中文版 | English
题名

波浪载荷作用下铰接超大型浮体极端响应研究

其他题名
STUDY ON THE EXTREME RESPONSES OF HINGED VERY LARGE FLOATING STRUCTURES UNDER WAVE ACTION
姓名
姓名拼音
CHEN Dengshuo
学号
11749292
学位类型
博士
学位专业
0801 力学
学科门类/专业学位类别
08 工学
导师
冯兴亚
导师单位
海洋科学与工程系
论文答辩日期
2024-04-27
论文提交日期
2024-07-06
学位授予单位
哈尔滨工业大学
学位授予地点
哈尔滨
摘要

随着对清洁能源需求的快速增长和土地资源的日渐稀缺,漂浮式光伏和海上浮式能源岛等技术得到了快速发展,为超大型浮体技术领域注入了新的活力。在长达数十年的服役周期内,超大型浮体可能会遭遇各类恶劣海况,而目前尚缺乏对其在波浪载荷作用下的极端响应特性的研究。本文建立了基于离散模态振型的时频域水弹性分析方法,以此为基础,提出了一个新型的压力聚焦模型用于模拟浮体和聚焦波的相互作用,并考虑海况的随机特性建立了随机波作用下浮体长期极端响应的迭代流程,对聚焦波和随机波作用下铰接超大型浮体的极端响应进行了研究。主要研究内容及成果如下:

通过对 WAMIT 软件和 Abaqus 软件的二次开发,提出了一种基于模态叠加法的超大型浮体时频域水弹性分析方法。通过改写 WAMIT 软件的子程序使其可以导入外部的离散模态振型,并基于 Python 语言对 Abaqus 软件进行了二次开发,实现了计算与分析流程的自动化;该分析方法可以处理复杂结构的模态分析问题,并能在时域内求解结构的位移和内力等各类响应;通过收敛性分析以及与已有仿真和试验数据的对比,验证了该分析方法的准确性。

根据超大型浮体的结构特点,提出了一个压力聚焦模型,相比于传统的波形聚焦模型可以更好地模拟聚焦波作用下超大型浮体的水弹性响应。基于该压力聚焦模型,研究了聚焦位置、水深和峰值频率等因素对结构位移和截面内力响应的影响。结果表明:聚焦位置对结构响应的影响很小,其只会引起结构迎浪段响应的较小变化;水深和峰值频率会同时影响截面内力响应峰值的出现时间和峰值的大小,但不会影响位移响应峰值的出现时间。

基于有限元法扩展了铰接超大型浮体的建模方法,克服了采用直接法和解析模态函数法处理二维铰接板的建模问题时的缺陷,与已有文献中的仿真和试验结果的对比验证了该建模方法的有效性。通过对一维和二维铰接超大型浮体的模态特性以及在规则波作用下的响应特性的对比研究,给出了铰接结构和波浪周期对结构响应的影响规律。此外,对不同波浪周期和波浪角度下二维铰接超大型浮体的位移和铰接处剪力和扭矩响应进行了进一步研究。

针对含垂直系泊绳的二维铰接超大型浮体,在模态坐标下的系统动力学方程中引入与系泊绳有关的刚度项,建立了系泊二维铰接超大型浮体的水弹性数值模型,与系泊连续板的仿真数据的对比验证了该数值模型的正确性。基于该模型,给出了规则波作用下系泊二维铰接超大型浮体的响应规律,并揭示了垂直系泊绳的作用机理。结合压力聚焦模型,对聚焦波作用下二维铰接超大型浮体的极端响应特性进行了研究。

考虑海况的随机特性,基于逆一次可靠度方法,提出了一个迭代流程用于求解随机波浪作用下系泊二维铰接超大型浮体的长期极端响应。相比于目前普遍采用的短期预报方法,该分析流程可以准确快速地计算超大型浮体在一定重现期内的长期极端响应。采用该分析流程,对铰接处剪力和扭矩的长期极端响应特性进行了研究,为二维铰接超大型浮体的结构设计提供了重要的参考依据。
 

关键词
语种
中文
培养类别
联合培养
入学年份
2017
学位授予年份
2024-06
参考文献列表

[1] Palo P. Mobile offshore base: hydrodynamic advancements and remaining challenges[J]. Marine Structures, 2005, 18(2) : 133-147.
[2] 吴有生, 田超, 宗智, 等. 波浪环境下超大型浮式结构物的水弹性响应研究[C] . 第二十五届全国水动力学研讨会暨第十二届全国水动力学学术会议文集(上册) . 2013 : 12-24.
[3] 丁爱兵, 汪学锋, 徐胜文. 近岛礁非均匀波浪下超大型浮体系泊试验[J]. 实验室研究与探索, 2022, 41(8) : 45-49.
[4] Ma C, Wu R, Su H. Design of floating photovoltaic power plant and its environmental effects in different stages: a review[J]. Journal of Renewable and SustainableEnergy, 2021, 13(6) : 062701.
[5] Zhang X, Lu D, Liang Y, et al. Feasibility of very large floating structure as offshorewind foundation: effects of hinge numbers on wave loads and induced responses[J].Journal ofWaterway Port Coastal and Ocean Engineering, 2021, 147(3) : 04021002.
[6] Li L. Full-coupled analysis of offshore floating wind turbine supported by very largefloating structure with consideration of hydroelasticity[J]. Renewable Energy, 2022,189 : 790-799.
[7] López M, Rodríguez N, Iglesias G. Combined floating offshore wind and solarPV[J]. Journal of Marine Science and Engineering, 2020, 8(8) : 576.
[8] Solomin E, Sirotkin E, Cuce E, et al. Hybrid floating solar plant designs: a review[J].Energies, 2021, 14(10) : 2751.
[9] 王亚飞, 孙刚, 王钧樟, 等. 一种海上风机的浮动式光伏水产养殖网箱[J]. 科技创新与应用, 2020(30) : 94-96.
[10] Maeda H, Onishi Y, Rheem C-K, et al. Flexible response reduction on a very largefloating structure due to OWC wave power devices[J]. Journal of The Society ofNaval Architects of Japan, 2000, 2000(188) : 279-285.
[11] Maeda H, Rheem C-K, Ikoma T, et al. An experimental study on hydroelasticresponses of elastic floating bodies with air chambers in irregular waves[J]. Journalof the Society of Naval Architects of Japan, 2001, 2001(190) : 387-393.
[12] Tay Z Y. Energy extraction from an articulated plate anti-motion device of a verylarge floating structure under irregular waves[J]. Renewable Energy, 2019, 130 :206-222.
[13] Nguyen H, Wang C. Heaving wave energy converter-type attachments to a pontoontype very large floating structure[J]. Engineering Structures, 2020, 219 : 110964.
[14] 席晨. 摆式波浪能装置-超大型浮体集成系统水动力性能及减振特性研究[D]. 镇江 : 江苏科技大学, 2023.
[15] Heller Jr S, ABRAMSON H N. Hydroelasticity: a new naval science[J]. Journal ofthe American Society for Naval Engineers, 1959, 71(2) : 205-209.
[16] Bishop R E D, Price W G. The generalised antisymmetric fluid forces applied to aship in a seaway[J]. International Shipbuilding Progress, 1977, 24(269) : 3-14.
