[1] CORMEN T H, LEISERSON C E, RIVEST R L, et al. Introduction to algorithms[M]. MITPress, 2022.
[2] SHIN K, ELIASSI-RAD T, FALOUTSOS C. Corescope: Graph mining using k-core analysis—patterns, anomalies and algorithms[C]//2016 IEEE 16th International Conference on DataMining. IEEE, 2016: 469-478.
[3] EASLEY D, KLEINBERG J. Networks, crowds, and markets: Reasoning about a highly connected world[M]. Cambridge University Press, 2010.
[4] KOREN Y, BELL R, VOLINSKY C. Matrix factorization techniques for recommender systems[J]. Computer, 2009, 42(8): 30-37.
[5] VORA K, GUPTA R, XU G. Kickstarter: Fast and accurate computations on streaming graphsvia trimmed approximations[C]//Proceedings of the 22nd International Conference on Architectural Support for Programming Languages and Operating Systems. 2017: 237-251.
[6] EKSOMBATCHAI C, JINDAL P, LIU J Z, et al. Pixie: A system for recommending 3+ billionitems to 200+ million users in real-time[C]//Proceedings of World Wide Web Conference. 2018:1775-1784.
[7] MIAO Y, HAN W, LI K, et al. Immortalgraph: A system for storage and analysis of temporalgraphs[J]. ACM Transactions on Storage, 2015, 11(3): 1-34.
[8] JEONG H, TOMBOR B, ALBERT R, et al. The large-scale organization of metabolic networks[J]. Nature, 2000, 407(6804): 651-654.
[9] IDEKER T, OZIER O, SCHWIKOWSKI B, et al. Discovering regulatory and signalling circuitsin molecular interaction networks[J]. Bioinformatics, 2002, 18(suppl_1): S233-S240.
[10] CEN Y, ZHANG J, WANG G, et al. Trust relationship prediction in alibaba E-commerce platform[J]. IEEE Transactions on Knowledge and Data Engineering, 2019, 32(5): 1024-1035.
[11] MARIAPPAN M, VORA K. Graphbolt: Dependency-driven synchronous processing of streaming graphs[C]//Proceedings of the 14th EuroSys Conference 2019. 2019: 1-16.
[12] 李贺, 刘延娜, 杨舒琪, 等. 基于顶点组重分配的动态增量图划分算法[J]. 软件学报, 2024,35(04): 1819-1840.
[13] BEUTEL A, AKOGLU L, FALOUTSOS C. Fraud detection through graph-based user behaviormodeling[C]//Proceedings of the 22nd ACM SIGSAC Conference on Computer and Communications Security. 2015: 1696-1697.
[14] MAO R, LI Z, FU J. Fraud transaction recognition: A money flow network approach[C]//Proceedings of the 24th ACM International on Conference on Information and Knowledge Management. 2015: 1871-1874.
[15] AKOGLU L, TONG H, KOUTRA D. Graph based anomaly detection and description: a survey[J]. Data Mining and Knowledge Discovery, 2015, 29(3): 626-688.
[16] FENG G, MA Z, LI D, et al. RisGraph: A Real-Time Streaming System for Evolving Graphsto Support Sub-millisecond Per-update Analysis at Millions Ops/s[C]//Proceedings of the 2021ACM SIGMOD International Conference on Management of Data. 2021: 513-527.
[17] ZHU X, FENG G, SERAFINI M, et al. LiveGraph: A transactional graph storage system withpurely sequential adjacency list scans[J]. Proceedings of the VLDB Endowment, 2020, 13(7):1020-1034.
[18] DIJKSTRA E W. A note on two problems in connexion with graphs[M]//Edsger Wybe Dijkstra:His Life, Work, and Legacy. 2022: 287-290.
[19] SEIDMAN S B. Network structure and minimum degree[J]. Social Networks, 1983, 5(3):269-287.
[20] LU Y, CHENG J, YAN D, et al. Large-scale distributed graph computing systems: An experimental evaluation[J]. Proceedings of the VLDB Endowment, 2014, 8(3): 281-292.
[21] AMMAR K, OZSU T. Experimental analysis of distributed graph systems[J]. Proceedings ofthe VLDB Endowment, 2018, 11(10): 1151-1164.
[22] EULER L. Leonhard Euler and the Königsberg bridges[J]. Scientific American, 1953, 189(1):66-72.
