[1] BETZIG E, PATTERSON G H, SOUGRAT R, et al. Imaging intracellular fluorescent proteins at nanometer resolution[J]. Science, 2006, 313(5793): 1642-1645.
[2] RUST M J, BATES M, ZHUANG X. Sub-diffraction-limit imaging by stochastic optical recon- struction microscopy (STORM)[J]. Nature Methods, 2006, 3(10): 793-796.
[3] WILLIG K I, HARKE B, MEDDA R, et al. STED microscopy with continuous wave beams[J]. Nature Methods, 2007, 4(11): 915-918.
[4] VICIDOMINI G, BIANCHINI P, DIASPRO A. STED super-resolved microscopy[J]. Nature Methods, 2018, 15(3): 173-182.
[5] SHECHTMAN Y, SAHL S J, BACKER A S, et al. Optimal point spread function design for 3D imaging[J]. Physical Review Letters, 2014, 113(13): 133902.
[6] PAVANI S R P, THOMPSON M A, BITEEN J S, et al. Three-dimensional, single-molecule fluorescence imaging beyond the diffraction limit by using a double-helix point spread function [J]. Proceedings of the National Academy of Sciences, 2009, 106(9): 2995-2999.
[7] VON DIEZMANN L, SHECHTMAN Y, MOERNER W. Three-dimensional localization of single molecules for super-resolution imaging and single-particle tracking[J]. Chemical Re- views, 2017, 117(11): 7244-7275.
[8] HUANG B, WANG W, BATES M, et al. Three-dimensional super-resolution imaging by stochastic optical reconstruction microscopy[J]. Science, 2008, 319(5864): 810-813.
[9] LEE H L D, SAHL S J, LEW M D, et al. The double-helix microscope super-resolves extended biological structures by localizing single blinking molecules in three dimensions with nanoscale precision[J]. Applied Physics Letters, 2012, 100(15): 153701-1537013.
[10] SHECHTMAN Y, WEISS L E, BACKER A S, et al. Precise three-dimensional scan-free multiple-particle tracking over large axial ranges with tetrapod point spread functions[J]. Nano Letters, 2015, 15(6): 4194-4199.
[11] KAO H P, VERKMAN A. Tracking of single fluorescent particles in three dimensions: use of cylindrical optics to encode particle position[J]. Biophysical Journal, 1994, 67(3): 1291-1300.
[12] PETROV P N, SHECHTMAN Y, MOERNER W. Measurement-based estimation of global pupil functions in 3D localization microscopy[J]. Optics Express, 2017, 25(7): 7945-7959.
[13] FU S, LI M, ZHOU L, et al. Deformable mirror based optimal PSF engineering for 3D super- resolution imaging[J]. Optics Letters, 2022, 47(12): 3031-3034.
[14] HERSHKO E, WEISS L E, MICHAELI T, et al. Multicolor localization microscopy and point- spread-function engineering by deep learning[J]. Optics Express, 2019, 27(5): 6158-6183.
[15] NEHME E, FERDMAN B, WEISS L E, et al. Learning Optimal Wavefront Shaping for Multi- Channel Imaging[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2021, 43(7): 2179-2192.
[16] ZHUANG X. Nano-imaging with STORM[J]. Nature Photonics, 2009, 3(7): 365-367.
[17] ABBE E. Note on the Proper Definition of the Amplifying Power of a Lens or Lens-system[J]. Journal of the Royal Microscopical Society, 1884, 4(3): 348-351.
[18] GUSTAFSSON M G. Surpassing the lateral resolution limit by a factor of two using structured illumination microscopy[J]. Journal of Microscopy, 2000, 198(2): 82-87.
[19] HEINTZMANN R, JOVIN T M, CREMER C. Saturated patterned excitation microscopy—a concept for optical resolution improvement[J]. JOSA A, 2002, 19(8): 1599-1609.
[20] HELL S W, WICHMANN J. Breaking the diffraction resolution limit by stimulated emission: stimulated-emission-depletion fluorescence microscopy[J]. Optics Letters, 1994, 19(11): 780- 782.
[21] NEHME E, WEISS L E, MICHAELI T, et al. Deep-STORM: super-resolution single-molecule microscopy by deep learning[J]. Optica, 2018, 5(4): 458-464.
[22] KIM T, MOON S, XU K. Information-rich localization microscopy through machine learning [J]. Nature Communications, 2019, 10(1): 1-8.
[23] OUYANG W, ARISTOV A, LELEK M, et al. Deep learning massively accelerates super- resolution localization microscopy[J]. Nature Biotechnology, 2018, 36(5): 460-468.
[24] SHROFF H, GALBRAITH C G, GALBRAITH J A, et al. Dual-color superresolution imaging of genetically expressed probes within individual adhesion complexes[J]. Proceedings of the National Academy of Sciences, 2007, 104(51): 20308-20313.
