[1] ZHANG Y, SHI Z Y, LI X F, et al. A porcine model of early-onset scoliosiscombined with thoracic insufficiency syndrome: Construction and TranscriptomeAnalysis[J]. Gene, 2023, 858:147202.
[2] LI Y, YANG D, BERGMAN R, et al. Preoperative left shoulder elevation >1 cm ispredictive of severe postoperative shoulder imbalance in early onset idiopathicscoliosis patients treated with growth-friendly instrumentation[J]. Spine deformity,2023, 11(5): 1157-1167.
[3] YANG H H, LIU L, HAI Y, et al. Reliability and validity of the Chinese version ofthe Early-Onset Scoliosis Self-Report Questionnaire in children aged 8 to 18 years with early-onset scoliosis[J]. Translational pediatrics, 2023, 12 (7): 1336-1351.
[4] HAI Y, YANG H H, KANG N, et al. Distal foundation augmentation enhances the"Bridge" role of single traditional growing rods in the treatment of severe early-onset scoliosis: a retrospective comparative cohort study[J]. Translational pediatrics,2023, 12 (3): 331-343.
[5] 徐洁涛, 王冰. 十五年的回首,早发性特发性脊柱侧凸经历了什么? 中南大学湘雅二医院脊柱外科, 2018. https://www.orthonline.com.cn/node/133923.
[6] 何沛檐, 裴葆青, 王唯等. 生长棒不同固定术式治疗早发性脊柱侧凸的生物力学分析[J]. 医用生物力学, 2021, 36 (06): 849-854.
[7] OH Y S, KIM J H, XIE Z H, et al. Battery-free, wireless soft sensors for continuous multi-site measurements of pressure and temperature from patients at risk forpressure injuries [J]. Nature Communications, 2021, 12 (1): 5008-5008.
[8] RUTH S R A, KIM M G, ODA H, et al. Post-surgical wireless monitoring of arterial health progression[J]. iScience, 2021, 24 (9): 103079-103079.
[9] DONG Z Y, LI Z P, YANG F Y, et al. Sensitive readout of implantable microsensors using a wireless system locked to an exceptional point[J]. Nature Electronics, 2019,2 (8): 335-342.
[10] BOUTRY C M, BEKER L, KAIZAWA Y, et al. Biodegradable and flexible arterial-pulse sensor for the wireless monitoring of blood flow[J]. Nature biomedicalengineering, 2019, 3 (1): 47-57.
[11] HAJIAGHAJANI A, AFANDIZADEH Z A H, DAUTTA M, et al. Textile-integratedmetamaterials for near-field multibody area networks [J]. Nature Electronics, 2021,4 (11): 808-817.
[12] LIN R Z, KIM H J, ACHAVANANTHADITH S, et al. Wireless battery-free bodysensor networks using near-field-enabled clothing[J]. Nature communications, 2020,11 (1): 444.
[13] GALLI V, SALIAPU S K, CUTHBERT T J, et al. Passive and Wireless All-TextileWearable Sensor System[J]. Advanced science, 2023, 10 (22): 2206665.
[14] WANG H Y, WANG J Q, YAO K M, et al. A paradigm shift fully self-powered long-distance wireless sensing solution enabled by discharge-induced displacement current[J]. Science advances, 2021, 7 (39): eabi6751.
[15] GUO Y J, YIN F F, LI Y, et al. Incorporating Wireless Strategies to WearableDevices Enabled by a Photocurable Hydrogel for Monitoring Pressure Information[J].Advanced Materials, 2023, 35 (29): 2300855.
[16] LIN X, SUN L J, PAN J Y, et al. All-MXene-Printed RF Resonators as WirelessPlant Wearable Sensors for In Situ Ethylene Detection[J]. Small, 2023, 19 (24):2207889.
[17] BOBINGER M, HAIDER M, GOLIYA Y, et al. On the sintering of solution-basedsilver nanoparticle thin-films for sprayed and flexible antennas[J]. Nanotechnology,2018, 29 (48): 485701.
[18] SHARMA P K, GUPTA N, DANKOV P I. Analysis of Dielectric Properties ofPolydimethylsiloxane (PDMS) as a Flexible Substrate for Sensors and AntennaApplications[J]. IEEE Sensors Journal, 2021, 21(17): 19492-19499.
