中文版 | English
题名

基于形状记忆聚合物的柔性内镜变刚度设计与性能研究

其他题名
DESIGN AND PERFORMANCE STUDY OF FLEXIBLE ENDOSCOPE WITH VARIABLE STIFFNESS BASED ON SHAPE MEMORY POLYMER
姓名
姓名拼音
HAO Jiewen
学号
12233266
学位类型
硕士
学位专业
0856 材料与化工
学科门类/专业学位类别
08 工学
导师
熊璟
导师单位
中国科学院深圳先进技术研究院
论文答辩日期
2024-05-06
论文提交日期
2024-07-06
学位授予单位
南方科技大学
学位授予地点
深圳
摘要

     对于柔性内镜而言,微创手术需要内镜经人体自然腔道进行,针对人体内自然腔道狭窄多曲、操作空间有限、手术器械自由度不足、进行手术操作时提供的刚性支撑低、机器人集成程度要求极高等内镜手术的核心问题,研发出具有变刚度特性的柔性连续体手术操作臂,实现操作臂的刚柔转化,是保障微创手术人机交互安全、提升稳定性、兼顾操作精度和力输出的关键。针对上述问题,本文制备了一个应用于柔性内镜的变刚度外鞘结构。将该结构装配于柔性内镜上,可在不同温度刺激下完成较大范围的刚度变化。

     形状记忆聚合物是一种能够通过外界刺激产生变化,使其性能参数随之改变的一类材料,具有可回复形变量大、形变响应温度容易调节、形状记忆效应种类多等优点。本文使用了一种商用形状记忆聚合物材料作为变刚度功能材料,并基于该材料设计了一种集成有冷却层和形状记忆聚合物层的变刚度外鞘,由形状记忆聚合物承担结构的变刚度功能,冷却层承担对形状记忆聚合物的温度控制功能。根据对变刚度外鞘进行传热仿真与不同温度工况下的刚度特性仿真分析与测试结果表明,该变刚度结构可以在较短时间内经温度变化刺激完成柔性内镜的刚度转化,刚度变化最大可达约 140 倍。该变刚度外鞘可以有效改善目前柔性内镜在进行手术操作时刚度不足、稳定性较差的问题,提升手术效率,且结构简单,适用于大部分柔性内镜,在微创手术领域有良好的应用前景和价值。

其他摘要

    For flexible endoscopy, Minimally Invasive Surgery requires the endoscope to be carried out through the natural human cavity. In view of the core problems of narrow and curved natural cavity in the human body, limited operating space, insufficient freedom of surgical instruments, low rigid support during surgical operation, and extremely high requirements for robot integration in endoscopic surgery, a flexible continuous operating arm with variable stiffness cha racteristics has been developed and issued. The rigid-flexible transformation of the manipulator arm is the key to ensure the safety of human -computer interaction in Minimally Invasive Surgery, which can improve the stability, and take into account the operation accuracy and force output. To solve above problems, a variable stiffness sheath structure for flexible endoscopy was designed. When the structure is installed on the flexible endoscope, a wide range of the stiffness changes can be achieved under different temperature stimulation.

    Shape Memory Polymer is a kind of material which can change its performance parameters by external stimulation. It has the advantages of large shape recovery variable, easy adjustment of deformation response temperature and variety of shape memory effect. In this paper, a commercial Shape Memory Polymer material is used as a variable stiffness functional material, and based on this material, a variable stiffness outer sheath with an integrated cooling layer and a Shape Memory Polymer layer is designed. The Shape Memory Polymer is mainly used for the variable stiffness function of the structure, and the cooling layer is used for the temperature control function of the Shape Memory Polymer. According to the heat transfer simulation of the variable stiffness sheath and the simulation analysis and test results of the stiffness characteristics under different temperature conditions, the variable stiffness structure can complete the stiffness transformation of the flexible endoscope in a relatively short time by the stimulation of temperature change, and the maximum stiffness change can achieve about 140 times. The variable stiffness sheath can effectively improve the insufficient rigidity and poor stability of flexible endoscopes during surgical operations, and improve surgical efficiency. Besides, the structure is simple, which is suitable for most of the flexible endoscopes,and has a good application prospect and value in the field of Minimally Invasive Surgery.