[25] SUBACH F V, PATTERSON G H, MANLEY S, et al. Photoactivatable mCherry for high- resolution two-color fluorescence microscopy[J]. Nature Methods, 2009, 6(2): 153-159.
[26] XU K, ZHONG G, ZHUANG X. Actin, spectrin, and associated proteins form a periodic cy- toskeletal structure in axons[J]. Science, 2013, 339(6118): 452-456.
[27] DEMPSEY G T, VAUGHAN J C, CHEN K H, et al. Evaluation of fluorophores for optimal performance in localization-based super-resolution imaging[J]. Nature Methods, 2011, 8(12): 1027-1036.
[28] ZHANG Z, KENNY S J, HAUSER M, et al. Ultrahigh-throughput single-molecule spec- troscopy and spectrally resolved super-resolution microscopy[J]. Nature Methods, 2015, 12 (10): 935-938.
[29] JAMESON D M, ROSS J A. Fluorescence polarization/anisotropy in diagnostics and imaging [J]. Chemical Reviews, 2010, 110(5): 2685-2708.
[30] BACKLUND M P, LEW M D, BACKER A S, et al. The role of molecular dipole orientation in single-molecule fluorescence microscopy and implications for super-resolution imaging[J]. ChemPhysChem, 2014, 15(4): 587-599.
[31] SHRODER D Y, LIPPERT L G, GOLDMAN Y E. Single molecule optical measurements of orientation and rotations of biological macromolecules[J]. Methods and Applications in Fluorescence, 2016, 4(4): 042004.
[32] MANZO C, GARCIA-PARAJO M F. A review of progress in single particle tracking: from methods to biophysical insights[J]. Reports on Progress in Physics, 2015, 78(12): 124601.
[33] KUSUMI A, TSUNOYAMA T A, HIROSAWA K M, et al. Tracking single molecules at work in living cells[J]. Nature Chemical Biology, 2014, 10(7): 524-532.
[34] BEREZIN M Y, ACHILEFU S. Fluorescence lifetime measurements and biological imaging [J]. Chemical Reviews, 2010, 110(5): 2641-2684.
[35] DATTA R, HEASTER T M, SHARICK J T, et al. Fluorescence lifetime imaging microscopy: fundamentals and advances in instrumentation, analysis, and applications[J]. Journal of Biomedical Optics, 2020, 25(7): 071203-071203.
[36] JUETTE M F, GOULD T J, LESSARD M D, et al. Three-dimensional sub–100 nm resolution fluorescence microscopy of thick samples[J]. Nature Methods, 2008, 5(6): 527-529.
[37] BABCOCK H P. Multiplane and spectrally-resolved single molecule localization microscopy with industrial grade CMOS cameras[J]. Scientific Reports, 2018, 8(1): 1726.
[38] CABRIEL C, BOURG N, JOUCHET P, et al. Combining 3D single molecule localization strategies for reproducible bioimaging[J]. Nature Communications, 2019, 10(1): 1980.
[39] DASGUPTA A, DESCHAMPS J, MATTI U, et al. Direct supercritical angle localization mi- croscopy for nanometer 3D superresolution[J]. Nature Communications, 2021, 12(1): 1180.
[40] SHECHTMAN Y, WEISS L E, BACKER A S, et al. Multicolour localization microscopy by point-spread-function engineering[J]. Nature Photonics, 2016, 10(9): 590-594.
[41] MANLEY S, GILLETTE J M, PATTERSON G H, et al. High-density mapping of single- molecule trajectories with photoactivated localization microscopy[J]. Nature Methods, 2008, 5 (2): 155-157.
[42] SHIM S H, XIA C, ZHONG G, et al. Super-resolution fluorescence imaging of organelles in live cells with photoswitchable membrane probes[J]. Proceedings of the National Academy of Sciences, 2012, 109(35): 13978-13983.
[43] MOHAN N, SOROKINA E M, VERDENY I V, et al. Detyrosinated microtubules spatially constrain lysosomes facilitating lysosome–autophagosome fusion[J]. Journal of Cell Biology, 2019, 218(2): 632-643.
[44] OTTERSTROM J, CASTELLS-GARCIA A, VICARIO C, et al. Super-resolution microscopy reveals how histone tail acetylation affects DNA compaction within nucleosomes in vivo[J]. Nucleic Acids Research, 2019, 47(16): 8470-8484.
[45] BÁLINT Š, VERDENY VILANOVA I, SANDOVAL ÁLVAREZ Á, et al. Correlative live-cell and superresolution microscopy reveals cargo transport dynamics at microtubule intersections [J]. Proceedings of the National Academy of Sciences, 2013, 110(9): 3375-3380.