[17] Betts C V, Bishop R E D, Price W G. The symmetric generalised fluid forces appliedto a ship in a seaway[J]. RINA Supplementary Papers, 1977, 119 : 265-278.
[18] Salvesen N, Tuck E O, Faltinsen O M. Ship motions and sea loads[J]. Transactions- Society of Naval Architects and Marine Engineers, 1971, 78.
[19] 周继胜, 翁长俭, 张圣坤. 应用二维有限元计算船体垂向振动[J]. 上海交通大学学报, 1997, 31(11) : 84-87.
[20] 段文洋, 马山. 船舶航行时水动力系数求解二维半理论的稳定算法[J]. 船舶力学, 2004, 8(4) : 27-34.
[21] Wu Y. Hydroelasticity of floating bodies.[D]. London : University of Brunel, 1984.
[22] Bishop R E D, Price W G, Wu Y. A general linear hydroelasticity theory of floatingstructures moving in a seaway[J]. Philosophical Transactions of the Royal Societyof London. Series A, Mathematical and Physical Sciences, 1986, 316(1538) : 375-426.
[23] 杜双兴. 完善的三维航行船体线性水弹性力学频域分析方法[D]. 无锡 : 中国船舶科学研究中心, 1996.
[24] 王大云. 三维船舶水弹性力学的时域分析方法[D]. 无锡 : 中国船舶科学研究中心, 1996.
[25] 滕斌, 勾莹. 大型浮体水弹性作用的频域分析[J]. 工程力学, 2006(S2) : 36-48.
[26] 沈洁, 勾莹, 滕斌. 波浪与弹性板作用的数值模拟[J]. 工程力学, 2012, 29(12) :287-294.
[27] Nicholas N J. Wave effects on deformable bodies[J]. Applied Ocean Research,1994, 16(1) : 47-59.
[28] Watanabe E, Utsunomiya T, Wang C, et al. Benchmark hydroelastic responses of acircular VLFS under wave action[J]. Engineering Structures, 2006, 28(3) : 423-430.
[29] Cheng Y, Ji C, Zhai G, et al. Dual inclined perforated anti-motion plates for mitigating hydroelastic response of a VLFS under wave action[J]. Ocean Engineering,2016, 121 : 572-591.
[30] Kashiwagi M. A B-spline Galerkin scheme for calculating the hydroelastic response of a very large floating structure in waves[J]. Journal of Marine Science andTechnology, 1998, 3(1) : 37-49.
[31] Taylor R E, Ohkusu M. Green functions for hydroelastic analysis of vibratingfree–free beams and plates[J]. Applied Ocean Research, 2000, 22(5) : 295-314.
[32] Belibassakis K, Athanassoulis G. Three-dimensional Green’s function for harmonicwater waves over a bottom topography with different depths at infinity[J]. Journalof Fluid Mechanics, 2004, 510 : 267-302.
[33] Fu S, Moan T, Chen X, et al. Hydroelastic analysis of flexible floating interconnected structures[J]. Ocean Engineering, 2007, 34(11-12) : 1516-1531.
[34] Jagite G, Xu X-D, Chen X-B, et al. Hydroelastic analysis of global and local shipresponse using 1D–3D hybrid structural model[J]. Ships and Offshore Structures,2018, 13(1) : 37-46.
[35] Loukogeorgaki E, Michailides C, Angelides D C. Hydroelastic analysis of a flexiblemat-shaped floating breakwater under oblique wave action[J]. Journal of Fluids andStructures, 2012, 31 : 103-124.
[36] Humamoto T, Fujita K. Wet-mode superposition for evaluating the hydroelasticresponse of floating structures with arbitrary shape[C] . International Ocean andPolar Engineering Conference. 2002 : ISOPE-044.
[37] Michailides C, Loukogeorgaki E, Angelides D C. Response analysis and optimumconfiguration of a modular floating structure with flexible connectors[J]. AppliedOcean Research, 2013, 43 : 112-130.
[38] 陈徐均. 浮体二阶非线性水弹性力学分析方法[D]. 无锡 : 中国船舶科学研究中心, 2001.
[39] 韩满生. 超大型浮体结构水弹性响应的板模型分析[D]. 青岛 : 中国海洋大学, 2005.- 156 -参考文献
[40] Mamidipudi P, Webster W. The motions performance of a mat-like floating airport[G] . Hydroelasticity in Marine Technology. London : Routledge, 1994 : 363-375.
[41] Yago K, Endo H. On the hydoroelastic response of box-shaped floating structurewith shallow draft tank test with large scale model[J]. Journal of the Society ofNaval Architects of Japan, 1996, 1996(180) : 341-352.
[42] 张淑华, 韩满生. 用直接法分析超大型浮体的水弹性响应[J]. 海洋工程,2004, 22(1) : 9-18.
[43] Kashiwagi M. A direct method versus a mode-expansion method for calculatinghydroelastic response of a VLFS in waves[C] . The Eighth International Offshoreand Polar Engineering Conference. 1998.
[44] Lu D, Fu S, Zhang X, et al. A method to estimate the hydroelastic behaviourof VLFS based on multi-rigid-body dynamics and beam bending[J]. Ships andOffshore Structures, 2016, 14(4) : 354-362.
[45] 位巍, 付世晓, 宋春辉. 一种基于离散模块的浮体水弹性响应预报方法[J].船舶力学, 2019, 023(001) : 43-50.
[46] Zhang X, Lu D. An extension of a discrete-module-beam-bending-based hydroelasticity method for a flexible structure with complex geometric features[J]. OceanEngineering, 2018, 163 : 22-28.
[47] 夏彩波, 位巍, 李帅, 等. 非均匀海底环境下铰接超大型浮体的水弹性响应分析[J]. 船舶力学, 2021, 25(5) : 607-618.
[48] 陈永强, 张宇, 张显涛. 基于离散模块梁单元水弹性理论的复杂连接处建模方法[J]. 中国舰船研究, 2022, 17(1) : 117-125.
[49] 张宇, 张显涛, 宋炜. 波浪作用下弹性板的水动力响应[J]. 船舶工程, 2023,45(5) : 35-41.
[50] Wei W, Fu S, Moan T, et al. A time-domain method for hydroelasticity of very largefloating structures in inhomogeneous sea conditions[J]. Marine Structures, 2018,57 : 180-192.
[51] Cummins W, Iiuhl W, Uinm A. The impulse response function and ship motions[J],1962 : 101-109.
[52] Kashiwagi M. A time-domain mode-expansion method for calculating transientelastic responses of a pontoon-type VLFS[J]. Journal of Marine Science and Technology, 2000, 5(2) : 89-100.
[53] Zhang X, Lu D, Gao Y, et al. A time domain discrete-module-beam-bending-basedhydroelasticity method for the transient response of very large floating structuresunder unsteady external loads[J]. Ocean Engineering, 2018, 164 : 332-349.
[54] Xu J, Sun Y, Li Z, et al. Analysis of the hydroelastic performance of very largefloating structures based on multimodules beam theory[J]. Mathematical Problemsin Engineering, 2017, 2017 : 6482527.
[55] Zhu L, Shao F, Xu Q, et al. The effects of moving load elastic elastic responseof a very large floating structure[J]. Mathematical Problems in Engineering, 2018,2018 : 6062586.
[56] Jin C, Bakti F P, Kim M. Multi-floater-mooring coupled time-domain hydro-elasticanalysis in regular and irregular waves[J]. Applied Ocean Research, 2020, 101 :102276.
