中文版 | English
题名

碳-碳键构建反应机理的计算研究

其他题名
A COMPUTATIONAL STUDY OF THE REACTION MECHANISMS FOR THE CONSTRUCTION OF CARBON-CARBON BOND
姓名
姓名拼音
CHEN Xiaoxuan
学号
12132725
学位类型
硕士
学位专业
070304 物理化学
学科门类/专业学位类别
07 理学
导师
钟龙华
导师单位
化学系
论文答辩日期
2024-05-10
论文提交日期
2024-07-06
学位授予单位
南方科技大学
学位授予地点
深圳
摘要

碳-碳键的构建是有机合成化学的核心研究。本论文采用密度泛函理论 (DFT),对三种不同催化体系(过渡金属催化、有机催化和生物催化) 下构建碳-碳键的反应机理和选择性进行研究,旨在为开发新型的碳-碳键构 建策略提供理论指导。 在过渡金属 Rh(I)-卡宾催化不对称吲哚 C-H 键官能团化构建碳-碳键的 反应体系中,揭示了反应的热力学与动力学特征,确定还原消除步骤为反 应决速步。通过对卡宾与二烯配体之间配位模式的分析,阐述了手性二烯 配体与卡宾配体之间的空间位阻以及电子效应在对映选择性上的决定性作 用。在有机手性双硼试剂介导的酮亚胺不对称还原自身偶联构建碳-碳键的 体系中,对关键的协同[3,3]-σ 重排反应机理过渡态进行分析,揭示了双硼 与底物的配位模式、空间位阻、静电效应和卤键效应在立体化学控制的协 同调节作用。对于水相中芳构化酶 StrC 体系下的羟醛缩合/芳构化反应的研 究,支持了在水分子介导下进行羟醛缩合反应构建碳-碳键的可行性,揭示 了 StrC 酶在芳构化过程中的重要作用,突出了氨基酸 Arg104、His117 及 Asp123 在选择反应路径和提高催化效率上的关键作用。通过对三个不同催 化体系下催化碳-碳键构建反应的计算研究,深化了对碳-碳键构建反应机制 的理解,进而指导新型催化剂的设计和碳-碳键的构建。

 

关键词
语种
中文
培养类别
独立培养
入学年份
2021
学位授予年份
2024-06
参考文献列表

[1]. LIU W, LI J, QUERARD P, et al. Transition-metal-free C-C, C-O, and C-N cross couplings enabled by light[J]. Journal of the American Chemical Society, 2019, 141(16): 6755-6764.
[2]. PAN Q, PING Y Y, KONG W Q. Nickel-catalyzed ligand-controlled selective reductive cyclization/cross-couplings[J]. Accounts of Chemical Research, 2023, 56(5): 515-535.
[3]. DIDIER D. Forging C-C bonds through the intramolecular oxidative coupling of organoborates - an overview[J]. Synthesis, 2022, 55(2): 232-239.
[4]. WANG Y, LIU A, MA D, et al. TiO2 photocatalyzed C-H bond transformation for C C coupling reactions[J]. Catalysts, 2018, 8(9): 335-350.
[5]. KADU B S. Suzuki-Miyaura cross-coupling reaction: recent advancements in catalysis and organic synthesis[J]. Catalysis Science & Technology, 2021, 11(4): 1186 -1221.
[6]. POIZOT P, SIMONET J. Silver-palladium cathode Selective one-electron scission of alkyl halides: homo-coupling and cross-coupling subsequent reactions[J]. Electrochimica Acta, 2010, 56(1): 15-36.
[7]. MIYAURA N, YAMADA K, SUZUKI A. New stereospecific cross-coupling by the palladium-catalyzed reaction of 1-alkenyl boranes with 1-alkenyl or 1-alkynyl halides[J]. Tetrahedron Letters, 1979, 20(36): 3437-3440.
[8]. MILSTEIN D, STILLE J K. General, selective, and facile method for ketone synthesis from acid-chlorides and organotin compounds catalyzed by palladium[J]. Journal of the American Chemical Society, 1978, 100(11): 3636-3638.
[9]. KING A O, OKUKADO N, NEGISHI E I. Highly general stereo-selective, regio selective, and chemo-selective synthesis of terminal and internal conjugated enynes by pd-catalyzed reaction of alkynyl zinc reagents with alkenyl halides[J]. Journal of the Chemical Society-Chemical Communications, 1977, (19): 683-684.
[10].TIAN T, LI Z P, LI C J. Cross-dehydrogenative coupling: a sustainable reaction for C C bond formations[J]. Green Chemistry, 2021, 23(18): 6789-6862.
[11].JIANG Y Y, MAN X, BI S. Advances in theoretical study on transition-metal-catalyzed C-H activation[J]. Science China Chemistry, 2016, 59(11): 1448-1466.
[12].LIAN Y, DAVIES H M. Rhodium-catalyzed
[3 + 2] annulation of indoles[J]. Journal of the American Chemical Society, 2010, 132(2): 440-441.
[13].DEANGELIS A, SHURTLEFF V W, Dmitrenko O, et al. Rhodium(II)-catalyzed enantioselective C-H functionalization of indoles[J]. Journal of the American Chemical Society, 2011, 133: 1650-1653.
[14].CAI Y, ZHU S F, WANG G P, et al. Iron‐catalyzed C-H fuctionalization of Indoles[J].Advanced Synthesis & Catalysis, 2011, 353(16): 2939-2944.
[15].GAO X, WU B, HUANG W X, et al. Enantioselective palladium-catalyzed C-H functionalization of indoles using an axially chiral 2,2'-bipyridine ligand[J]. Angewandte Chemie-International Edition, 2015, 54(41): 11956-11960.
[16].GAO X, WU B, YAN Z, et al. Copper-catalyzed enantioselective C-H functionalization of indoles with an axially chiral bipyridine ligand[J]. Organic Biomolecular Chemistry, 2016, 14(35): 8237-8240.
[17].LI N, ZHU W J, HUANG J J, et al. Chiral NCN pincer iridium(III) complexes with bis(imidazolinyl)phenyl ligands: synthesis and application in enantioselective C-H functionalization of indoles with α-aryl-α-diazoacetates[J]. Organometallics, 2020, 39(12): 2222-2234.
[18].Shi J J, Yan Y N, Li Q, et al. Rhodium(III)-catalyzed C2-selective carbenoid functionalization and subsequent C7-alkenylation of indoles[J]. Chemistry Communication, 2014, 50, 6483-6486.
[19].NARAYAN R, MATCHA K, ANTONCHICK A P. Metal-Free Oxidative C-C Bond Formation through C-H Bond Functionalization[J]. Chemistry-A European Journal, 2015, 21(42): 14678-14693.
[20].YANG Q L, FANG P, MEI T S. Recent advances in organic electrochemical C-H functionalization[J]. Chinese Journal of Chemistry, 2018, 36(4): 338 -352.

