中文版 | English
题名

时延多普勒域的信道估计算法研究

其他题名
RESEARCH ON CHANNEL ESTIMATION ALGORITHM IN DELAY-DOPPLER DOMAIN
姓名
姓名拼音
LI Zhongjie
学号
12132128
学位类型
硕士
学位专业
080904 电磁场与微波技术
学科门类/专业学位类别
08 工学
导师
袁伟杰
导师单位
系统设计与智能制造学院
论文答辩日期
2024-05-09
论文提交日期
2024-07-06
学位授予单位
南方科技大学
学位授予地点
深圳
摘要

在现代通信系统中,尤其是在高速移动的车载网络环境下,如何保证信息传输的可靠性成为了一个重要挑战。在这种背景下,正交时频空(Orthogonal Time Frequency Space,OTFS)技术应运而生,它通过在时延-多普勒(Delay-Doppler,DD)域调制数据符号,为这一挑战提供了一种潜在的解决方案。OTFS技术能够有效地抵抗高速移动环境下的信号衰落和多普勒频移,因此对于高移动性场景特别适用。本文的研究重点是在存在分数多普勒偏移的情况下,OTFS系统的DD域信道估计问题,这是实现OTFS技术高效应用的关键技术之一。
    
本文首先提出了一种基于酉近似消息传递(Unitary Approximate Message Passing,UAMP)的信道估计算法。该算法的设计考虑到了DD域信道的特性,特别是其结构稀疏性,这一特性可以通过隐马尔可夫模型(Hidden Markov Model,HMM)得到有效利用。UAMP算法因其低复杂度和高精度特性而受到关注,适合于高速计算和实时处理的需求。我们进一步通过经验状态演化(State Evolution,SE)分析,来评估所提算法在不同条件下的性能,为算法的优化和应用提供理论依据。
    
为了进一步提高算法的性能和适应性,本文针对算法中的超参数提出了一种更新准则。这一准则基于期望最大化(Expectation-Maximization,EM)算法,能够根据实际信道条件动态调整超参数,以达到最优的估计性能。这种自适应调整机制使得所提算法不仅在标准条件下表现优异,在复杂多变的实际环境中也能保持较好的鲁棒性和准确性。
    
随后,在获得有效的信道矩阵后,本文利用线性系统恢复不同可分辨路径的多普勒偏移和信道增益。不同路径间的干扰也进行了考虑。
    
最后,本文通过一系列仿真实验验证了所提算法的有效性。仿真结果显示,与现有的基准方案相比,我们的算法在估计精度和系统性能上都有显著提升,尤其是在高移动性和复杂多普勒偏移场景中。这些结果不仅证明了所提算法的优越性,也为高移动性通信系统的信道估计提供了新的技术路径。