[23] 李忠飞, 杨雅君, 王鑫. 基于规则的最短路径查询算法[J]. 软件学报, 2019, 30(03): 515-536.
[24] 孙天元, 王永才, 李德英. 图实现算法综述与评测分析[J]. 自动化学报, 2020, 46(04): 613-630.
[25] SHARMA A, JIANG J, BOMMANNAVAR P, et al. GraphJet: Real-time content recommendations at Twitter[J]. Proceedings of the VLDB Endowment, 2016, 9(13): 1281-1292.
[26] 陈子俊, 马德龙, 王一舒, 等. GPPR: 跨域分布式个性化 PageRank 算法[J]. 软件学报, 2024,35(03): 1090-1106.
[27] MARTINEZ-BAZAN N, GOMEZ-VILLAMOR S, ESCALE-CLAVERAS F. DEX: A highperformance graph database management system[C]//2011 IEEE 27th International Conferenceon Data Engineering Workshops. IEEE, 2011: 124-127.
[28] GONG P, LIU R, MAO Z, et al. gSampler: General and efficient GPU-based graph samplingfor graph learning[C]//Proceedings of the 29th Symposium on Operating Systems Principles.2023: 562-578.
[29] 吴博, 梁循, 张树森, 等. 图神经网络前沿进展与应用[J]. 计算机学报, 2022, 45(01): 35-68.
[30] MCGREGOR A. Graph stream algorithms: a survey[J]. ACM SIGMOD Record, 2014, 43(1):9-20.
[31] ROBINSON I, WEBBER J, EIFREM E. Graph databases: new opportunities for connecteddata[M]. O’Reilly Media, Inc., 2015.
[32] neo4j[EB/OL]. 2022. https://neo4j.com/.
[33] SHUN J, BLELLOCH G E. Ligra: a lightweight graph processing framework for shared memory[C]//Proceedings of the 18th ACM SIGPLAN Symposium on Principles and Practice ofParallel Programming. 2013: 135-146. al. GPOP: A cache and memory-efficient frameworkfor graph processing over partitions[C]//Proceedings of the 24th Symposium on Principles andPractice of Parallel Programming. 2019: 393-394.
[38] ZHANG Y, YANG M, BAGHDADI R, et al. Graphit: A high-performance graph dsl[J]. Proceedings of the ACM on Programming Languages, 2018, 2(OOPSLA): 1-30.
[39] LU S, SUN S, PAUL J, et al. Cache-efficient fork-processing patterns on large graphs[C]//Proceedings of the 2021 ACM SIGMOD International Conference on Management of Data.2021: 1208-1221.
[40] DHULIPALA L, BLELLOCH G E, SHUN J. Low-latency graph streaming using compressedpurely-functional trees[C]//Proceedings of the 40th ACM SIGPLAN Conference on Programming Language Design and Implementation. 2019: 918-934.
[41] MACKO P, MARATHE V J, MARGO D W, et al. Llama: Efficient graph analytics usinglarge multiversioned arrays[C]//2015 IEEE 31st International Conference on Data Engineering.IEEE, 2015: 363-374.
[42] EDIGER D, MCCOLL R, RIEDY J, et al. Stinger: High performance data structure for streaming graphs[C]//2012 IEEE Conference on High Performance Extreme Computing. IEEE, 2012:1-5.
[43] 祝贺, 华强胜, 金海, 等. LMSA:NVM 环境下高性能动态图处理数据结构[J]. 计算机学报,2022, 45(07): 1446-1461.
[44] 李贺, 刘延娜, 袁航, 等. 动态图划分算法研究综述[J]. 软件学报, 2023, 34(02): 539-564.
[45] LEE J, KIM H, YOO S, et al. Extrav: boosting graph processing near storage with a coherentaccelerator[J]. Proceedings of the VLDB Endowment, 2017, 10(12): 1706-1717.
[46] 李琪, 钟将, 李雪. 图划分在混合内存系统的实现与性能优化[J]. 计算机学报, 2019, 42(11): 2481-2498.
[47] 蒋筱斌, 熊轶翔, 张珩, 等. ChattyGraph: 面向异构多协处理器的高可扩展图计算系统[J].软件学报, 2023, 34(04): 1977-1996.