[46] DOKSANI Y, WU J Y, DE LANGE T, et al. Super-resolution fluorescence imaging of telomeres reveals TRF2-dependent T-loop formation[J]. Cell, 2013, 155(2): 345-356.
[47] PIESTUN R, SCHECHNER Y Y, SHAMIR J. Propagation-invariant wave fields with finite energy[J]. JOSA A, 2000, 17(2): 294-303.
[48] 乔敏达, 白林阁, 王书恒, 等. 计算成像技术中的点扩散函数工程[J]. Journal of Data Acqui- sition and Processing, 2024, 39(2): 271-296.
[49] HUANG B, JONES S A, BRANDENBURG B, et al. Whole-cell 3D STORM reveals interac- tions between cellular structures with nanometer-scale resolution[J]. Nature Methods, 2008, 5 (12): 1047-1052.
[50] SHTENGEL G, GALBRAITH J A, GALBRAITH C G, et al. Interferometric fluorescent super-resolution microscopy resolves 3D cellular ultrastructure[J]. Proceedings of the National Academy of Sciences, 2009, 106(9): 3125-3130.
[51] LEW M D, LEE S F, BADIEIROSTAMI M, et al. Corkscrew point spread function for far-field three-dimensional nanoscale localization of pointlike objects[J]. Optics Letters, 2011, 36(2): 202-204.
[52] BADDELEY D, CANNELL M B, SOELLER C. Three-dimensional sub-100 nm super- resolution imaging of biological samples using a phase ramp in the objective pupil[J]. Nano Research, 2011, 4(6): 589-598.
[53] JIA S, VAUGHAN J C, ZHUANG X. Isotropic three-dimensional super-resolution imaging with a self-bending point spread function[J]. Nature Photonics, 2014, 8(4): 302-306.
[54] XU F, MA D, MACPHERSON K P, et al. Three-dimensional nanoscopy of whole cells and tissues with in situ point spread function retrieval[J]. Nature Methods, 2020, 17(5): 531-540.
[55] GAIRE S K, ZHANG Y, LI H, et al. Accelerating multicolor spectroscopic single-molecule localization microscopy using deep learning[J]. Biomedical Optics Express, 2020, 11(5): 2705- 2721.
[56] FU S, SHI W, LUO T, et al. Field-dependent deep learning enables high-throughput whole-cell 3D super-resolution imaging[J]. Nature Methods, 2023, 20(3): 459-468.
[57] SPEISER A, MÜLLER L R, HOESS P, et al. Deep learning enables fast and dense single- molecule localization with high accuracy[J]. Nature Methods, 2021, 18(9): 1082-1090.
[58] NEHME E, FREEDMAN D, GORDON R, et al. DeepSTORM3D: dense 3D localization mi- croscopy and PSF design by deep learning[J]. Nature Methods, 2020, 17(7): 734-740.
[59] ZHANG P, LIU S, CHAURASIA A, et al. Analyzing complex single-molecule emission pat- terns with deep learning[J]. Nature Methods, 2018, 15(11): 913-916.
[60] BOYD N, JONAS E, BABCOCK H, et al. DeepLoco: fast 3D localization microscopy using neural networks[J/OL]. bioRxiv, 2018. https://www.biorxiv.org/content/early/2018/02/16/267 096. DOI: 10.1101/267096.
[61] ZELGER P, KASER K, ROSSBOTH B, et al. Three-dimensional localization microscopy using deep learning[J]. Optics Express, 2018, 26(25): 33166-33179.
[62] NEHME E, FERDMAN B, WEISS L E, et al. Learning optimal wavefront shaping for multi- channel imaging[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2021, 43 (7): 2179-2192.
[63] HOLDEN S J, UPHOFF S, KAPANIDIS A N. DAOSTORM: an algorithm for high-density super-resolution microscopy[J]. Nature Methods, 2011, 8(4): 279-280.
[64] OVESNỲ M, KŘÍŽEK P, BORKOVEC J, et al. ThunderSTORM: a comprehensive ImageJ plug-in for PALM and STORM data analysis and super-resolution imaging[J]. Bioinformatics, 2014, 30(16): 2389-2390.
[65] RONNEBERGER O, FISCHER P, BROX T. U-net: Convolutional networks for biomedi- cal image segmentation[C]//Medical Image Computing and Computer-Assisted Intervention– MICCAI 2015: 18th International Conference, Munich, Germany. 2015: 234-241.
[66] KAY S M. Fundamentals of statistical signal processing: estimation theory[M]. Prentice-Hall, Inc.Division of Simon and Schuster One Lake Street Upper Saddle River, NJ.United States, 1993: 595.
[67] LI Y, SHI W, LIU S, et al. Global fitting for high-accuracy multi-channel single-molecule localization[J]. Nature Communications, 2022, 13(1): 3133.