关键词
语种
中文
培养类别
独立培养
入学年份
2021
学位授予年份
2024-07
参考文献列表

[1] 佟学俭, 罗涛. OFDM 移动通信技术原理与应用[M]. OFDM 移动通信技术原理与应用,2003.
[2] HWANG T, YANG C, WU G, et al. OFDM and Its Wireless Applications: A Survey[J/OL]. IEEE Transactions on Vehicular Technology, 2009, 58(4): 1673-1694. DOI: 10.1109/TVT.2008.2004555.
[3] 王东明, 高西奇, 尤肖虎, 等. 宽带 MIMO-OFDM 系统信道估计算法研究[J]. 电子学报,2005, 33(7): 1254-1257.
[4] HOU W S, CHEN B S. ICI cancellation for OFDM communication systems in time-varying multipath fading channels[J/OL]. IEEE Transactions on Wireless Communications, 2005, 4(5): 2100-2110. DOI: 10.1109/TWC.2005.853837.
[5] KAMAL S, AZURDIA-MEZA C, LEE K. Nyquist-I pulses designed to suppress the effect of ICI power in OFDM systems[C/OL]//2015 International Wireless Communications and Mobile Computing Conference (IWCMC). 2015: 1412-1417. DOI: 10.1109/IWCMC.2015.7289289.
[6] HADANI R, RAKIB S, TSATSANIS M, et al. Orthogonal Time Frequency Space Modulation [C/OL]//2017 IEEE Wireless Communications and Networking Conference (WCNC). 2017: 1-6. DOI: 10.1109/WCNC.2017.7925924.
[7] SURABHI G D, AUGUSTINE R M, CHOCKALINGAM A. On the Diversity of UncodedOTFS Modulation in Doubly-Dispersive Channels[J/OL]. IEEE Transactions on Wireless Com munications, 2019, 18(6): 3049-3063. DOI: 10.1109/TWC.2019.2909205.
[8] ZHANG H, HUANG X, ZHANG J A. Comparison of OTFS Diversity Performance over Slow and Fast Fading Channels[C/OL]//2019 IEEE/CIC International Conference on Communica tions in China (ICCC). 2019: 828-833. DOI: 10.1109/ICCChina.2019.8855898.
[9] SURABHI G D, AUGUSTINE R M, CHOCKALINGAM A. Peak-to-Average Power Ratio of OTFS Modulation[J/OL]. IEEE Communications Letters, 2019, 23(6): 999-1002. DOI: 10.1109/LCOMM.2019.2914042.
[10] BIGLIERI E, RAVITEJA P, HONG Y. Error Performance of Orthogonal Time Frequency Space (OTFS) Modulation[C/OL]//2019 IEEE International Conference on Communications Work shops (ICC Workshops). 2019: 1-6. DOI: 10.1109/ICCW.2019.8756831.
[11] YUAN Z, TANG M, CHEN J, et al. Low Complexity Parallel Symbol Detection for OTFS Modulation[J/OL]. IEEE Transactions on Vehicular Technology, 2023, 72(4): 4904-4918. DOI: 10.1109/TVT.2022.3227282.
[12] WEI Z, YUAN W, LI S, et al. Orthogonal Time-Frequency Space Modulation: A Promising Next-Generation Waveform[J/OL]. IEEE Wireless Communications, 2021, 28(4): 136-144. DOI: 10.1109/MWC.001.2000408.
[13] RAVITEJA P, HONG Y, VITERBO E, et al. Practical Pulse-Shaping Waveforms for Reduced Cyclic-Prefix OTFS[J/OL]. IEEE Transactions on Vehicular Technology, 2019, 68(1): 957-961.DOI: 10.1109/TVT.2018.2878891.
[14] DAS S S, RANGAMGARI V, TIWARI S, et al. Time Domain Channel Estimation and Equal ization of CP-OTFS Under Multiple Fractional Dopplers and Residual Synchronization Errors [J/OL]. IEEE Access, 2021, 9: 10561-10576. DOI: 10.1109/ACCESS.2020.3046487.
[15] WEI Z, YUAN W, LI S, et al. Transmitter and Receiver Window Designs for Orthogonal Time-Frequency Space Modulation[J/OL]. IEEE Transactions on Communications, 2021, 69 (4): 2207-2223. DOI: 10.1109/TCOMM.2021.3051386.
[16] RAVITEJA P, PHAN K T, HONG Y. Embedded Pilot-Aided Channel Estimation for OTFS in Delay–Doppler Channels[J/OL]. IEEE Transactions on Vehicular Technology, 2019, 68(5): 4906-4917. DOI: 10.1109/TVT.2019.2906357.
[17] SHEN W, DAI L, AN J, et al. Channel Estimation for Orthogonal Time Frequency Space (OTFS) Massive MIMO[J/OL]. IEEE Transactions on Signal Processing, 2019, 67(16): 4204-4217. DOI: 10.1109/TSP.2019.2919411.