[19] KIM Y, MIN J S, JIHO S, et al. Chip-less wireless electronic skins by remoteepitaxial freestanding compound semiconductors. [J]. Science (New York, N.Y.),2022, 377 (6608): 859-864.
[20] ZHANG H S, ZHU J, ZHANG Y Y, et al. Standalone Stretchable RF Systems Based on Asymmetric 3D Microstrip Antennas With on-body Wireless Communication and Energy Harvesting[J]. Nano Energy, 2022,96: 107069.
[21] ZHAO Y, ZHANG S, YU T H, et al. Ultra-conformal skin electrodes withsynergistically enhanced conductivity for long-time and low-motion artifactepidermal electrophysiology[J]. Nature Communications, 2021,12 (1): 4880.
[22] HAJIAGHAJANI A, RWEI P, ZARGARI A H A, et al. Amphibious epidermal areanetworks for uninterrupted wireless data and power transfer[J]. NatureCommunications, 2023, 14 (1): 7522.
[23] ZHANG Y, ZHANG W F, YE G, et al. Core-Sheath Stretchable Conductive Fibers for Safe Underwater Wearable Electronics[J]. Advanced Materials Technologies,2020, 5 (1): 1900880.
[24] TIAN X, ZENG Q H, KURT S A, et al. Implant-to-implant wireless networking with metamaterial textiles[J]. Nature communications, 2023, 14 (1): 4335.
[25] LIN R Z, KIM H J, ACHAVANANTHADITH S, et al. Digitally-embroidered liquid metal electronic textiles for wearable wireless systems[J]. Nature Communications,2022, 13 (1): 2190.
[26] 于东辉. 基于 PDMS 的柔性可形变天线研究与设计[D]. 电子科技大学, 2022.
[27] 王宗辉. 喷墨打印图案化导电薄膜及其在柔性电子器件中的应用[D]. 南京邮电大学, 2022.
[28] 张宏伟. 激光刻蚀聚酰亚胺基底金属薄膜的温度场研究[D]. 兰州理工大学, 2016.
[29] YAMAGISHI K, ZHOU W S, CHING T, et al. Ultra-Deformable and Tissue-Adhesive Liquid Metal Antennas with High Wireless Powering Efficiency[J].Advanced materials, 2021, 33 (26): 2008062.
[30] ZHANG Y F, HUO Z H, WANG X D, et al. High precision epidermal radiofrequency antenna via nanofiber network for wireless stretchable multifunctionelectronics[J]. Nature communications, 2020, 11 (1): 5629.
[31] SHAO Y Z, WEI L S, WU X Y, et al. Room-temperature high-precision printing of flexible wireless electronics based on MXene inks[J]. Nature Communications, 2022,13 (1): 3223.
[32] LV S W, YE S Y, CHEN C L, et al. Reactive inkjet printing of graphene basedflexible circuits and radio frequency antennas[J]. JOURNAL OF MATERIALSCHEMISTRY C, 2021, 9 (38): 13182-13192.
[33] ZHAO W W, NI H, DING C B, et al. 2D Titanium carbide printed flexibleultrawideband monopole antenna for wireless communications[J]. Naturecommunications, 2023, 14 (1): 278.
[34] ZANG Y P, ZHANG F J, DI C A, et al. Advances of flexible pressure sensors toward artificial intelligence and health care applications[J]. Materials Horizons, 2015, 2 (2):140-156.
[35] CHEN K Y, XU Y T, ZHAO Y, et al. Recent progress in graphene-based wearable piezoresistive sensors: From 1D to 3D device geometries[J]. Nano Materials Science, 2023, 5 (3): 247-264.
[36] GAO Y, YAN C, HUANG H, et al. Microchannel-Confined MXene Based Flexible Piezoresistive Multifunctional Micro-Force Sensor[J]. Adv Funct Mater, 2020,30(11): 1909603.
[37] SAKHUJA N, KUMAR R, KATARE P, et al. Structure-Driven, Flexible,Multilayered, Paper-Based Pressure Sensor for Human-Machine Interfacing[J]. ACS Sustainable Chem Eng, 2022, 10(30): 9697-9706.
[38] LIN X, XUE H, LI F, et al. All-Nanofibrous Ionic Capacitive Pressure Sensor forWearable Applications[J]. ACS Appl Mater Interfaces, 2022, 14(27): 31385-31395.