[57] 王大云. 三维船舶水弹性力学的时域分析方法[D]. 无锡 : 中国船舶科学研究中心, 1996.
[58] 杨鹏, 顾学康, 丁军. 大型散货船时域中的非线性水弹性响应和载荷预报(英文) [J]. 船舶力学, 2018, 22(12) : 1495-1507.
[59] Pal S, Datta R, Sunny M. Fully coupled time domain solution for hydroelasticanalysis of a floating body[J]. Ocean Engineering, 2018, 153 : 173-184.
[60] Yang P, Li J, Gu X, et al. Application of the 3D time-domain Green’s functionfor finite water depth in hydroelastic mechanics[J]. Ocean Engineering, 2019, 189 :106386.
[61] Ismail R E S. Time-domain three dimensional BE-FE method for transient responseof floating structures under unsteady loads[J]. Latin American Journal of Solidsand Structures, 2016, 13 : 1340-1359.
[62] 程勇, 嵇春艳, 翟钢军. 波流与不均匀海域上浮式弹性板相互作用的非线性数值模拟[J]. 振动与冲击, 2017, 036(012) : 112-121.
[63] Utsunomiya T,Watanabe E,Wu C, et al.Wave response analysis of a flexible floatingstructure by BE-FE combination method[C] . The Fifth International Offshore andPolar Engineering Conference. 1995 : ISOPE-234.
[64] Hamamoto T. Dynamic response of flexible circular floating islands subjected tostochastic waves and seaquakes[G] . Hydroelasticity in Marine Technology. London : Routledge, 1994 : 433-445.
[65] Takaki M, Gu X. Motions of a floating elastic plate in waves[J]. Journal of theSociety of Naval Architects of Japan, 1996, 1996(180) : 331-339.
[66] Mindlin R D. Influence of rotatory inertia and shear on flexural motions of isotropicelastic plates[J]. Journal of Applied Mechanics, 1951, 18(1) : 31-38.
[67] Wang C, Xiang Y, Watanabe E, et al. Mode shapes and stress-resultants of circularMindlin plates with free edges[J]. Journal of Sound and Vibration, 2004, 276(3-5) :511-525.
[68] Watanabe E, Utsunomiya T, Wang C, et al. Benchmark hydroelastic responses of acircular VLFS under wave action[J]. Engineering Structures, 2006, 28(3) : 423-430.
[69] Wang C D, Wang C. A comparative study on the linear wave response of a very largefloating body modelled by a plate based on Kirchhoff and Mindlin plate theories[C]. SNAME 7th International Conference and Exhibition on Performance of Shipsand Structures in Ice. 2006 : D021S013R002.
[70] 赵存宝. 超大型浮体结构水弹性问题研究[D]. 哈尔滨 : 哈尔滨工业大学,2007.
[71] Wang C, Wang C. Computation of the stress resultants of a floating Mindlin platein response to linear wave forces[J]. Journal of Fluids and Structures, 2008, 24(7) :1042-1057.
[72] 沈洁. BEM-FEM 联合求解波浪与浮式弹性板的耦合作用[D]. 大连 : 大连理工大学, 2011.
[73] Praveen K, Karmakar D, Soares C G. Influence of support conditions on thehydroelastic behaviour of floating thick elastic plate[J]. Journal of Marine Scienceand Application, 2019, 18(3) : 295-313.
[74] 王猛. 浮冰在波浪作用下的水弹性响应研究[D]. 大连 : 大连理工大学, 2020.
[75] Karperaki A E, Belibassakis K A. Hydroelastic analysis of very large floatingstructures in variable bathymetry regions by multi-modal expansions and FEM[J].Journal of Fluids and Structures, 2021, 102 : 103236.
[76] Praveen K, Venkateswarlu V, Karmakar D. Hydroelastic response of floating elasticplate in the presence of vertical porous barriers[J]. Ships and Offshore Structures,2022, 17(2) : 457-471.
[77] Watanabe E, Utsunomiya T, Kubota A. Analysis of wave-drift damping of a VLFSwith shallow draft[J]. Marine Structures, 2000, 13(4-5) : 383-397.
[78] Tajali Z, Shafieefar M. Hydrodynamic analysis of multi-body floating piers underwave action[J]. Ocean Engineering, 2011, 38(17-18) : 1925-1933.
[79] Jiang D, Tan K H, Wang C M, et al. Research and development in connector systemsfor very large floating structures[J]. Ocean Engineering, 2021, 232 : 109150.
[80] Watanabe E, Utsunomiya T, Wang C. Hydroelastic analysis of pontoon-type VLFS:a literature survey[J]. Engineering Structures, 2004, 26(2) : 245-256.
[81] Diamantoulaki I, Angelides D C. Analysis of performance of hinged floating breakwaters[J]. Engineering Structures, 2010, 32(8) : 2407-2423.
[82] Liu W, Guo X, Zhang G, et al. Experiment and numerical investigation on structuralresponse of a FMRC hexagon enclosed platform in waves[J]. Ocean Engineering,2021, 233 : 108998.
[83] Gao R, Tay Z, Wang C, et al. Hydroelastic response of very large floating structurewith a flexible line connection[J]. Ocean Engineering, 2011, 38(17-18) : 1957-1966.
[84] Yoon J-S, Cho S-P, Jiwinangun R G, et al. Hydroelastic analysis of floating plateswith multiple hinge connections in regular waves[J]. Marine Structures, 2014, 36 :65-87.
[85] Tay Z Y. Energy generation from anti-motion device of very large floating structure[C] . Proceedings of the Twelfth European Wave and Tidal Energy Conference :Vol 27. 2017 : 674-1.
[86] Nguyen H, Wang C, Flocard F, et al. Extracting energy while reducing hydroelasticresponses of VLFS using a modular raft wec-type attachment[J]. Applied OceanResearch, 2019, 84 : 302-316.
[87] Nguyen H, Wang C. Oscillating wave surge converter-type attachment for extracting wave energy while reducing hydroelastic responses of very large floatingstructures[J]. Journal of Offshore Mechanics and Arctic Engineering, 2020, 142(4) :042001.
[88] Nguyen H, Wang C, Luong V. Two-mode WEC-type attachment for wave energyextraction and reduction of hydroelastic response of pontoon-type VLFS[J]. OceanEngineering, 2020, 197 : 106875.
[89] Khabakhpasheva T, Korobkin A. Hydroelastic behaviour of compound floatingplate in waves[J]. Journal of Engineering Mathematics, 2002, 44(1) : 21-40.
[90] Karmakar D, Soares C G. Scattering of gravity waves by a moored finite floatingelastic plate[J]. Applied Ocean Research, 2012, 34 : 135-149.
[91] Karperaki A, Belibassakis K, Papathanasiou T. Time-domain, shallow-water hydroelastic analysis of VLFS elastically connected to the seabed[J]. Marine Structures, 2016, 48 : 33-51.
[92] Nguyen H, Dai J, Wang C, et al. Reducing hydroelastic responses of pontoontype VLFS using vertical elastic mooring lines[J]. Marine Structures, 2018, 59 :251-270.
[93] 潘鹏, 汪学锋, 丁军, 等. 弹性超大型浮体系泊动力响应特性[J]. 中国海洋平台, 2023, 38(2) : 57-62.
