4(3): 1600275.

[67] LIU R, LIANG Z T, GONG Z L, et al. Research Progress in Multielectron Reactions in Polyanionic Materials for Sodium-Ion Batteries[J]. Small Methods, 2019, 3(4): 1800221.

[68] AMINE K, YASUDA H, YAMACHI M. Olivine LiCoPO4 as 4.8 V Electrode Material for Lithium Batteries[J]. Electrochemical and Solid-State Letters, 2000, 3(4): 178 -179.

[69] 施志聪, 杨勇. 聚阴离子型锂离子电池正极材料的研究[J]. 厦门大学化学进展, 2005, 04: 604-613.

[70] MOREAU P, GUYOMARD D, GAUBICHER J, et al. Structure and stability of sodium intercalated phases in olivine FePO4 [J]. Chemistry of Materials, 2010, 22: 4126-4218.

[71] BOUCHER F, GAUBICHER J, CUISINIER M, et al. Elucidation of the Na2/3FePO4 and Li2/3FePO4 intermediate superstructure revealing a pseudouniform ordering in 2D [J]. Journal of the American Chemical Society, 2014, 136(25): 9144-9157.

[72] LU J, CHUNG S C, NISHIMURA S, et al. Phase diagram of olivine NaxFePO4 (0<x<1) [J]. Chemistry of Materials, 2013, 25: 4557-4565.

[73] YUAN Y, WEI Q Y, YANG S K, et al. Towards high-performance phosphate-based polyanion-type materials for sodium-ion batteries[J]. Energy Storage Materials, 2022, 50: 760-782.

[74] WANG R, WU S, ZHANG F, et al. Stabilizing the crystal structures of NaFePO4 with Li substitutions[J], Physical Chemistry Chemical Physics, 2020, 22(25): 13975-13980.

[75] FANG Y J, LIU Q, XIAO L F, et al. High-Performance Olivine NaFePO4 Microsphere Cathode Synthesized by Aqueous Electrochemical Displacement Method for Sodium Ion Batteries[J]. Applied Materials & Interfaces, 2015, 7(32): 17977-17984.

[76] KIM J, SEO D H, KIM H, et al. Unexpected discovery of low-cost maricite NFP as NIB electrode for Na-ion batteries[J]. Energy & Environment Science, 2014, 8(2): 540-545.

[77] XIONG F, AN Q, XIA L, et al. Revealing the atomistic origin of the disorder enhanced Na storage performance in NaFePO4 battery cathode[J]. Nano Energy, 2019, 57: 608-615.

[78] AVDEEV M, MOHAMED Z, LING C D, et al. Magnetic Structures of NaFePO4 Maricite and Triphylite Polymorphs for Sodium-Ion Batteries[J]. Inorganic Chemistry, 2013, 52(15): 8685-8693.

[79] NIU Y, ZHANG Y, XU M. A review on pyrophosphate framework cathode materials for sodium-ion batteries [J]. Journal of Materials Chemistry A, 2019, 7(25): 15006-15025.

[80] BARPANDA P, LIU G, LING C D, et al. Na2FeP2O7: a safe cathode for rechargeable sodium-ion batteries [J]. Chemistry of Materials, 2013, 25(17): 3480-3487.

[81] KIM H, SHAKOOR R A, PARK C, et al. Na2FeP2O7 as a promising iron-based pyrophosphate cathode for sodium rechargeable batteries: a combined experimental and theoretical study [J]. Advanced Functional Materials, 2013, 23(9): 1147-1155.

[82] BARPANDA P, YE T, NISHIMURA S, et al. Sodium iron pyrophosphate: A novel 3.0 V iron-based cathode for sodium-ion batteries[J]. Electrochemistry Communications, 2012, 24: 116-119.

[83] CLARK J M, BARPANDA P, YAMADA A, et al. Sodium-ion battery cathodes Na2FeP2O7 and Na2MnP2O7: diffusion behaviour for high rate performance [J]. Journal of Materials Chemistry A, 2014, 2(30): 11807-11812.

[84] SONG H J, KIM D S, KIM J C, et al. An approach to flexible Na-ion batteries with exceptional rate capability and long lifespan using Na2FeP2O7 nanoparticles on porous carbon cloth[J]. Journal of Materials Chemistry A, 2017, 5(11): 5502-5510.

[85] PARK C S, KIM H, SHAKOOR R A, et al. Anomalous Manganese Activation of a Pyrophosphate Cathode in Sodium Ion Batteries: A Combined Experimental and Theoretical Study[J]. Journal of the American Chemical Society, 2013, 135(7): 2787-2792.