关键词
其他关键词
语种
中文
培养类别
独立培养
入学年份
2022
学位授予年份
2024-07
参考文献列表

[1] YANG G Z, BELLINGHAM J, DUPONT P E, et al. The grand challenges of Science Robotics[J]. Science Robotics, 2018, 3(14): eaar7650.
[2] ZHAO Y, CHAI X, GAO F, et al. Obstacle avoidance and motion planning scheme for a hexapod robot Octopus-III[J]. Robotics and Autonomous Systems, 2018, 103: 199-212.
[3] ZHU Z, TANG X, CHEN C, et al. High precision and efficiency robotic milling of complex parts: Challenges, approaches and trends[J]. Chinese Journal of Aeronautics, 2022, 35(2): 22 -46.
[4] FLORES-ABAD A, MA O, PHAM K, et al. A review of space robotics technologies for on-orbit servicing[J]. Progress in Aerospace Sciences, 2014, 68: 1-26.
[5] LEAL GHEZZI T, CAMPOS CORLETA O. 30 Years of Robotic Surgery[J]. World Journal of Surgery, 2016, 40(10): 2550 -2557.
[6] VITIELLO V, LEE S L, CUNDY T P, et al. Emerging robotic platforms for minimally invasive surgery[J]. IEEE reviews in biomedical engineering, 2013, 6: 111-126.
[7] 李建民, 王树新, 张建勋, 等. 微创手术机器人控制策略[J]. 天津大学学报, 2011, 44(10): 884-889.
[8] ZHANG W, LI H, CUI L, et al. Research progress and development trend of surgical robot and surgical instrument arm[J]. The international journal of medical robotics + computer assisted surgery: MRCAS, 2021, 17(5): e2309.
[9] GIFARI M W, NAGHIBI H, STRAMIGIOLI S, et al. A review on recent advances in soft surgical robots for endoscopic applications[J]. The International Journal of Medical Robotics and Computer Assisted Surgery, 2019, 15(5): e2010.
[10] OMISORE O M, HAN S, XIONG J, et al. A Review on Flexible Robotic Systems for Minimally Invasive Surgery[J]. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2022, 52(1): 631 -644.
[11] KIM Y J, CHENG S, KIM S, et al. A Stiffness-Adjustable Hyperredundant Manipulator Using a Variable Neutral-Line Mechanism for Minimally Invasive Surgery[J]. IEEE Transactions on Robotics, 2014, 30(2): 382 -395.
[12] BERGELES C, YANG G Z. From Passive Tool Holders to Microsurgeons: Safer, Smaller, Smarter Surgical Robots[J]. IEEE Transactions on Biomedical Engineering, 2014, 61(5): 1565-1576.55
[13] EL-ATAB N, MISHRA R B, AL-MODAF F, et al. Soft Actuators for Soft Robotic Applications: A Review[J]. Advanced Intelligent Systems, 2020, 2(10): 2000128.
[14] 王田苗, 郝雨飞, 杨兴帮, 等. 软体机器人:结构、驱动、传感与控制[J]. 机械工程学报, 2017, 53(13): 1-13.
[15] DUPONT P E, NELSON B J, GOLDFARB M, et al. A decade retrospective of medical robotics research from 2010 to 2020[J]. Science Robotics, 2021, 6(60): eabi8017.
[16] 尚祖峰, 马家耀, 王树新. 面向微创手术器械臂的可变刚度机理综述[J]. 机械工程学报, 2022, 58(21): 1-15.
[17] ZUO S, IIJIMA K, TOKUMIYA T, et al. Variable stiffness outer sheath with “Dragon skin” structure and negative pneumatic shape-locking mechanism[J]. International Journal of Computer Assisted Radiology and Surgery, 2014, 9(5): 857-865.
[18] FITZGERALD S G, DELANEY G W, HOWARD D. A Review of Jamming Actuation in Soft Robotics[J]. Actuators, 2020, 9(4): 104.