[94] 丁爱兵, 汪学锋, 徐胜文. 近岛礁非均匀波浪下超大型浮体系泊试验[J]. 实验室研究与探索, 2022, 41(8) : 45-49.
[95] Claus R, López M. Key issues in the design of floating photovoltaic structuresfor the marine environment[J]. Renewable and Sustainable Energy Reviews, 2022,164 : 112502.
[96] Naess A, Moan T. Stochastic dynamics of marine structures[M]. Cambridge : Cambridge University Press, 2013.
[97] Dong W, Moan T, Gao Z. Long-term fatigue analysis of multi-planar tubular jointsfor jacket-type offshore wind turbine in time domain[J]. Engineering Structures,2011, 33(6) : 2002-2014.
[98] 吕滨, 张虹宇. 海洋风电场风机基础的设计分析[J]. 船海工程, 2012, 41(2) :155-160.
[99] Moan T, Gao Z, Ayala-Uraga E. Uncertainty of wave-induced response of marinestructures due to long-term variation of extratropical wave conditions[J]. MarineStructures, 2005, 18(4) : 359-382.
[100] Naess A, Gaidai O, Teigen P. Extreme response prediction for nonlinear floatingoffshore structures by Monte Carlo simulation[J]. Applied Ocean Research, 2007,29(4) : 221-230.
[101] 唐友刚, 桂龙, 曹菡, 等. 海上风机半潜式基础概念设计与水动力性能分析[J]. 哈尔滨工程大学学报, 2014, 35(11) : 1314-1319.
[102] 刘利琴, 韩袁昭, 肖昌水, 等. 新型浮式基础的海上风机系统动力响应研究[J]. 海洋工程, 2018, 36(1) : 19-26.
[103] Li X, Zhang W. Long-term fatigue damage assessment for a floating offshore windturbine under realistic environmental conditions[J]. Renewable Energy, 2020, 159 :570-584.
[104] Li X, Zhang W. Long-term assessment of a floating offshore wind turbine underenvironmental conditions with multivariate dependence structures[J]. RenewableEnergy, 2020, 147 : 764-775.
[105] El Beshbichi O, Rødstøl H, Xing Y, et al. Prediction of long-term extreme responseof two-rotor floating wind turbine concept using the modified environmental contour method[J]. Renewable Energy, 2022, 189 : 1133-1144.
[106] Cheng Y, Ji C, Zhai G, et al. Hydroelastic analysis of oblique irregular waveswith a pontoon-type VLFS edged with dual inclined perforated plates[J]. MarineStructures, 2016, 49 : 31-57.
[107] Kang H, Kim M. Time-domain hydroelastic analysis with efficient load estimation for random waves[J]. International Journal of Naval Architecture and OceanEngineering, 2017, 9(3) : 266-281.
[108] Riggs H, Ertekin R, Mills T. Impact of stiffness on the response of a multimodulemobile offshore base[J]. International Journal of Offshore and Polar Engineering,1999, 9(2) : 126-133.
[109] Riggs H, Ertekin R, Mills T. A comparative study of RMFC and FEA modelsfor the wave-induced response of a MOB[J]. Marine Structures, 2000, 13(4-5) :217-232.
[110] Shi Q, Xu D, Zhang H, et al. Optimized stiffness combination of a flexible-basehinged connector for very large floating structures[J]. Marine Structures, 2018, 60 :151-164.
[111] Zhao H, Xu D, Zhang H, et al. An optimization method for stiffness configurationof flexible connectors for multi-modular floating systems[J]. Ocean Engineering,2019, 181 : 134-144.
[112] Giske F-I G, Kvåle K A, Leira B J, et al. Long-term extreme response analysis ofa long-span pontoon bridge[J]. Marine Structures, 2018, 58 : 154-171.
[113] Xu Y, Øiseth O, Moan T, et al. Prediction of long-term extreme load effectsdue to wave and wind actions for cable-supported bridges with floating pylons[J].Engineering Structures, 2018, 172 : 321-333.
[114] Cheng Z, Gao Z, Moan T. Extreme responses and associated uncertainties for along end-anchored floating bridge[J]. Engineering Structures, 2020, 219 : 110858.
[115] Ning D, Zang J, Liu S, et al. Free-surface evolution and wave kinematics fornonlinear uni-directional focused wave groups[J]. Ocean Engineering, 2009, 36(15-16) : 1226-1243.
[116] Feng X. Analysis of higher harmonics in a focused water wave group by a nonlinearpotential flow model[J]. Ocean Engineering, 2019, 193 : 106581.
[117] 李金宣, 王占行, 柳淑学. 多向聚焦波浪作用下直立圆柱受力的实验研究[J].水动力学研究与进展 A 辑, 2012, 04(27) : 409-416.
[118] Sun Y, Zhang X. A second order analytical solution of focused wave group interacting with a vertical wall[J]. International Journal of Naval Architecture andOcean Engineering, 2017, 9(2) : 160-176.
[119] 常爽, 黄维平, 付图南, 等. 黏性数值波浪水池中聚焦波浪的生成和与结构物的相互作用[J]. 水动力学研究与进展: A 辑, 2018, 33(3) : 344-351.
[120] Santo H, Taylor P H, Moreno E C, et al. Extreme motion and response statistics forsurvival of the three-float wave energy converter M4 in intermediate water depth[J].Journal of Fluid Mechanics, 2017, 813 : 175-204.
[121] 赵西增, 童晨奕, 姚炎明. 极端波浪对跨海桥梁上部结构作用研究[J]. 华中科技大学学报(自然科学版) , 2020, 48(12) : 127-132.
[122] 程勇, 嵇春艳, 陆婷婷, 等. 聚焦波与超大型浮体作用的非线性数值模拟[J].上海交通大学学报, 2017, 07(51) : 831-839.
[123] Meylan M H. A variational equation for the wave forcing of floating thin plates[J].Applied Ocean Research, 2001, 23(4) : 195-206.
[124] Wang C M, Xiang Y, Utsunomiya T, et al. Evaluation of modal stress resultantsin freely vibrating plates[J]. International Journal of Solids and Structures, 2001,38(36-37) : 6525-6558.
[125] Petyt M. Introduction to finite element vibration analysis[J]. Journal of Sound andVibration, 2010, 242(1) : 103–124.
[126] Takabatake H. A simplified analysis of rectangular floating plates subjected tomoving loads[J]. Ocean Engineering, 2015, 97 : 37-47.
[127] Kashiwagi M. A B-spline Galerkin scheme for calculating the hydroelastic response of a very large floating structure in waves[J]. Journal of Marine Science andTechnology, 1998, 3(1) : 37-49.
[128] Watanabe E, Utsunomiya T, Wang C. Hydroelastic analysis of pontoon-type VLFS:a literature survey[J]. Engineering Structures, 2004, 26(2) : 245-256.
[129] Longuet-Higgins M S. On the statistical distribution of the heights of sea waves[J].Journal of Marine Research, 1953, 11(3) : 245-266.
[130] Baldock T, Swan C, Taylor P. A laboratory study of nonlinear surface waves onwater[J]. Philosophical Transactions of the Royal Society of London. Series A:Mathematical, Physical and Engineering Sciences, 1996, 354(1707) : 649-676.
[131] Niu X, Ma X, Ma Y, et al. Controlled extreme wave generation using an improvedfocusing method[J]. Applied Ocean Research, 2020, 95 : 102017.