[86] SONG W, JI X, WU Z, et al. First exploration of Na-ion migration pathways in the NASICON structure Na3V2(PO4)3 [J]. Journal of Materials Chemistry A, 2014, 2(15): 5358-5362.

[87] JIAN Z, SUN Y, JI X. A new low-voltage plateau of Na3V2(PO4)3 as an anode for Naion batteries [J]. Chemical Communications, 2015, 51: 6381-6383.

[88] JIAN Z, HAN W, LU X, et al. Superior electrochemical performance and storage mechanism [J]. Advanced Energy Materials, 2013, 3: 156-160.

[89] ZHANG B W, MA K X, LV X, et al. Recent advances of NASICON- Na3V2(PO4)3 as cathode for sodium-ion batteries: Synthesis, modifications, and perspectives[J]. Journal of Alloys and Compounds, 2021, 867: 159060.

[90] CAO Y, LIU Y, ZHAO D, et al. Highly stable Na3Fe2(PO4)3 @hard carbon sodium-ion full cell for low-cost energy storage [J]. Sustainable Chemistry & Engineering, 2019, 8(3): 1380-1387.

[91] LIU Y, ZHOU Y, ZHANG Y, et al. Monoclinic phase Na3Fe2(PO4)3: synthesis, structure, and electrochemical performance as cathode material in sodium-ion batteries [J]. Sustainable Chemistry & Engineering, 2016, 5(2): 1306-1314.

[92] RAJAGOPALAN R, CHEN B, ZHANG Z, et al. Improved reversibility of Fe3+/Fe4+ redox couple in sodium super ion conductor type Na3Fe2(PO4)3 for sodium-ion batteries [J]. Advanced Materials, 2017, 29: 1605694.

[93] MASON C W, GOCHEVA I, HOSTER H E, et al. Iron (Iii) Sulfate: A Stable, Cost Effective Electrode Material for Sodium Ion Batteries. Chemical Communications, 2014, 50(18): 2249-2251.

[94] JOHN M C. Computer Modelling of Positive Electrode Materials for Lithium and Sodium Batteries [R]. University of Bath, 2014.

[95] BARPANDAB P, OYAMA G, LING C D, et al. Kröhnkite-Type Na2Fe(SO4)2·2H2O as a Novel 3.25 V Insertion Compound for Na-Ion Batteries [J]. Chemistry of Materials, 2014, 26(3): 1297-1299

[96] ROUSSE G, TARASCON J M. Sulfate-Based Polyanionic Compounds for Li-Ion Batteries: Synthesis, Crystal Chemistry, and Electrochemistry Aspects[J]. Chemistry of Materials, 2014, 26, 394

[97] MENG Y, ZHANG S, DENG C. Superior sodium-lithium intercalation and depressed moisture sensitivity of a hierarchical sandwich-type nanostructure for a graphene-sulfate composite: a case study on Na2Fe(SO4)2·2H2O[J]. Journal of Materials Chemistry A, 2015, 3(8): 4484-4492.

[98] SINGH P, SHIVA K, CELIO H, et al. Eldfellite, NaFe(SO4)2: An Intercalation Cathode Host for Low-Cost Na-Ion Batteries[J]. Energy & Environmental Science, 2015, 8(10): 3000-3005.

[99] BARPANDA P, OYAMA G, NISHIMURA S, et al. A 3.8 V Earth-Abundant Sodium Battery Electrode[J]. Nature Communications, 2014, 5: 4358.

[100] OYAMA G, NISHIMURA S, SUZUKI Y, et al. Off‐Stoichiometry in Alluaudite‐Type Sodium Iron Sulfate Na2+2xFe2−x(SO4)3 as an Advanced Sodium Battery Cathode Material[J]. ChemElectroChem, 2015, 2(7): 1019-1023.

[101] QIAO N, YING B, FENG W, et al. Polyanion-Type Electrode Materials for Sodium-Ion Batteries. [J] Advanced Science. 2017, 3(4): 1600275

[102] WONG L L, CHEN H M, ADAMS S. Sodium-ion diffusion mechanisms in the low cost high voltage cathode material Na(2+delta)Fe(2-delta/2)(SO4)3 [J]. Physical Chemistry Chemical Physics, 2015, 17(14): 9186-93.

[103] OYAMA G, PECHER O, GRIFFITH K J, et al. Sodium Intercalation Mechanism of 3.8 V Class Alluaudite Sodium Iron Sulfate [J]. Chemistry of Materials, 2016, 28(15): 5321-5328.