[19] MANTI M, CACUCCIOLO V, CIANCHETTI M. Stiffening in Soft Robotics: A Review of the State of the Art[J]. IEEE Robotics & Automation Magazine, 2016, 23(3): 93-106.
[20] NARANG Y S, AKTAŞ B, ORNELLAS S, et al. Lightweight Highly Tunable Jamming-Based Composites[J]. Soft Robotics, 2020, 7(6): 724 -735.
[21] RANZANI T, GERBONI G, CIANCHETTI M, et al. A bioinspired soft manipulator for minimally invasive surgery[J]. Bioinspiration & Biomimetics, 2015, 10(3): 035008.
[22] RANZANI T, CIANCHETTI M, GERBONI G, et al. A Soft Modular Manipulator for Minimally Invasive Surgery: Design and Characterization of a Single Module[J]. IEEE Transactions on Robotics, 2016, 32(1): 187 -200.
[23] KIM Y J, CHENG S, KIM S, et al. A Novel Layer Jamming Mechanism With Tunable Stiffness Capability for Minimally Invasive Surgery[J]. IEEE Transactions on Robotics, 2013, 29(4): 1031 -1042.
[24] XING Z, WANG F, JI Y, et al. A Structure for Fast Stiffness-Variation and Omnidirectional-Steering Continuum Manipulator[J]. IEEE Robotics and Automation Letters, 2021, 6(2): 755 -762.
[25] 罗云, 赵儒镇, 李祥, 等. 变刚度内镜手术器械外护套:中国, 201510179147.6[P]. 2015-08-12.
[26] JIANG S, CHEN B, QI F, et al. A variable-stiffness continuum manipulators by an SMA-based sheath in minimally invasive surgery[J]. The International Journal of Medical Robotics and Computer Assisted Surgery, 2020, 16(2): e2081.
[27] KIM Y, CHENG S S, DESAI J P. Active Stiffness Tuning of a Spring-Based Continuum Robot for MRI-Guided Neurosurgery[J]. IEEE Transactions on Robotics, 2018, 34(1): 18-28.
[28] LE H M, PHAN P T, LIN C, et al. A Temperature -Dependent, Variable Stiffness Endoscopic Robotic Manipulator with Active Heating and Cooling[J]. Annals of Biomedical Engineering, 2020, 48(6): 1837 -1849.
[29] ZHANG Y, ZHANG N, HINGORANI H, et al. Fast‐Response, Stiffness‐Tunable Soft Actuator by Hybrid Multimaterial 3D Printing[J]. Advanced Functional Materials, 2019, 29(15): 1806698.
[30] ZHANG Y F, LI Z, LI H, et al. Fractal-Based Stretchable Circuits via Electric-Field-Driven Microscale 3D Printing for Localized Heating of Shape Memory Polymers in 4D Printing[J]. ACS Applied Materials & Interfaces, 2021, 13(35): 41414-41423.
[31] 王树新, 任旭阳, 张国凯, 等. 变刚度自然腔道手术器械支撑结构及使用方法: 中国,201810361061.9[P]. 2021-07-23.
[32] 王林林, 冷劲松, 杜善义. 4D 打印形状记忆聚合物及其复合材料的研究现状和应用进展[J]. 哈尔滨工业大学学报, 2020, 52(6): 227-244.
[33] 李兴建, 侯晴, 杨继龙, 等. 电刺激响应形状记忆聚合物复合材料的设计和驱动性能[J]. 材料导报, 2022, 36(6): 196-207.
[34] ZHAO Q, QI H J, XIE T. Recent progress in shape memory polymer: New behavior, enabling materials, and mechanistic understanding[J]. Progress in Polymer Science, 2015, 49-50: 79-120.
[35] WANG Q, PAN C, ZHANG Y, et al. Magnetoactive liquid-solid phase transitional matter[J]. Matter, 2023, 6(3): 855 -872.
[36] DU J, ZHANG Z, LIU D, et al. Triple-stimuli responsive shape memory effect of novel polyolefin elastomer/lauric acid/carbon black nanocomposites[J]. Composites Science and Technology, 2019, 169: 45 -51.
[37] WU J, YUAN C, DING Z, et al. Multi-shape active composites by 3D printing of digital shape memory polymers[J]. Scientific Reports, 2016, 6(1): 24224.
