[1] YANG G Z, BELLINGHAM J, DUPONT P E, et al. The grand challenges of Science Robotics[J]. Science Robotics, 2018, 3(14): eaar7650.
[2] ZHAO Y, CHAI X, GAO F, et al. Obstacle avoidance and motion planning scheme for a hexapod robot Octopus-III[J]. Robotics and Autonomous Systems, 2018, 103: 199-212.
[3] ZHU Z, TANG X, CHEN C, et al. High precision and efficiency robotic milling of complex parts: Challenges, approaches and trends[J]. Chinese Journal of Aeronautics, 2022, 35(2): 22 -46.
[4] FLORES-ABAD A, MA O, PHAM K, et al. A review of space robotics technologies for on-orbit servicing[J]. Progress in Aerospace Sciences, 2014, 68: 1-26.
[5] LEAL GHEZZI T, CAMPOS CORLETA O. 30 Years of Robotic Surgery[J]. World Journal of Surgery, 2016, 40(10): 2550 -2557.
[6] VITIELLO V, LEE S L, CUNDY T P, et al. Emerging robotic platforms for minimally invasive surgery[J]. IEEE reviews in biomedical engineering, 2013, 6: 111-126.
[7] 李建民, 王树新, 张建勋, 等. 微创手术机器人控制策略[J]. 天津大学学报, 2011, 44(10): 884-889.
[8] ZHANG W, LI H, CUI L, et al. Research progress and development trend of surgical robot and surgical instrument arm[J]. The international journal of medical robotics + computer assisted surgery: MRCAS, 2021, 17(5): e2309.
[9] GIFARI M W, NAGHIBI H, STRAMIGIOLI S, et al. A review on recent advances in soft surgical robots for endoscopic applications[J]. The International Journal of Medical Robotics and Computer Assisted Surgery, 2019, 15(5): e2010.
[10] OMISORE O M, HAN S, XIONG J, et al. A Review on Flexible Robotic Systems for Minimally Invasive Surgery[J]. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2022, 52(1): 631 -644.
[11] KIM Y J, CHENG S, KIM S, et al. A Stiffness-Adjustable Hyperredundant Manipulator Using a Variable Neutral-Line Mechanism for Minimally Invasive Surgery[J]. IEEE Transactions on Robotics, 2014, 30(2): 382 -395.
[12] BERGELES C, YANG G Z. From Passive Tool Holders to Microsurgeons: Safer, Smaller, Smarter Surgical Robots[J]. IEEE Transactions on Biomedical Engineering, 2014, 61(5): 1565-1576.55
[13] EL-ATAB N, MISHRA R B, AL-MODAF F, et al. Soft Actuators for Soft Robotic Applications: A Review[J]. Advanced Intelligent Systems, 2020, 2(10): 2000128.
[14] 王田苗, 郝雨飞, 杨兴帮, 等. 软体机器人:结构、驱动、传感与控制[J]. 机械工程学报, 2017, 53(13): 1-13.
[15] DUPONT P E, NELSON B J, GOLDFARB M, et al. A decade retrospective of medical robotics research from 2010 to 2020[J]. Science Robotics, 2021, 6(60): eabi8017.
[16] 尚祖峰, 马家耀, 王树新. 面向微创手术器械臂的可变刚度机理综述[J]. 机械工程学报, 2022, 58(21): 1-15.
[17] ZUO S, IIJIMA K, TOKUMIYA T, et al. Variable stiffness outer sheath with “Dragon skin” structure and negative pneumatic shape-locking mechanism[J]. International Journal of Computer Assisted Radiology and Surgery, 2014, 9(5): 857-865.
[18] FITZGERALD S G, DELANEY G W, HOWARD D. A Review of Jamming Actuation in Soft Robotics[J]. Actuators, 2020, 9(4): 104.
[19] MANTI M, CACUCCIOLO V, CIANCHETTI M. Stiffening in Soft Robotics: A Review of the State of the Art[J]. IEEE Robotics & Automation Magazine, 2016, 23(3): 93-106.
[20] NARANG Y S, AKTAŞ B, ORNELLAS S, et al. Lightweight Highly Tunable Jamming-Based Composites[J]. Soft Robotics, 2020, 7(6): 724 -735.
[21] RANZANI T, GERBONI G, CIANCHETTI M, et al. A bioinspired soft manipulator for minimally invasive surgery[J]. Bioinspiration & Biomimetics, 2015, 10(3): 035008.
[22] RANZANI T, CIANCHETTI M, GERBONI G, et al. A Soft Modular Manipulator for Minimally Invasive Surgery: Design and Characterization of a Single Module[J]. IEEE Transactions on Robotics, 2016, 32(1): 187 -200.
[23] KIM Y J, CHENG S, KIM S, et al. A Novel Layer Jamming Mechanism With Tunable Stiffness Capability for Minimally Invasive Surgery[J]. IEEE Transactions on Robotics, 2013, 29(4): 1031 -1042.
[24] XING Z, WANG F, JI Y, et al. A Structure for Fast Stiffness-Variation and Omnidirectional-Steering Continuum Manipulator[J]. IEEE Robotics and Automation Letters, 2021, 6(2): 755 -762.
[25] 罗云, 赵儒镇, 李祥, 等. 变刚度内镜手术器械外护套:中国, 201510179147.6[P]. 2015-08-12.
[26] JIANG S, CHEN B, QI F, et al. A variable-stiffness continuum manipulators by an SMA-based sheath in minimally invasive surgery[J]. The International Journal of Medical Robotics and Computer Assisted Surgery, 2020, 16(2): e2081.