[132] Wang C, Tay Z, Takagi K, et al. Literature review of methods for mitigatinghydroelastic response of VLFS under wave action[J]. Applied Mechanics Reviews,2010, 63(3).
[133] Riyansyah M, Wang C, Choo Y. Connection design for two-floating beam systemfor minimum hydroelastic response[J]. Marine Structures, 2010, 23(1) : 67-87.
[134] Zheng S M, Zhang Y H, Zhang Y L, et al. Numerical study on the dynamics of atwo-raft wave energy conversion device[J]. Journal of Fluids and Structures, 2015,58 : 271-290.
[135] Nguyen H P, Dai J, Wang C M, et al. Reducing hydroelastic responses of pontoontype VLFS using vertical elastic mooring lines[J]. Marine Structures, 2018, 59 :251-270.
[136] Nguyen H P, Wang C M. Heaving wave energy converter-type attachments to apontoon-type very large floating structure[J]. Engineering Structures, 2020, 219 :110964.
[137] Giske F-I G, Leira B J, Øiseth O. Full long-term extreme response analysis ofmarine structures using inverse FORM[J]. Probabilistic Engineering Mechanics,2017, 50 : 1-8.
[138] Melchers R E, Beck A T. Structural reliability analysis and prediction[M]. Cambridge : John Wiley & Sons, 2018.
[139] Winterstein S R, Ude T C, Cornell C A, et al. Environmental parameters for extremeresponse: inverse FORM with omission factors[J]. Proceedings of the ICOSSAR-93, Innsbruck, Austria, 1993 : 551-557.
[140] Du X, Sudjianto A, Chen W. An integrated framework for optimization underuncertainty using inverse reliability strategy[J]. Journal of Mechanical Design,2004, 126(4) : 562-570.
[141] Li H, Foschi R O. An inverse reliability method and its application[J]. StructuralSafety, 1998, 20(3) : 257-270.
[142] Sagrilo L, Naess A, Doria A. On the long-term response of marine structures[J].Applied Ocean Research, 2011, 33(3) : 208-214.
[143] Armijo L. Minimization of functions having Lipschitz continuous first partialderivatives[J]. Pacific Journal of Mathematics, 1966, 16(1) : 1-3.
[144] Haver S, Winterstein S R. Environmental contour lines: a method for estimatinglong term extremes by a short term analysis[J]. Transactions - Society of NavalArchitects and Marine Engineers, 2008, 116 : 116-127.
[145] Xu S, Wang S, Soares C G. Review of mooring design for floating wave energyconverters[J]. Renewable and Sustainable Energy Reviews, 2019, 111 : 595-621.
[146] Kim B W, Hong S Y, Kyoung J H, et al. Evaluation of bending moments and shearforces at unit connections of very large floating structures using hydroelastic andrigid body analyses[J]. Ocean Engineering, 2007, 34(11-12) : 1668-1679参考文献
[12] Tay Z Y. Energy extraction from an articulated plate anti-motion device of a verylarge floating structure under irregular waves[J]. Renewable Energy, 2019, 130 :206-222.
[13] Nguyen H, Wang C. Heaving wave energy converter-type attachments to a pontoontype very large floating structure[J]. Engineering Structures, 2020, 219 : 110964.
[14] 席晨. 摆式波浪能装置-超大型浮体集成系统水动力性能及减振特性研究[D]. 镇江 : 江苏科技大学, 2023.
[15] Heller Jr S, ABRAMSON H N. Hydroelasticity: a new naval science[J]. Journal ofthe American Society for Naval Engineers, 1959, 71(2) : 205-209.
[16] Bishop R E D, Price W G. The generalised antisymmetric fluid forces applied to aship in a seaway[J]. International Shipbuilding Progress, 1977, 24(269) : 3-14.
[17] Betts C V, Bishop R E D, Price W G. The symmetric generalised fluid forces appliedto a ship in a seaway[J]. RINA Supplementary Papers, 1977, 119 : 265-278.
[18] Salvesen N, Tuck E O, Faltinsen O M. Ship motions and sea loads[J]. Transactions- Society of Naval Architects and Marine Engineers, 1971, 78.
[19] 周继胜, 翁长俭, 张圣坤. 应用二维有限元计算船体垂向振动[J]. 上海交通大学学报, 1997, 31(11) : 84-87.
[20] 段文洋, 马山. 船舶航行时水动力系数求解二维半理论的稳定算法[J]. 船舶力学, 2004, 8(4) : 27-34.
[21] Wu Y. Hydroelasticity of floating bodies.[D]. London : University of Brunel, 1984.
[22] Bishop R E D, Price W G, Wu Y. A general linear hydroelasticity theory of floatingstructures moving in a seaway[J]. Philosophical Transactions of the Royal Societyof London. Series A, Mathematical and Physical Sciences, 1986, 316(1538) : 375-426.
[23] 杜双兴. 完善的三维航行船体线性水弹性力学频域分析方法[D]. 无锡 : 中国船舶科学研究中心, 1996.
[24] 王大云. 三维船舶水弹性力学的时域分析方法[D]. 无锡 : 中国船舶科学研究中心, 1996.
[25] 滕斌, 勾莹. 大型浮体水弹性作用的频域分析[J]. 工程力学, 2006(S2) : 36-48.
[26] 沈洁, 勾莹, 滕斌. 波浪与弹性板作用的数值模拟[J]. 工程力学, 2012, 29(12) :287-294.
[27] Nicholas N J. Wave effects on deformable bodies[J]. Applied Ocean Research,1994, 16(1) : 47-59.
[28] Watanabe E, Utsunomiya T, Wang C, et al. Benchmark hydroelastic responses of acircular VLFS under wave action[J]. Engineering Structures, 2006, 28(3) : 423-430.
[29] Cheng Y, Ji C, Zhai G, et al. Dual inclined perforated anti-motion plates for mitigating hydroelastic response of a VLFS under wave action[J]. Ocean Engineering,2016, 121 : 572-591.
[30] Kashiwagi M. A B-spline Galerkin scheme for calculating the hydroelastic response of a very large floating structure in waves[J]. Journal of Marine Science andTechnology, 1998, 3(1) : 37-49.
[31] Taylor R E, Ohkusu M. Green functions for hydroelastic analysis of vibratingfree–free beams and plates[J]. Applied Ocean Research, 2000, 22(5) : 295-314.
[32] Belibassakis K, Athanassoulis G. Three-dimensional Green’s function for harmonicwater waves over a bottom topography with different depths at infinity[J]. Journalof Fluid Mechanics, 2004, 510 : 267-302.
[33] Fu S, Moan T, Chen X, et al. Hydroelastic analysis of flexible floating interconnected structures[J]. Ocean Engineering, 2007, 34(11-12) : 1516-1531.
[34] Jagite G, Xu X-D, Chen X-B, et al. Hydroelastic analysis of global and local shipresponse using 1D–3D hybrid structural model[J]. Ships and Offshore Structures,2018, 13(1) : 37-46.
[35] Loukogeorgaki E, Michailides C, Angelides D C. Hydroelastic analysis of a flexiblemat-shaped floating breakwater under oblique wave action[J]. Journal of Fluids andStructures, 2012, 31 : 103-124.