[68] LI Y, MUND M, HOESS P, et al. Real-time 3D single-molecule localization using experimental point spread functions[J]. Nature Methods, 2018, 15(5): 367-369.
[69] MÖCKL L, ROY A R, PETROV P N, et al. Accurate and rapid background estimation in single- molecule localization microscopy using the deep neural network BGnet[J]. Proceedings of the National Academy of Sciences, 2020, 117(1): 60-67.
[70] ZHANG Z, ZHANG Y, YING L, et al. Machine-learning based spectral classification for spec- troscopic single-molecule localization microscopy[J]. Optics Letters, 2019, 44(23): 5864-5867.
[71] JEONG D, KIM D. Super-resolution fluorescence microscopy-based single-molecule spec- troscopy[J]. Bulletin of the Korean Chemical Society, 2022, 43(3): 316-327.
[72] MEZOUARI S, HARVEY A R. Validity of Fresnel and Fraunhofer approximations in scalar diffraction[J]. Journal of Optics A: Pure and Applied Optics, 2003, 5(4): S86.
[73] LEUTENEGGER M, RAO R, LEITGEB R A, et al. Fast focus field calculations[J]. Optics Express, 2006, 14(23): 11277-11291.
[74] LIN J, RODRÍGUEZ-HERRERA O, KENNY F, et al. Fast vectorial calculation of the volumet- ric focused field distribution by using a three-dimensional Fourier transform[J]. Optics Express, 2012, 20(2): 1060-1069.
[75] NIE Z Q, LIN H, LIU X F, et al. Three-dimensional super-resolution longitudinal magnetization spot arrays[J]. Light: Science & Applications, 2017, 6(8): e17032-e17032.
[76] BOOTH M J. A basic introduction to adaptive optics for microscopy[M/OL]. Zenodo, 2019. https://doi.org/10.5281/zenodo.3471043.
[77] YU F, KOLTUN V. Multi-Scale Context Aggregation by Dilated Convolutions[C]//BENGIO Y, LECUN Y. 4th International Conference on Learning Representations, ICLR 2016, San Juan, Puerto Rico, May 2-4, 2016, Conference Track Proceedings. 2016.
[78] LIU R, LEHMAN J, MOLINO P, et al. An intriguing failing of convolutional neural networks and the coordconv solution[C]//Advances in Neural Information Processing Systems 31: Annual Conference on Neural Information Processing Systems 2018, NeurIPS 2018, December 3-8, 2018, Montréal, Canada. 2018: 9628-9639.
[79] HE K, ZHANG X, REN S, et al. Deep residual learning for image recognition[C/OL]//2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Las Vegas, NV, USA, 2016: 770-778. DOI: 10.1109/CVPR.2016.90.
[80] GOODFELLOW I, POUGET-ABADIE J, MIRZA M, et al. Generative adversarial networks [J]. Communications of the ACM, 2020, 63(11): 139-144.
[81] SAGUY A, ALALOUF O, OPATOVSKI N, et al. DBlink: Dynamic localization microscopy in super spatiotemporal resolution via deep learning[J]. Nature Methods, 2023, 20(12): 1939- 1948.
[82] ZHANG S, ZHENG D, HU X, et al. Bidirectional long short-term memory networks for relation classification[C]//Proceedings of the 29th Pacific Asia Conference on Language, Information and Computation. Shanghai, China, 2015: 73-78.
[83] JÉGOU S, DROZDZAL M, VAZQUEZ D, et al. The one hundred layers tiramisu: Fully convo- lutional densenets for semantic segmentation[C]//2017 IEEE Conference on Computer Vision and Pattern Recognition Workshops, CVPR Workshops 2017, Honolulu, HI, USA. IEEE Com- puter Society, 2017: 1175-1183.
[84] SAGE D, PHAM T A, BABCOCK H, et al. Super-resolution fight club: assessment of 2D and 3D single-molecule localization microscopy software[J]. Nature Methods, 2019, 16(5): 387-395.
[85] WU T, LU J, LEW M D. Dipole-spread-function engineering for simultaneously measuring the 3D orientations and 3D positions of fluorescent molecules[J]. Optica, 2022, 9(5): 505-511.
[86] JOUCHET P, ROY A R, MOERNER W. Combining deep learning approaches and point spread function engineering for simultaneous 3D position and 3D orientation measurements of fluo- rescent single molecules[J]. Optics Communications, 2023: 129589.
[87] VOULODIMOS A, DOULAMIS N, DOULAMIS A, et al. Deep learning for computer vision: A brief review[J]. Computational Intelligence and Neuroscience, 2018, 2018: 1-13.
[88] WIDROW B, LEHR M A. 30 years of adaptive neural networks: perceptron, madaline, and backpropagation[J]. Proceedings of the IEEE, 1990, 78(9): 1415-1442.
修改评论