[27] KIM Y, CHENG S S, DESAI J P. Active Stiffness Tuning of a Spring-Based Continuum Robot for MRI-Guided Neurosurgery[J]. IEEE Transactions on Robotics, 2018, 34(1): 18-28.
[28] LE H M, PHAN P T, LIN C, et al. A Temperature -Dependent, Variable Stiffness Endoscopic Robotic Manipulator with Active Heating and Cooling[J]. Annals of Biomedical Engineering, 2020, 48(6): 1837 -1849.
[29] ZHANG Y, ZHANG N, HINGORANI H, et al. Fast‐Response, Stiffness‐Tunable Soft Actuator by Hybrid Multimaterial 3D Printing[J]. Advanced Functional Materials, 2019, 29(15): 1806698.
[30] ZHANG Y F, LI Z, LI H, et al. Fractal-Based Stretchable Circuits via Electric-Field-Driven Microscale 3D Printing for Localized Heating of Shape Memory Polymers in 4D Printing[J]. ACS Applied Materials & Interfaces, 2021, 13(35): 41414-41423.
[31] 王树新, 任旭阳, 张国凯, 等. 变刚度自然腔道手术器械支撑结构及使用方法: 中国,201810361061.9[P]. 2021-07-23.
[32] 王林林, 冷劲松, 杜善义. 4D 打印形状记忆聚合物及其复合材料的研究现状和应用进展[J]. 哈尔滨工业大学学报, 2020, 52(6): 227-244.
[33] 李兴建, 侯晴, 杨继龙, 等. 电刺激响应形状记忆聚合物复合材料的设计和驱动性能[J]. 材料导报, 2022, 36(6): 196-207.
[34] ZHAO Q, QI H J, XIE T. Recent progress in shape memory polymer: New behavior, enabling materials, and mechanistic understanding[J]. Progress in Polymer Science, 2015, 49-50: 79-120.
[35] WANG Q, PAN C, ZHANG Y, et al. Magnetoactive liquid-solid phase transitional matter[J]. Matter, 2023, 6(3): 855 -872.
[36] DU J, ZHANG Z, LIU D, et al. Triple-stimuli responsive shape memory effect of novel polyolefin elastomer/lauric acid/carbon black nanocomposites[J]. Composites Science and Technology, 2019, 169: 45 -51.
[37] WU J, YUAN C, DING Z, et al. Multi-shape active composites by 3D printing of digital shape memory polymers[J]. Scientific Reports, 2016, 6(1): 24224.
[38] YANG Y, CHEN Y, WEI Y, et al. Novel Design and Three -Dimensional Printing of Variable Stiffness Robotic Grippers[J]. Journal of Mechanisms and Robotics, 2016, 8(061010).
[39] YANG Y, CHEN Y, LI Y, et al. Bioinspired Robotic Fingers Based on Pneumatic Actuator and 3D Printing of Smart Material[J]. Soft Robotics, 2017, 4(2): 147-162.
[40] KHALID M Y, ARIF Z U, NOROOZI R, et al. 4D printing of shape memory polymer composites: A review on fabrication techniques, applications, and future perspectives[J]. Journal of Manufacturing Processes, 2022, 81: 759 -797.
[41] 武元鹏, 丁强, 李晶, 等. 基于聚乳酸的可降解形状记忆高分子的研究进展[J]. 高分子通报, 2012(10): 33-39.
[42] RAHMATABADI D, GHASEMI I, BANIASSADI M, et al. 4D printing of PLA-TPU blends: effect of PLA concentration, loading mode, and programming temperature on the shape memory effect[J]. Journal of Materials Science, 2023, 58(16): 7227-7243.
[43] ARUNPRASATH K, VIJAYAKUMAR M, RAMARAO M, et al. Dynamic mechanical analysis performance of pure 3D printed polylactic acid (PLA) and acrylonitrile butadiene styrene (ABS)[J]. Materials Today: Proceedings, 2022, 50: 1559-1562.
[44] PIECZYSKA E A, STASZCZAK M, MAJ M, et al. Investigation of thermomechanical couplings, strain localization and shape memory properties in a shape memory polymer subjected to loading at various strain rates[J]. Smart Materials and Structures, 2016, 25(8): 085002.
[45] 李建. 形状记忆聚氨酯热-力耦合循环变形实验和本构模型研究[D]. 成都:西南交通大学, 2022:31-40.
[46] SCHMIDT C, NEUKING K, EGGELER G. Functional Fatigue of Shape Memory Polymers[J]. Advanced Engineering Materials, 2008, 10(10): 922 -927.
[47] 栗娟. 高分子链驱动变形的计算机模拟研究[D].南京: 南京大学, 2016:5-7.
[48] YANG Y, CHEN Y, WEI Y, et al. 3D printing of shape memory polymer for functional part fabrication[J]. The International Journal of Advanced Manufacturing Technology, 2016, 84(9 -12): 2079-2095.
[49] PIECZYSKA E A, MAJ M, KOWALCZYK-GAJEWSKA K, et al. Thermomechanical properties of polyurethane shape memory polymer –experiment and modeling[J]. Smart Materials and Structures, 2015, 24(4): 045043.
[50] ARRUDA E M, BOYCE M C. A three-dimensional constitutive model for the large stretch behavior of rubber elastic materials[J]. Journal of the Mechanics and Physics of Solids, 1993, 41(2): 389 -412.
[51] 王建辰. 变刚度单孔手术机器人系统设计方法及主从控制策略研究[D]. 天津:天津大学, 2017:120-126.
[52] QUAGLIA C, PETRONI G, NICCOLINI M, et al. Design of a Compact Robotic Manipulator for Single-Port Laparoscopy[J]. Journal of Mechanical Design, 2014, 136(105001)
修改评论