[38] YANG Y, CHEN Y, WEI Y, et al. Novel Design and Three -Dimensional Printing of Variable Stiffness Robotic Grippers[J]. Journal of Mechanisms and Robotics, 2016, 8(061010).
[39] YANG Y, CHEN Y, LI Y, et al. Bioinspired Robotic Fingers Based on Pneumatic Actuator and 3D Printing of Smart Material[J]. Soft Robotics, 2017, 4(2): 147-162.
[40] KHALID M Y, ARIF Z U, NOROOZI R, et al. 4D printing of shape memory polymer composites: A review on fabrication techniques, applications, and future perspectives[J]. Journal of Manufacturing Processes, 2022, 81: 759 -797.
[41] 武元鹏, 丁强, 李晶, 等. 基于聚乳酸的可降解形状记忆高分子的研究进展[J]. 高分子通报, 2012(10): 33-39.
[42] RAHMATABADI D, GHASEMI I, BANIASSADI M, et al. 4D printing of PLA-TPU blends: effect of PLA concentration, loading mode, and programming temperature on the shape memory effect[J]. Journal of Materials Science, 2023, 58(16): 7227-7243.
[43] ARUNPRASATH K, VIJAYAKUMAR M, RAMARAO M, et al. Dynamic mechanical analysis performance of pure 3D printed polylactic acid (PLA) and acrylonitrile butadiene styrene (ABS)[J]. Materials Today: Proceedings, 2022, 50: 1559-1562.
[44] PIECZYSKA E A, STASZCZAK M, MAJ M, et al. Investigation of thermomechanical couplings, strain localization and shape memory properties in a shape memory polymer subjected to loading at various strain rates[J]. Smart Materials and Structures, 2016, 25(8): 085002.
[45] 李建. 形状记忆聚氨酯热-力耦合循环变形实验和本构模型研究[D]. 成都:西南交通大学, 2022:31-40.
[46] SCHMIDT C, NEUKING K, EGGELER G. Functional Fatigue of Shape Memory Polymers[J]. Advanced Engineering Materials, 2008, 10(10): 922 -927.
[47] 栗娟. 高分子链驱动变形的计算机模拟研究[D].南京: 南京大学, 2016:5-7.
[48] YANG Y, CHEN Y, WEI Y, et al. 3D printing of shape memory polymer for functional part fabrication[J]. The International Journal of Advanced Manufacturing Technology, 2016, 84(9 -12): 2079-2095.
[49] PIECZYSKA E A, MAJ M, KOWALCZYK-GAJEWSKA K, et al. Thermomechanical properties of polyurethane shape memory polymer –experiment and modeling[J]. Smart Materials and Structures, 2015, 24(4): 045043.
[50] ARRUDA E M, BOYCE M C. A three-dimensional constitutive model for the large stretch behavior of rubber elastic materials[J]. Journal of the Mechanics and Physics of Solids, 1993, 41(2): 389 -412.
[51] 王建辰. 变刚度单孔手术机器人系统设计方法及主从控制策略研究[D]. 天津:天津大学, 2017:120-126.
[52] QUAGLIA C, PETRONI G, NICCOLINI M, et al. Design of a Compact Robotic Manipulator for Single-Port Laparoscopy[J]. Journal of Mechanical Design, 2014, 136(105001)

所在学位评定分委会
材料与化工
国内图书分类号
TB381
来源库
人工提交
成果类型学位论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/779044
专题中国科学院深圳理工大学(筹)联合培养
推荐引用方式
GB/T 7714
郝婕文. 基于形状记忆聚合物的柔性内镜变刚度设计与性能研究[D]. 深圳. 南方科技大学,2024.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
12233266-郝婕文-中国科学院深圳(5308KB)----限制开放--请求全文
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[郝婕文]的文章
百度学术
百度学术中相似的文章
[郝婕文]的文章
必应学术
必应学术中相似的文章
[郝婕文]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。