[104] OYAMA G, KIUCHI H, CHUNG S C, et al. Combined Experimental and Computational Analyses on the Electronic Structure of Alluaudite-Type Sodium Iron Sulfate [J]. The Journal of Physical Chemistry C, 2016, 120(41): 23323-23328.

[105] MENG Y, YU T, ZHANG S, et al. Top-down synthesis of muscle-inspired alluaudite Na2+2xFe2−x(SO4)3/SWNT spindle as a high-rate and high-potential cathode for sodium-ion batteries [J]. Journal of Materials Chemistry A, 2016, 4(5): 1624-1631.

[106] YU T, LIN B, LI Q, et al. First exploration of freestanding and flexible Na2+2xFe2-x(SO4)3@porous carbon nanofiber hybrid films with superior sodium intercalation for sodium ion batteries [J]. Physical Chemistry Chemical Physics, 2016, 18(38): 26933-26941.

[107] DWIBEDI D, LING C D, ARAUJO R B, et al. Ionothermal Synthesis of High-Voltage Alluaudite Na2+2xFe2-x(SO4)3 Sodium Insertion Compound: Structural, Electronic, and Magnetic Insights [J]. Applied Mater Interfaces, 2016, 8(11): 6982-91.

[108] Zhang M, QI H, QIU H L, et al. Reduced graphene oxide wrapped alluaudite Na2+2xFe2-x(SO4)3 with high rate sodium ion storage properties [J]. Journal of Alloys and Compounds.2018, 752, 267-273.

[109] PLACKE T, FROMM O, LUX S F, et al. Reversible Intercalation of Bis-(trifluoromethanesulfonyl)imide Anions from an Ionic Liquid Electrolyte into Graphite for High Performance Dual-Ion Cells[J]. Journal of The Electrochemical Society, 2012, 159: 1755-1765.

[110] SUI Y, LIU C, MASSE R C, et al. Dual-ion batteries: The emerging alternative rechargeable batteries[J]. Energy Storage Materials, 2020, 25: 1-32

[111] GONG D, WEI C, LIANG Z, et al. Recent Advances on Sodium‐Ion Batteries and Sodium Dual‐Ion Batteries: State‐of‐the‐Art Na+ Host Anode Materials[J]. Small Science, 2021, 1: 2100014.

[112] HAN X, XU G, ZHANG Z, et al. An In Situ Interface Reinforcement Strategy Achieving Long Cycle Performance of Dual‐Ion Batteries[J]. Advanced Energy Materials: 2019, 9: 1804022.

[113] KRAVCHYK K V, KOVALENKO M V. Rechargeable Dual-Ion Batteries with Graphite as a Cathode: Key Challenges and Opportunities[J]. Advanced Energy Materials: 2019, 9: 1901749.

[114] CHEN M Z, CORTIE D, HU Z, et al. A Novel Graphene Oxide Wrapped Na2Fe2(SO4)3/C Cathode Composite for Long Life and High Energy Density Sodium-Ion Batteries[J]. Advanced Energy Materials, 2019,8:1800944.

[115] YANG X, XU Y, ZHANG H, et al. Enhanced high rate and low-temperature performances of mesoporous LiFePO4/Ketjen Black nanocomposite cathode material[J]. Electrochimica Acta, 2013, 114: 259-264.

[116] GOÑI A, ITURRONDOBEITIA A, DE Muro I G, et al. Na2.5Fe1.75 (SO4)3/Ketjen/rGO: An advanced cathode composite for sodium ion batteries[J]. Journal of Power Sources, 2017, 369: 95-102.

[117] KIM Y, KIM M, LEE T, et al. Investigation of mass loading of cathode materials for high energy lithium-ion batteries[J]. Electrochemistry Communications, 2023, 147: 107437.

[118] MOŠKON J, PIVKO M, DOMINKO R, et al. Accurate determination of battery electrode loading (mass) from electrochemical impedance spectroscopy[J]. ECS Electrochemistry Letters, 2015, 4(1): A4.

所在学位评定分委会
材料与化工
国内图书分类号
TQ152
来源库
人工提交
成果类型学位论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/779039
专题中国科学院深圳理工大学(筹)联合培养
推荐引用方式
GB/T 7714
徐轶男. 硫酸铁钠正极材料的改性制备与性能研究[D]. 深圳. 南方科技大学,2024.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
12233342-徐轶男-中国科学院深圳(4578KB)----限制开放--请求全文
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[徐轶男]的文章
百度学术
百度学术中相似的文章
[徐轶男]的文章
必应学术
必应学术中相似的文章
[徐轶男]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。