[48] ZHU X, HAN W, CHEN W. GridGraph:Large-Scale Graph Processing on a Single Machine Using 2-Level Hierarchical Partitioning[C]//2015 USENIX Annual Technical Conference. 2015:375-386.
[49] KIM J, SWANSON S. Blaze: fast graph processing on fast SSDs[C]//Proceedings of the International Conference for High Performance Computing, Networking, Storage and Analysis.IEEE, 2022: 1-15.
[50] KYROLA A, BLELLOCH G, GUESTRIN C. GraphChi:Large-Scale Graph Computation onJust a PC[C]//10th USENIX Symposium on Operating Systems Design and Implementation.2012: 31-46.
[51] ROY A, MIHAILOVIC I, ZWAENEPOEL W. X-stream: Edge-centric graph processing using streaming partitions[C]//Proceedings of the 24th ACM Symposium on Operating SystemsPrinciples. 2013: 472-488.
[52] KUMAR P, HUANG H H. G-store: high-performance graph store for trillion-edge processing[C]//Proceedings of the International Conference for High Performance Computing, Networking, Storage and Analysis. IEEE, 2016: 830-841.
[53] SENGUPTA D, SONG S L. Evograph: On-the-fly efficient mining of evolving graphs on gpu[C]//International Supercomputing Conference. Springer, 2017: 97-119.
[54] 苗旭鹏, 王驭捷, 沈佳, 等. 面向多 GPU 的图神经网络训练加速[J]. 软件学报, 2023, 34(09):4407-4420.
[55] SHA M, LI Y, HE B, et al. Accelerating Dynamic Graph Analytics on GPUs[J]. Proceedingsof the VLDB Endowment, 2017, 11(1): 107-120.
[56] WANG Y, PAN Y, DAVIDSON A, et al. Gunrock: GPU graph analytics[J]. ACM Transactionson Parallel Computing, 2017, 4(1): 1-49.
[57] MONDAL J, DESHPANDE A. Managing large dynamic graphs efficiently[C]//Proceedings ofthe 2012 ACM SIGMOD International Conference on Management of Data. 2012: 145-156.
[58] 李玲, 印莹, 赵宇海, 等. 基于解耦概要图的大规模图数据高效分布式挖掘算法[J]. 计算机学报, 2020, 43(07): 1183-1198.
[59] 崔鹏杰, 袁野, 李岑浩, 等. RGraph: 基于 RDMA 的高效分布式图数据处理系统[J]. 软件学报, 2022, 33(03): 1018-1042.
[60] 沈斯杰, 陈榕, 陈海波, 等. 基于图结构索引的分布式 OLAP 加速方法[J]. 软件学报, 2023,34(10): 4661-4680.
[61] 王鑫, 徐强, 柴乐乐, 等. 大规模 RDF 图数据上高效率分布式查询处理[J]. 软件学报, 2019,30(03): 498-514.
[62] 王童童, 荣垂田, 卢卫, 等. 分布式图处理系统技术综述[J]. 软件学报, 2018, 29(03): 569-586.
[63] ZHU X, CHEN W, ZHENG W, et al. Gemini: A Computation-Centric Distributed Graph Processing System[C]//12th USENIX Symposium on Operating Systems Design and Implementation. 2016: 301-316.
[64] MALEWICZ G, AUSTERN M H, BIK A J, et al. Pregel: a system for large-scale graph processing[C]//Proceedings of the 2010 ACM SIGMOD International Conference on Managementof data. 2010: 135-146.
[65] BRONSON N, AMSDEN Z, CABRERA G, et al. TAO:Facebook’s Distributed Data Storefor the Social Graph[C]//2013 USENIX Annual Technical Conference. 2013: 49-60.
[66] SHAO B, WANG H, LI Y. Trinity: A distributed graph engine on a memory cloud[C]//Proceedings of the 2013 ACM SIGMOD International Conference on Management of Data.2013: 505-516.
[67] GONZALEZ J E, LOW Y, GU H, et al. PowerGraph: Distributed Graph-Parallel computationon natural graphs[C]//10th USENIX Symposium on Operating Systems Design and Implementation. 2012: 17-30.
[68] BURAGOHAIN C, RISVIK K M, BRETT P, et al. A1: A distributed in-memory graph database[C]//Proceedings of the 2020 ACM SIGMOD International Conference on Management ofData. 2020: 329-344.