[36] Humamoto T, Fujita K. Wet-mode superposition for evaluating the hydroelasticresponse of floating structures with arbitrary shape[C] . International Ocean andPolar Engineering Conference. 2002 : ISOPE-044.
[37] Michailides C, Loukogeorgaki E, Angelides D C. Response analysis and optimumconfiguration of a modular floating structure with flexible connectors[J]. AppliedOcean Research, 2013, 43 : 112-130.
[38] 陈徐均. 浮体二阶非线性水弹性力学分析方法[D]. 无锡 : 中国船舶科学研究中心, 2001.
[39] 韩满生. 超大型浮体结构水弹性响应的板模型分析[D]. 青岛 : 中国海洋大学, 2005.
[40] Mamidipudi P, Webster W. The motions performance of a mat-like floating airport[G] . Hydroelasticity in Marine Technology. London : Routledge, 1994 : 363-375.
[41] Yago K, Endo H. On the hydoroelastic response of box-shaped floating structurewith shallow draft tank test with large scale model[J]. Journal of the Society ofNaval Architects of Japan, 1996, 1996(180) : 341-352.
[42] 张淑华, 韩满生. 用直接法分析超大型浮体的水弹性响应[J]. 海洋工程,2004, 22(1) : 9-18.
[43] Kashiwagi M. A direct method versus a mode-expansion method for calculatinghydroelastic response of a VLFS in waves[C] . The Eighth International Offshoreand Polar Engineering Conference. 1998.
[44] Lu D, Fu S, Zhang X, et al. A method to estimate the hydroelastic behaviourof VLFS based on multi-rigid-body dynamics and beam bending[J]. Ships andOffshore Structures, 2016, 14(4) : 354-362.
[45] 位巍, 付世晓, 宋春辉. 一种基于离散模块的浮体水弹性响应预报方法[J].船舶力学, 2019, 023(001) : 43-50.
[46] Zhang X, Lu D. An extension of a discrete-module-beam-bending-based hydroelasticity method for a flexible structure with complex geometric features[J]. OceanEngineering, 2018, 163 : 22-28.
[47] 夏彩波, 位巍, 李帅, 等. 非均匀海底环境下铰接超大型浮体的水弹性响应分析[J]. 船舶力学, 2021, 25(5) : 607-618.
[48] 陈永强, 张宇, 张显涛. 基于离散模块梁单元水弹性理论的复杂连接处建模方法[J]. 中国舰船研究, 2022, 17(1) : 117-125.
[49] 张宇, 张显涛, 宋炜. 波浪作用下弹性板的水动力响应[J]. 船舶工程, 2023,45(5) : 35-41.
[50] Wei W, Fu S, Moan T, et al. A time-domain method for hydroelasticity of very largefloating structures in inhomogeneous sea conditions[J]. Marine Structures, 2018,57 : 180-192.
[51] Cummins W, Iiuhl W, Uinm A. The impulse response function and ship motions[J],1962 : 101-109.
[52] Kashiwagi M. A time-domain mode-expansion method for calculating transientelastic responses of a pontoon-type VLFS[J]. Journal of Marine Science and Technology, 2000, 5(2) : 89-100.
[53] Zhang X, Lu D, Gao Y, et al. A time domain discrete-module-beam-bending-basedhydroelasticity method for the transient response of very large floating structuresunder unsteady external loads[J]. Ocean Engineering, 2018, 164 : 332-349.
[54] Xu J, Sun Y, Li Z, et al. Analysis of the hydroelastic performance of very largefloating structures based on multimodules beam theory[J]. Mathematical Problemsin Engineering, 2017, 2017 : 6482527.
[55] Zhu L, Shao F, Xu Q, et al. The effects of moving load elastic elastic responseof a very large floating structure[J]. Mathematical Problems in Engineering, 2018,2018 : 6062586.
[56] Jin C, Bakti F P, Kim M. Multi-floater-mooring coupled time-domain hydro-elasticanalysis in regular and irregular waves[J]. Applied Ocean Research, 2020, 101 :102276.
[57] 王大云. 三维船舶水弹性力学的时域分析方法[D]. 无锡 : 中国船舶科学研究中心, 1996.
[58] 杨鹏, 顾学康, 丁军. 大型散货船时域中的非线性水弹性响应和载荷预报(英文) [J]. 船舶力学, 2018, 22(12) : 1495-1507.
[59] Pal S, Datta R, Sunny M. Fully coupled time domain solution for hydroelasticanalysis of a floating body[J]. Ocean Engineering, 2018, 153 : 173-184.
[60] Yang P, Li J, Gu X, et al. Application of the 3D time-domain Green’s functionfor finite water depth in hydroelastic mechanics[J]. Ocean Engineering, 2019, 189 :106386.
[61] Ismail R E S. Time-domain three dimensional BE-FE method for transient responseof floating structures under unsteady loads[J]. Latin American Journal of Solidsand Structures, 2016, 13 : 1340-1359.
[62] 程勇, 嵇春艳, 翟钢军. 波流与不均匀海域上浮式弹性板相互作用的非线性数值模拟[J]. 振动与冲击, 2017, 036(012) : 112-121.
[63] Utsunomiya T,Watanabe E,Wu C, et al.Wave response analysis of a flexible floatingstructure by BE-FE combination method[C] . The Fifth International Offshore andPolar Engineering Conference. 1995 : ISOPE-234.
[64] Hamamoto T. Dynamic response of flexible circular floating islands subjected tostochastic waves and seaquakes[G] . Hydroelasticity in Marine Technology. London : Routledge, 1994 : 433-445.
[65] Takaki M, Gu X. Motions of a floating elastic plate in waves[J]. Journal of theSociety of Naval Architects of Japan, 1996, 1996(180) : 331-339.
[66] Mindlin R D. Influence of rotatory inertia and shear on flexural motions of isotropicelastic plates[J]. Journal of Applied Mechanics, 1951, 18(1) : 31-38.
[67] Wang C, Xiang Y, Watanabe E, et al. Mode shapes and stress-resultants of circularMindlin plates with free edges[J]. Journal of Sound and Vibration, 2004, 276(3-5) :511-525.
[68] Watanabe E, Utsunomiya T, Wang C, et al. Benchmark hydroelastic responses of acircular VLFS under wave action[J]. Engineering Structures, 2006, 28(3) : 423-430.
[69] Wang C D, Wang C. A comparative study on the linear wave response of a very largefloating body modelled by a plate based on Kirchhoff and Mindlin plate theories[C]. SNAME 7th International Conference and Exhibition on Performance of Shipsand Structures in Ice. 2006 : D021S013R002.
[70] 赵存宝. 超大型浮体结构水弹性问题研究[D]. 哈尔滨 : 哈尔滨工业大学,2007.
[71] Wang C, Wang C. Computation of the stress resultants of a floating Mindlin platein response to linear wave forces[J]. Journal of Fluids and Structures, 2008, 24(7) :1042-1057.
[72] 沈洁. BEM-FEM 联合求解波浪与浮式弹性板的耦合作用[D]. 大连 : 大连理工大学, 2011.
[73] Praveen K, Karmakar D, Soares C G. Influence of support conditions on thehydroelastic behaviour of floating thick elastic plate[J]. Journal of Marine Scienceand Application, 2019, 18(3) : 295-313.
[74] 王猛. 浮冰在波浪作用下的水弹性响应研究[D]. 大连 : 大连理工大学, 2020.