[21].HAN X L, HU B, FEI C, et al. Catalytic asymmetric imine cross-coupling reaction[J]. Journal of the American Chemical Society, 2023, 145(8): 4400-4407.

[22].ZETZSCHE L E, YAZARIANS J A, CHAKRABARTY S, et al. Biocatalytic oxidative cross-coupling reactions for biaryl bond formation[J]. Nature, 2022, 603(7899): 79-85.

[23].STOCK A, BRANDT A, FISCHER H. Der zink-lichtbogen als reduktionsmittel[J]. Berichte der deutschen chemischen Gesellschaft (A/B), 1925, 58(4): 643-657.

[24].SUZUKI A. Cross-coupling reactions of organoboranes: an easy way to construct C-C bonds (Nobel Lecture)[J]. Angewandte Chemie-International Edition, 2011, 50(30): 6722-6737.

[25].LI H, XU G, LI S, et al. Neutral and anionic diboron compounds bearing electron precise B-B bond[J]. Chemical Record, 2023, 23(12): e202300238.

[26].ZHOU M, LI K, CHEN D, et al. Enantioselective reductive coupling of imines templated by chiral diboron[J]. Journal of the American Chemical Society, 2020, 142(23): 10337-10342.

[27].PALAU-LLUCH G, SANZ X, LA CASCIA E, et al. Organocatalytic functionalizationthrough boron chemistry[J]. Pure and Applied Chemistry, 2015, 87(2): 181 -193.

[28].WANG G, ZHANG H, ZHAO J, et al. Homolytic cleavage of a B-B bond by the cooperative catalysis of two Lewis bases: computational design and experimental verification[J]. Angewandte Chemie-International Edition, 2016, 55(20): 5985-5989.

[29].WANG G, CAO J, GAO L, et al. Metal-free synthesis of C-4 substituted pyridinederivatives using pyridine-boryl radicals via a radical addition/coupling mechanism: a combined computational and experimental study[J]. Journal of the American Chemical Society, 2017, 139(10): 3904-3910.

[30].CAO J, WANG G, GAO L, et al. Organocatalytic reductive coupling of aldehydes with 1,1-diaryl ethylenes using an in situ generated pyridine-boryl radical[J]. ChemicalSciences, 2018, 9(15): 3664-3671.

[31].CHEN D, XU G, ZHOU Q, et al. Practical and asymmetric reductive coupling of isoquinolines templated by chiral diborons[J]. Journal of the American Chemical Society, 2017, 139(29): 9767-9770.

[32].ZHOU Q, TANG W, CHUNG L W. Mechanistic insights into asymmetric reductive coupling of isoquinolines by a chiral diboron with DFT calculations[J]. Journal of Organometallic Chemistry, 2018, 864: 97-104.

[33].SWAGATA M, SANGITA M, SUMANTA K G, et al. Review of the aldol reaction[J]. Synthetic Communications, 2016, 46(16): 1327-1342.

[34].MACHAJEWSKI T D, WONG C H. The catalytic asymmetric aldol reaction[J].Angewandte Chemie-International Edition, 2000, 39(8): 1352-1375.

[35].LIST B. Proline-catalyzed asymmetric reactions[J]. Tetrahedron, 2002, 58(28): 5573-5590.