[69] GONZALEZ J E, XIN R S, DAVE A, et al. GraphX: Graph processing in a distributed dataflowframework[C]//11th USENIX Symposium on Operating Systems Design and Implementation.2014: 599-613.
[70] WANG K, XU G, SU Z, et al. GraphQ: Graph Query Processing with Abstraction Refinement—Scalable and Programmable Analytics over Very Large Graphs on a Single PC[C]//2015USENIX Annual Technical Conference. 2015: 387-401.
[71] JU W, LI J, YU W, et al. iGraph: an incremental data processing system for dynamic graph[J].Frontiers of Computer Science, 2016, 10(3): 462-476.
[72] PRABHAKARAN V, WU M, WENG X, et al. Managing Large Graphs on Multi-Cores withGraph Awareness[C]//2012 USENIX Annual Technical Conference. 2012: 41-52.
[73] SENGUPTA D, SUNDARAM N, ZHU X, et al. Graphin: An online high performance incremental graph processing framework[C]//European Conference on Parallel Processing. Springer,2016: 319-333.
[74] ZHAO J, ZHANG Y, LIAO X, et al. GraphM: an efficient storage system for high throughput of concurrent graph processing[C]//Proceedings of the International Conference for HighPerformance Computing, Networking, Storage and Analysis. 2019: 1-14.
[75] PSAROPOULOS G, LEGLER T, MAY N, et al. Interleaving with coroutines: a practical approach for robust index joins[J]. Proceedings of the VLDB Endowment, 2017, 11(7): 230-242.
[76] JONATHAN C, MINHAS U F, HUNTER J, et al. Exploiting coroutines to attack the” killernanoseconds”[J]. Proceedings of the VLDB Endowment, 2018, 11(11): 1702-1714.
[77] MENON P, MOWRY T C, PAVLO A. Relaxed operator fusion for in-memory databases: Making compilation, vectorization, and prefetching work together at last[J]. Proceedings of theVLDB Endowment, 2017, 11(1): 1-13.
[78] MÜHLIG J, TEUBNER J. MxTasks: How to Make Efficient Synchronization and PrefetchingEasy[C]//Proceedings of the 2021 ACM SIGMOD International Conference on Managementof Data. 2021: 1331-1344.
[79] LEE J, KIM H, VUDUC R. When prefetching works, when it doesn’t, and why[J]. ACMTransactions on Architecture and Code Optimization, 2012, 9(1): 1-29.
[80] AYERS G, LITZ H, KOZYRAKIS C, et al. Classifying memory access patterns for prefetching[C]//Proceedings of the 25th International Conference on Architectural Support for Programming Languages and Operating Systems. 2020: 513-526.
[81] CHEN S, AILAMAKI A, GIBBONS P B, et al. Improving hash join performance throughprefetching[J]. ACM Transactions on Database Systems, 2007, 32(3): 17-29.
[82] NARAYANAN V, DETWEILER D, HUANG T, et al. DRAMHiT: A Hash Table Architected forthe Speed of DRAM[C]//Proceedings of the 18th European Conference on Computer Systems.2023: 817-834.
[83] KOCBERBER O, FALSAFI B, GROT B. Asynchronous memory access chaining[J]. Proceedings of the VLDB Endowment, 2015, 9(4): 252-263.
[84] ISO/IEC. Technical Specifcation —C++ Extensions for Coroutines[EB/OL]. 2017. https://www.iso.org/standard/73008.html.
[85] MOURA A L D, IERUSALIMSCHY R. Revisiting coroutines[J]. ACM Transactions on Programming Languages and Systems, 2009, 31(2): 1-31.
[86] CARTER A, RODRIGUEZ A, YANG Y, et al. Nanosecond indexing of graph data with hashmaps and VLists[C]//Proceedings of the 2019 ACM SIGMOD International Conference onManagement of Data. 2019: 623-635.
[87] HE Y, LU J, WANG T. Coroutine-Oriented Main-Memory Database Engine[J]. Proceedings ofthe VLDB Endowment, 2021, 14(3): 431-444.
[88] SUN S, CHEN Y, LU S, et al. ThunderRW: an in-memory graph random walk engine[Z]. 2021.
[89] ZHANG K, CHEN R, CHEN H. NUMA-aware graph-structured analytics[C]//Proceedingsof the 20th ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming.2015: 183-193.