[75] Karperaki A E, Belibassakis K A. Hydroelastic analysis of very large floatingstructures in variable bathymetry regions by multi-modal expansions and FEM[J].Journal of Fluids and Structures, 2021, 102 : 103236.
[76] Praveen K, Venkateswarlu V, Karmakar D. Hydroelastic response of floating elasticplate in the presence of vertical porous barriers[J]. Ships and Offshore Structures,2022, 17(2) : 457-471.
[77] Watanabe E, Utsunomiya T, Kubota A. Analysis of wave-drift damping of a VLFSwith shallow draft[J]. Marine Structures, 2000, 13(4-5) : 383-397.
[78] Tajali Z, Shafieefar M. Hydrodynamic analysis of multi-body floating piers underwave action[J]. Ocean Engineering, 2011, 38(17-18) : 1925-1933.
[79] Jiang D, Tan K H, Wang C M, et al. Research and development in connector systemsfor very large floating structures[J]. Ocean Engineering, 2021, 232 : 109150.
[80] Watanabe E, Utsunomiya T, Wang C. Hydroelastic analysis of pontoon-type VLFS:a literature survey[J]. Engineering Structures, 2004, 26(2) : 245-256.
[81] Diamantoulaki I, Angelides D C. Analysis of performance of hinged floating breakwaters[J]. Engineering Structures, 2010, 32(8) : 2407-2423.
[82] Liu W, Guo X, Zhang G, et al. Experiment and numerical investigation on structuralresponse of a FMRC hexagon enclosed platform in waves[J]. Ocean Engineering,2021, 233 : 108998.
[83] Gao R, Tay Z, Wang C, et al. Hydroelastic response of very large floating structurewith a flexible line connection[J]. Ocean Engineering, 2011, 38(17-18) : 1957-1966.
[84] Yoon J-S, Cho S-P, Jiwinangun R G, et al. Hydroelastic analysis of floating plateswith multiple hinge connections in regular waves[J]. Marine Structures, 2014, 36 :65-87.
[85] Tay Z Y. Energy generation from anti-motion device of very large floating structure[C] . Proceedings of the Twelfth European Wave and Tidal Energy Conference :Vol 27. 2017 : 674-1.
[86] Nguyen H, Wang C, Flocard F, et al. Extracting energy while reducing hydroelasticresponses of VLFS using a modular raft wec-type attachment[J]. Applied OceanResearch, 2019, 84 : 302-316.
[87] Nguyen H, Wang C. Oscillating wave surge converter-type attachment for extracting wave energy while reducing hydroelastic responses of very large floatingstructures[J]. Journal of Offshore Mechanics and Arctic Engineering, 2020, 142(4) :042001.
[88] Nguyen H, Wang C, Luong V. Two-mode WEC-type attachment for wave energyextraction and reduction of hydroelastic response of pontoon-type VLFS[J]. OceanEngineering, 2020, 197 : 106875.
[89] Khabakhpasheva T, Korobkin A. Hydroelastic behaviour of compound floatingplate in waves[J]. Journal of Engineering Mathematics, 2002, 44(1) : 21-40.
[90] Karmakar D, Soares C G. Scattering of gravity waves by a moored finite floatingelastic plate[J]. Applied Ocean Research, 2012, 34 : 135-149.
[91] Karperaki A, Belibassakis K, Papathanasiou T. Time-domain, shallow-water hydroelastic analysis of VLFS elastically connected to the seabed[J]. Marine Structures, 2016, 48 : 33-51.
[92] Nguyen H, Dai J, Wang C, et al. Reducing hydroelastic responses of pontoontype VLFS using vertical elastic mooring lines[J]. Marine Structures, 2018, 59 :251-270.
[93] 潘鹏, 汪学锋, 丁军, 等. 弹性超大型浮体系泊动力响应特性[J]. 中国海洋平台, 2023, 38(2) : 57-62.
[94] 丁爱兵, 汪学锋, 徐胜文. 近岛礁非均匀波浪下超大型浮体系泊试验[J]. 实验室研究与探索, 2022, 41(8) : 45-49.
[95] Claus R, López M. Key issues in the design of floating photovoltaic structuresfor the marine environment[J]. Renewable and Sustainable Energy Reviews, 2022,164 : 112502.
[96] Naess A, Moan T. Stochastic dynamics of marine structures[M]. Cambridge : Cambridge University Press, 2013.
[97] Dong W, Moan T, Gao Z. Long-term fatigue analysis of multi-planar tubular jointsfor jacket-type offshore wind turbine in time domain[J]. Engineering Structures,2011, 33(6) : 2002-2014.
[98] 吕滨, 张虹宇. 海洋风电场风机基础的设计分析[J]. 船海工程, 2012, 41(2) :155-160.
[99] Moan T, Gao Z, Ayala-Uraga E. Uncertainty of wave-induced response of marinestructures due to long-term variation of extratropical wave conditions[J]. MarineStructures, 2005, 18(4) : 359-382.
[100] Naess A, Gaidai O, Teigen P. Extreme response prediction for nonlinear floatingoffshore structures by Monte Carlo simulation[J]. Applied Ocean Research, 2007,29(4) : 221-230.
[101] 唐友刚, 桂龙, 曹菡, 等. 海上风机半潜式基础概念设计与水动力性能分析[J]. 哈尔滨工程大学学报, 2014, 35(11) : 1314-1319.
[102] 刘利琴, 韩袁昭, 肖昌水, 等. 新型浮式基础的海上风机系统动力响应研究[J]. 海洋工程, 2018, 36(1) : 19-26.
[103] Li X, Zhang W. Long-term fatigue damage assessment for a floating offshore windturbine under realistic environmental conditions[J]. Renewable Energy, 2020, 159 :570-584.
[104] Li X, Zhang W. Long-term assessment of a floating offshore wind turbine underenvironmental conditions with multivariate dependence structures[J]. RenewableEnergy, 2020, 147 : 764-775.
[105] El Beshbichi O, Rødstøl H, Xing Y, et al. Prediction of long-term extreme responseof two-rotor floating wind turbine concept using the modified environmental contour method[J]. Renewable Energy, 2022, 189 : 1133-1144.
[106] Cheng Y, Ji C, Zhai G, et al. Hydroelastic analysis of oblique irregular waveswith a pontoon-type VLFS edged with dual inclined perforated plates[J]. MarineStructures, 2016, 49 : 31-57.
[107] Kang H, Kim M. Time-domain hydroelastic analysis with efficient load estimation for random waves[J]. International Journal of Naval Architecture and OceanEngineering, 2017, 9(3) : 266-281.
[108] Riggs H, Ertekin R, Mills T. Impact of stiffness on the response of a multimodulemobile offshore base[J]. International Journal of Offshore and Polar Engineering,1999, 9(2) : 126-133.
[109] Riggs H, Ertekin R, Mills T. A comparative study of RMFC and FEA modelsfor the wave-induced response of a MOB[J]. Marine Structures, 2000, 13(4-5) :217-232.
[110] Shi Q, Xu D, Zhang H, et al. Optimized stiffness combination of a flexible-basehinged connector for very large floating structures[J]. Marine Structures, 2018, 60 :151-164.
[111] Zhao H, Xu D, Zhang H, et al. An optimization method for stiffness configurationof flexible connectors for multi-modular floating systems[J]. Ocean Engineering,2019, 181 : 134-144.