[18] ZHAO L, GAO W, GUO W. Sparse Bayesian Learning of Delay-Doppler Channel for OTFS System[J/OL]. IEEE Communications Letters, 2020, 24(12): 2766-2769. DOI: 10.1109/LCOMM.2020.3021120.
[19] YUAN W, LI S, WEI Z, et al. Data-Aided Channel Estimation for OTFS Systems With a Superimposed Pilot and Data Transmission Scheme[J/OL]. IEEE Wireless Communications Letters, 2021, 10(9): 1954-1958. DOI: 10.1109/LWC.2021.3088836.
[20] WEI Z, YUAN W, LI S, et al. Off-grid Channel Estimation with Sparse Bayesian Learning for OTFS Systems[J/OL]. IEEE Transactions on Wireless Communications, 2022: 1-1. DOI: 10.1109/TWC.2022.3158616.
[21] ZHAO L, YANG J, LIU Y, et al. Block Sparse Bayesian Learning-Based Channel Estimation for MIMO-OTFS Systems[J/OL]. IEEE Communications Letters, 2022, 26(4): 892-896. DOI: 10.1109/LCOMM.2022.3144674.
[22] LIU F, YUAN Z, GUO Q, et al. Message Passing-Based Structured Sparse Signal Recovery for Estimation of OTFS Channels With Fractional Doppler Shifts[J/OL]. IEEE Transactions on Wireless Communications, 2021, 20(12): 7773-7785. DOI: 10.1109/TWC.2021.3087501.
[23] LI Z, YUAN W, ZHOU L. UAMP-Based Channel Estimation for OTFS in the Presence of the Fractional Doppler with HMM Prior[C/OL]//2022 IEEE/CIC International Conference on Communications in China (ICCC Workshops). 2022: 304-308. DOI: 10.1109/ICCCWorkshop s55477.2022.9896709.
[24] WANG Q, LIANG Y, ZHANG Z, et al. 2D Off-Grid Decomposition and SBL Combination for OTFS Channel Estimation[J/OL]. IEEE Transactions on Wireless Communications, 2023, 22(5): 3084-3098. DOI: 10.1109/TWC.2022.3215991.
[25] KHAN I A, MOHAMMED S K. A Low-Complexity OTFS Channel Estimation Method for Fractional Delay-Doppler Scenarios[J/OL]. IEEE Wireless Communications Letters, 2023, 12(9): 1484-1488. DOI: 10.1109/LWC.2023.3274936.
[26] KORKI M, ZHANG J, ZHANG C, et al. Iterative Bayesian Reconstruction of Non-IID Block Sparse Signals[J/OL]. IEEE Transactions on Signal Processing, 2016, 64(13): 3297-3307. DOI:10.1109/TSP.2016.2543208.
[27] GUO Q, XI J. Approximate Message Passing with Unitary Transformation[J]. Mathematics, 2015.
[28] ZINIEL J, SCHNITER P. Dynamic Compressive Sensing of Time-Varying Signals Via Approximate Message Passing[J/OL]. IEEE Transactions on Signal Processing, 2013, 61(21): 5270-5284. DOI: 10.1109/TSP.2013.2273196.
[29] TIBSHIRANI R. Regression Shrinkage and Selection via The Lasso: A Retrospective[J/OL]. Journal of the Royal Statistical Society Series B: Statistical Methodology, 2011, 73(3): 273-282. https://doi.org/10.1111/j.1467-9868.2011.00771.x.
[30] BLUMENSATH T, DAVIES M E. Normalized Iterative Hard Thresholding: Guaranteed Stability and Performance[J/OL]. IEEE Journal of Selected Topics in Signal Processing, 2010, 4(2): 298-309. DOI: 10.1109/JSTSP.2010.2042411.
[31] JAVANMARD A, MONTANARI A. State evolution for general approximate message passing algorithms, with applications to spatial coupling[J/OL]. Information and Inference: A Journal of the IMA, 2013, 2(2): 115-144. DOI: 10.1093/imaiai/iat004.
[32] RANGAN S. Generalized approximate message passing for estimation with random linear mixing[C/OL]//2011 IEEE International Symposium on Information Theory Proceedings. 2011: 2168-2172. DOI: 10.1109/ISIT.2011.6033942.
[33] MENG X, WU S, ZHU J. A Unified Bayesian Inference Framework for Generalized Linear Models[J/OL]. IEEE Signal Processing Letters, 2018, 25(3): 398-402. DOI: 10.1109/LSP.20 17.2789163.