[39] SHI Z Y, MENG L X, SHI X L, et al. Morphological Engineering of SensingMaterials for Flexible Pressure Sensors and Artificial Intelligence Applications[J].Nano-Micro Letters, 2022, 14 (1): 141.
[40] MANNSFELD S C B, TEE B C K, STOLTENBERG R M, et al. Highly sensitiveflexible pressure sensors with microstructured rubber dielectric layers[J]. Naturematerials, 2010, 9 (10): 859-864.
[41] WANG X L, XIA Z D, ZHAO C, et al. Microstructured flexible capacitive sensorwith high sensitivity based on carbon fiber-filled conductive silicon rubber[J].Sensors and Actuators A: Physical, 2020, 312: 112147.
[42] PRUVOST M, SMIT W J, MONTEUX C, et al. Polymeric foams for flexible andhighly sensitive low-pressure capacitive sensors[J]. npj Flexible Electronics, 2019, 3(1): 1500169-1003.
[43] LI S ,LU D ,LI S P, et al. Bioresorbable, wireless, passive sensors for continuous pH measurements and early detection of gastric leakage. [J]. Science advances, 2024, 10(16): eadj0268-eadj0268.
[44] LIU T L, DONG Y, CHEN S L, et al. Battery-free, tuning circuit-inspired wireless sensor systems for detection of multiple biomarkers in bodily fluids. Scienceadvances, 2022, 8: eabo7049.
[45] YANG C, WU Q N, LIU J Q, et al. Intelligent wireless theranostic contact lens for electrical sensing and regulation of intraocular pressure. [J]. Nature communications, 2022, 13 (1): 2556-2556.
[46] LEE J, IHLE J S, PELLEGRINO S G, et al. Stretchable and suturable fibre sensors for wireless monitoring of connective tissue strain[J]. Nature Electronics, 2021, 4 (4):291-301.
[47] HERBERT R, LIM H R, RIGO B, et al. Fully implantable wireless batterylessvascular electronics with printed soft sensors for multiplex sensing ofhemodynamics[J]. Science advances, 2022, 8 (19): eabm1175.
[48] KWON K, KIM U J, WON M S, et al. A battery-less wireless implant for thecontinuous monitoring of vascular pressure, flow rate and temperature[J]. Naturebiomedical engineering, 2023, 7 (10): 1215-1228.
[49] 张运海. 聚合物材料表面激光改性与刻蚀研究[D]. 山东师范大学, 2005.
[50] YANG Q S, HU Z Y, SEO M H, et al. High-speed, scanned laser structuring ofmulti-layered eco/bioresorbable materials for advanced electronic systems[J]. Nature communications, 2022, 13 (1): 6518.
[51] THEURING M, STEENHOFF V, GEIBENDÖRFER S, et al. Laser perforatedultrathin metal films for transparent electrode applications[J]. Optics express, 2015,23 (7) : A254-262.
[52] LI X K, ZHOU X W, CHEN J L, et al. Laser-Patterned Copper Electrodes forProximity and Tactile Sensors[J]. Advanced Materials Interfaces, 2020, 7(4):1901845.
[53] QIN R Z, HU M J, ZHANG N B, et al. Flexible Fabrication of Flexible Electronics:A General Laser Ablation Strategy for Robust Large-Area Copper-BasedElectronics[J]. Advanced Electronic Materials, 2019, 5 (10) : 1900365.
[54] 王书廷. 激光烧蚀打印技术研究[D]. 长春理工大学, 2018.
[55] 杨青, 杜广庆, 陈烽等. 飞秒激光整形脉冲激发金膜的超快热弛豫特性[J]. 中国激光, 2014, 41 (05): 29-34.
[56] SOKOLOWSKI T K, BIALKOWSKI J, CAVALLERI A, et al.Transient States ofMatter during Short Pulse Laser Ablation[J]. Physical Review Letters, 1998, 81(1):224.
[57] 孙旭娟. 紫外纳秒激光烧蚀金属薄膜过程研究[D]. 天津大学, 2018.
[58] 张庆伟. 飞秒激光烧蚀技术制备柔性金属透明电极材料[D]. 宁波大学, 2021.
[59] COLLINS C C. Miniature Passive Pressure Transensor for Implanting in the Eye. IEEE Transactions on Bio-Medical Engineering, 1967, BME-14(2): 74.
[60] 邓文俊. LC 型多参数无源无线传感器的研究[D]. 东南大学, 2020.
修改评论