[112] Giske F-I G, Kvåle K A, Leira B J, et al. Long-term extreme response analysis ofa long-span pontoon bridge[J]. Marine Structures, 2018, 58 : 154-171.
[113] Xu Y, Øiseth O, Moan T, et al. Prediction of long-term extreme load effectsdue to wave and wind actions for cable-supported bridges with floating pylons[J].Engineering Structures, 2018, 172 : 321-333.
[114] Cheng Z, Gao Z, Moan T. Extreme responses and associated uncertainties for along end-anchored floating bridge[J]. Engineering Structures, 2020, 219 : 110858.
[115] Ning D, Zang J, Liu S, et al. Free-surface evolution and wave kinematics fornonlinear uni-directional focused wave groups[J]. Ocean Engineering, 2009, 36(15-16) : 1226-1243.
[116] Feng X. Analysis of higher harmonics in a focused water wave group by a nonlinearpotential flow model[J]. Ocean Engineering, 2019, 193 : 106581.
[117] 李金宣, 王占行, 柳淑学. 多向聚焦波浪作用下直立圆柱受力的实验研究[J].水动力学研究与进展 A 辑, 2012, 04(27) : 409-416.
[118] Sun Y, Zhang X. A second order analytical solution of focused wave group interacting with a vertical wall[J]. International Journal of Naval Architecture andOcean Engineering, 2017, 9(2) : 160-176.
[119] 常爽, 黄维平, 付图南, 等. 黏性数值波浪水池中聚焦波浪的生成和与结构物的相互作用[J]. 水动力学研究与进展: A 辑, 2018, 33(3) : 344-351.
[120] Santo H, Taylor P H, Moreno E C, et al. Extreme motion and response statistics forsurvival of the three-float wave energy converter M4 in intermediate water depth[J].Journal of Fluid Mechanics, 2017, 813 : 175-204.
[121] 赵西增, 童晨奕, 姚炎明. 极端波浪对跨海桥梁上部结构作用研究[J]. 华中科技大学学报(自然科学版) , 2020, 48(12) : 127-132.
[122] 程勇, 嵇春艳, 陆婷婷, 等. 聚焦波与超大型浮体作用的非线性数值模拟[J].上海交通大学学报, 2017, 07(51) : 831-839.
[123] Meylan M H. A variational equation for the wave forcing of floating thin plates[J].Applied Ocean Research, 2001, 23(4) : 195-206.
[124] Wang C M, Xiang Y, Utsunomiya T, et al. Evaluation of modal stress resultantsin freely vibrating plates[J]. International Journal of Solids and Structures, 2001,38(36-37) : 6525-6558.
[125] Petyt M. Introduction to finite element vibration analysis[J]. Journal of Sound andVibration, 2010, 242(1) : 103–124.
[126] Takabatake H. A simplified analysis of rectangular floating plates subjected tomoving loads[J]. Ocean Engineering, 2015, 97 : 37-47.
[127] Kashiwagi M. A B-spline Galerkin scheme for calculating the hydroelastic response of a very large floating structure in waves[J]. Journal of Marine Science andTechnology, 1998, 3(1) : 37-49.
[128] Watanabe E, Utsunomiya T, Wang C. Hydroelastic analysis of pontoon-type VLFS:a literature survey[J]. Engineering Structures, 2004, 26(2) : 245-256.=
[129] Longuet-Higgins M S. On the statistical distribution of the heights of sea waves[J].Journal of Marine Research, 1953, 11(3) : 245-266.
[130] Baldock T, Swan C, Taylor P. A laboratory study of nonlinear surface waves onwater[J]. Philosophical Transactions of the Royal Society of London. Series A:Mathematical, Physical and Engineering Sciences, 1996, 354(1707) : 649-676.
[131] Niu X, Ma X, Ma Y, et al. Controlled extreme wave generation using an improvedfocusing method[J]. Applied Ocean Research, 2020, 95 : 102017.
[132] Wang C, Tay Z, Takagi K, et al. Literature review of methods for mitigatinghydroelastic response of VLFS under wave action[J]. Applied Mechanics Reviews,2010, 63(3).
[133] Riyansyah M, Wang C, Choo Y. Connection design for two-floating beam systemfor minimum hydroelastic response[J]. Marine Structures, 2010, 23(1) : 67-87.
[134] Zheng S M, Zhang Y H, Zhang Y L, et al. Numerical study on the dynamics of atwo-raft wave energy conversion device[J]. Journal of Fluids and Structures, 2015,58 : 271-290.
[135] Nguyen H P, Dai J, Wang C M, et al. Reducing hydroelastic responses of pontoontype VLFS using vertical elastic mooring lines[J]. Marine Structures, 2018, 59 :251-270.
[136] Nguyen H P, Wang C M. Heaving wave energy converter-type attachments to apontoon-type very large floating structure[J]. Engineering Structures, 2020, 219 :110964.
[137] Giske F-I G, Leira B J, Øiseth O. Full long-term extreme response analysis ofmarine structures using inverse FORM[J]. Probabilistic Engineering Mechanics,2017, 50 : 1-8.
[138] Melchers R E, Beck A T. Structural reliability analysis and prediction[M]. Cambridge : John Wiley & Sons, 2018.
[139] Winterstein S R, Ude T C, Cornell C A, et al. Environmental parameters for extremeresponse: inverse FORM with omission factors[J]. Proceedings of the ICOSSAR-93, Innsbruck, Austria, 1993 : 551-557.
[140] Du X, Sudjianto A, Chen W. An integrated framework for optimization underuncertainty using inverse reliability strategy[J]. Journal of Mechanical Design,2004, 126(4) : 562-570.
[141] Li H, Foschi R O. An inverse reliability method and its application[J]. StructuralSafety, 1998, 20(3) : 257-270.
[142] Sagrilo L, Naess A, Doria A. On the long-term response of marine structures[J].Applied Ocean Research, 2011, 33(3) : 208-214.
[143] Armijo L. Minimization of functions having Lipschitz continuous first partialderivatives[J]. Pacific Journal of Mathematics, 1966, 16(1) : 1-3.
[144] Haver S, Winterstein S R. Environmental contour lines: a method for estimatinglong term extremes by a short term analysis[J]. Transactions - Society of NavalArchitects and Marine Engineers, 2008, 116 : 116-127.
[145] Xu S, Wang S, Soares C G. Review of mooring design for floating wave energyconverters[J]. Renewable and Sustainable Energy Reviews, 2019, 111 : 595-621.
[146] Kim B W, Hong S Y, Kyoung J H, et al. Evaluation of bending moments and shearforces at unit connections of very large floating structures using hydroelastic andrigid body analyses[J]. Ocean Engineering, 2007, 34(11-12) : 1668-1679

所在学位评定分委会
力学
国内图书分类号
O342
来源库
人工提交
成果类型学位论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/779047
专题工学院_海洋科学与工程系
工学院
推荐引用方式
GB/T 7714
陈登硕. 波浪载荷作用下铰接超大型浮体极端响应研究[D]. 哈尔滨. 哈尔滨工业大学,2024.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
11749292-陈登硕-海洋科学与工程(23587KB)----限制开放--请求全文
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[陈登硕]的文章
百度学术
百度学术中相似的文章
[陈登硕]的文章
必应学术
必应学术中相似的文章
[陈登硕]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。