[34] RANGAN S, SCHNITER P, FLETCHER A K, et al. On the Convergence of Approximate Message Passing With Arbitrary Matrices[J/OL]. IEEE Transactions on Information Theory, 2019, 65(9): 5339-5351. DOI: 10.1109/TIT.2019.2913109.
[35] MANOEL A, KRZAKALA F, TRAMEL E W, et al. Sparse Estimation with the Swept Approximated Message-Passing Algorithm: abs/1406.4311[A/OL]. 2014. https://api.semanticsc holar.org/CorpusID:15809213.
[36] VILA J, SCHNITER P, RANGAN S, et al. Adaptive damping and mean removal for the generalized approximate message passing algorithm[C/OL]//2015 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). 2015: 2021-2025. DOI: 10.1109/ICASSP.2015.7178325.
[37] RANGAN S, SCHNITER P, FLETCHER A K. Vector Approximate Message Passing[J/OL]. IEEE Transactions on Information Theory, 2019, 65(10): 6664-6684. DOI: 10.1109/TIT.2019.2916359.
[38] MA J, PING L. Orthogonal AMP[J/OL]. IEEE Access, 2017, 5: 2020-2033. DOI: 10.1109/ACCESS.2017.2653119.
[39] LIU L, HUANG S, KURKOSKI B M. Memory Approximate Message Passing[C/OL]//2021 IEEE International Symposium on Information Theory (ISIT). 2021: 1379-1384. DOI: 10.110 9/ISIT45174.2021.9518123.
[40] TAKEUCHI K. Convolutional Approximate Message-Passing[J/OL]. IEEE Signal Processing Letters, 2020, 27: 416-420. DOI: 10.1109/LSP.2020.2976155.
[41] AL-SHOUKAIRI M, SCHNITER P, RAO B D. A GAMP-Based Low Complexity SparseBayesian Learning Algorithm[J/OL]. IEEE Transactions on Signal Processing, 2018, 66(2): 294-308. DOI: 10.1109/TSP.2017.2764855.
[42] YUAN Z, GUO Q, LUO M. Approximate Message Passing With Unitary Transformation for Robust Bilinear Recovery[J/OL]. IEEE Transactions on Signal Processing, 2021, 69: 617-630. DOI: 10.1109/TSP.2020.3044847.
[43] SCHNITER P. Turbo reconstruction of structured sparse signals[C/OL]//2010 44th Annual Conference on Information Sciences and Systems (CISS). 2010: 1-6. DOI: 10.1109/CISS.2010.5464920.
[44] RIEGLER E, KIRKELUND G E, MANCHON C N, et al. Merging Belief Propagation and the Mean Field Approximation: A Free Energy Approach[J/OL]. IEEE Transactions on Information Theory, 2013, 59(1): 588-602. DOI: 10.1109/TIT.2012.2218573.
[45] LUO M, GUO Q, JIN M, et al. Unitary Approximate Message Passing for Sparse Bayesian Learning[J/OL]. IEEE Transactions on Signal Processing, 2021, 69: 6023-6039. DOI: 10.1109/TSP.2021.3114985.
[46] DEMPSTER A P. Maximum likelihood from incomplete data via the EM algorithm[J]. Journal of the Royal Statistical Society, 1977, 39.
[47] RAVITEJA P, PHAN K T, HONG Y, et al. Interference Cancellation and Iterative Detection for Orthogonal Time Frequency Space Modulation[J/OL]. IEEE Transactions on Wireless Communications, 2018, 17(10): 6501-6515. DOI: 10.1109/TWC.2018.2860011.
[48] PROVENCHER S. Estimation of Complex Single-Tone Parameters in the DFT Domain[J/OL]. IEEE Transactions on Signal Processing, 2010, 58(7): 3879-3883. DOI: 10.1109/TSP.2010.2046693.

所在学位评定分委会
电子科学与技术
国内图书分类号
U285.2
来源库
人工提交
成果类型学位论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/779041
专题工学院_电子与电气工程系
推荐引用方式
GB/T 7714
李中杰. 时延多普勒域的信道估计算法研究[D]. 深圳. 南方科技大学,2024.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
12132128-李中杰-电子与电气工程(1509KB)----限制开放--请求全文
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[李中杰]的文章
百度学术
百度学术中相似的文章
[李中杰]的文章
必应学术
必应学术中相似的文章
[李中杰]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。