[90] FALOUTSOS M, FALOUTSOS P, FALOUTSOS C. On power-law relationships of the internettopology[J]. ACM SIGCOMM Computer Communication Review, 1999, 29(4): 251-262.
[91] HUBERMAN B A, ADAMIC L A. Growth dynamics of the world-wide web[J]. Nature, 1999,401(6749): 131-131.
[92] ANGLES R, ARENAS M, BARCELÓ P, et al. Foundations of modern query languages forgraph databases[J]. ACM Computing Surveys, 2017, 50(5): 1-40.
[93] CHING A, EDUNOV S, KABILJO M, et al. One trillion edges: Graph processing at facebookscale[J]. Proceedings of the VLDB Endowment, 2015, 8(12): 1804-1815.
[94] ROY A, BINDSCHAEDLER L, MALICEVIC J, et al. Chaos: Scale-out graph processing fromsecondary storage[C]//Proceedings of the 25th Symposium on Operating Systems Principles.2015: 410-424.
[95] FIRMLI S, TRIGONAKIS V, LOZI J P, et al. CSR++: A Fast, Scalable, Update-Friendly GraphData Structure[C]//24th International Conference on Principles of Distributed Systems. 2020.
[96] LEIS V, KEMPER A, NEUMANN T. The adaptive radix tree: ARTful indexing for mainmemory databases[C]//2013 IEEE 29th International Conference on Data Engineering. IEEE,2013: 38-49.
[97] BENDER M A, DEMAINE E D, FARACH-COLTON M. Cache-oblivious B-trees[C]//Proceedings 41st Annual Symposium on Foundations of Computer Science. IEEE, 2000: 399-409.
[98] XING W, GHORBANI A. Weighted pagerank algorithm[C]//Proceedings. Second Annual Conference on Communication Networks and Services Research, 2004. IEEE, 2004: 305-314.
[101] SHUN J, DHULIPALA L, BLELLOCH G E. Smaller and faster: Parallel processing of compressed graphs with Ligra+[C]//2015 Data Compression Conference. IEEE, 2015: 403-412.
[102] BLELLOCH G E, FERIZOVIC D, SUN Y. Just join for parallel ordered sets[C]//Proceedingsof the 28th ACM Symposium on Parallelism in Algorithms and Architectures. 2016: 253-264.
[103] COORPORATION I. Intel 64 and IA-32 architectures optimization reference manual[EB/OL].2016.
[104] MITZENMACHER M, UPFAL E. Probability and computing: Randomization and probabilistic techniques in algorithms and data analysis[M]. Cambridge University Press, 2017.
[105] CHAKRABARTI D, ZHAN Y, FALOUTSOS C. R-MAT: A recursive model for graph mining[C]//Proceedings of the 2004 SIAM International Conference on Data Mining. SIAM, 2004:442-446.
[106] ERLING O, AVERBUCH A, LARRIBA-PEY J, et al. The LDBC social network benchmark:Interactive workload[C]//Proceedings of the 2015 ACM SIGMOD International Conference onManagement of Data. 2015: 619-630.
[107] IOSUP A, HEGEMAN T, NGAI W L, et al. LDBC Graphalytics: A benchmark for large-scalegraph analysis on parallel and distributed platforms[J]. Proceedings of the VLDB Endowment,2016, 9(13): 1317-1328.
[108] LISSANDRINI M, BRUGNARA M, VELEGRAKIS Y. Beyond macrobenchmarks:microbenchmark-based graph database evaluation[J]. Proceedings of the VLDB Endowment,2018, 12(4): 390-403.
[109] BOLDI P, VIGNA S. The webgraph framework I: compression techniques[C]//Proceedings ofthe 13th International Conference on World Wide Web. 2004: 595-602.
[110] KUNEGIS J. Konect: the koblenz network collection[C]//Proceedings of the 22nd InternationalConference on World Wide Web. 2013: 1343-1350.
[111] KWAK H, LEE C, PARK H, et al. What is Twitter, a social network or a news media?[C]//Proceedings of the 19th International Conference on World Wide Web. 2010: 591-600.
[112] MEYER U, SANDERS P. 𝛥-stepping: a parallelizable shortest path algorithm[J]. Journal ofAlgorithms, 2003, 49(1): 114-152.
修改评论