[36].Nobel prize.org advanced information. https://www.nobelprize.org/prizes/chemistry/ 2021/advanced-information/ (21/October/2021).

[37].BIESEMANS B, DE CLERCQ J, STEVENS C V, et al. Recent advances in amine catalyzed aldol condensations[J]. Catalysis Reviews, 2022, 66(2): 401-483.

[38].DE ROSA M, SORIENTE A. Water opportunities: catalyst and solvent in Mukaiyama aldol addition of Rawal’s diene to carbonyl derivatives[J]. Tetrahedron, 2011, 67(33): 5949-5955.

[39].PALADHI S, BHATI M, PANDA D, et al. Thiazolidinedione-isatin conjugates via an uncatalyzed diastereoselective aldol reaction on water[J]. Journal of Organic Chemistry, 2014, 79(3): 1473-1480.

[40].ZHAO J, HE F, ZHANG F, et al. The role of water in the catalyst-free aldol reaction of water-insoluble N-methyl-2,4-thiazolidinedione with N-methylisation from QM/MM Monte Carlo simulations[J]. Chemphyschem, 2017, 18(15): 2123-2131.

[41].DEVI N S, DEVI N. Catalyst-free aldol reaction of N-substituted rhodanines on aqueous media[J]. Journal of Chemical Sciences, 2018, 130(2):18-22.

[42].HOHENBERG P, KOHN W. Inhomogeneous electron gas[J]. Physical Review, 1964, 136(3B): B864-B871.

[43].KOHN W, SHAM L J. Self-consistent equations including exchange and correlation effects[J]. Physical Review, 1965, 140(4A): A1133-A1138.

[44].Eyring, H. The activated complex in chemical reactions[J]. The Journal of Chemical Physics, 1935, 3(2): 107-115.

[45].Evans M G, Polanyi M. Some applications of the transition state method to the calculation of reaction velocities, especially in solution[J]. Transaction of Faraday Society, 1935, 31: 875-894.

[46].BICKELHAUPT F M, HOUK K N. Analyzing reaction rates with the distortion/interaction-activation strain model[J]. Angewandte Chemie-International Edition, 2017, 56(34): 10070-10086.

[47].DALE H J A, LEACH A G, LLOYD-JONES G C. Heavy-atom kinetic isotope effects: primary interest or zero-point[J]. Journal of the American Chemical Society, 2021, 143(50): 21079-21099.

[48].WANG T Y, CHEN X X, ZHU D X, et al. Rhodium(I) carbene-promoted enantioselective C-H functionalization of simple unprotected indoles, pyrroles, and heteroanalogues: new mechanistic insights[J]. Angewandte Chemie-International Edition, 2022, 61(34): e202207008.

[49].FRISCH M J, TRUCKS G W, SCHLEGEL H B. Gaussian 09[CP]. revision D.01, Gaussian, Inc., Wallingford CT, 2009.

[50].LEE C, YANG W, PARR R G. Development of the colle-salvetti correlation-energy formula into a functional of the electron density[J]. Physical Review B, 1988, 37(2): 785-789.

[51].ANDRAE D, HAEUSSERMANN U, DOLG M. Energy-adjusted initio pseudopotentials for the second and third-row transition elements[J]. TheoreticaChimica Acta, 1990, 77: 123-141.

[52].DITCHFIELD R, HEHRE W J, POPLE J A. Self-consistent molecular-orbital methods. IX. An extended Gaussian-type basis for molecular-orbital studies of organic molecules[J]. The Journal of Chemical Physics, 1971, 54(2): 724-728.

[53].GRIMME S, ANTONY J, EHRLICH S, et al. A Consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu[J]. The Journal of Chemical Physics, 2010, 132(15): 154104.

[54].MARENICH A V, CRAMER C J, TRUHLAR D G. Universal solvation model based on solute electron density and a continuum model of the solvent defined by the bulk dielectric constant and atomic surface tensions[J]. The Journal of Chemical Physics B, 2009, 113 (18): 6378-6396.

[55].ZHAO Y, TRUHLAR D G. The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: two new functionals and systematic testing of four M06 -class functionals and 12 other functionals[J]. Theoretical Chemistry Accounts, 2007, 120(1 -3): 215-241.

[56].ADAMO C, BARONE V. Toward reliable density functional methods without adjustable parameters: the PBE0 model[J]. The Journal of Chemical Physics, 1999, 110(13): 6158-6170.

[57].GUO Y, RIPLINGER C, BECKER U, et al. Communication: An improved linear scaling perturbative triples correction for the domain-based local pair-natural orbital based singles and doubles coupled cluster method [DLPNO-CCSD(T)][J]. The Journal of Chemical Physics, 2018, 148(1): 011101.

[58].SPARTA M, RETEGAN M, PINSKI P, et al. Multilevel approaches within the local pair natural orbital framework[J]. Journal of Chemical Theory and Computation, 2017, 13(7): 3198-3207.

[59].NEESE F. Software update: The ORCA program system-Version 5.0[J]. WIREs Computational Molecular Science, 2022, 12(5): e1606.

[60].CAMMI R. Quantum cluster theory for the polarizable continuum model. I. The CCSD level with analytical first and second derivatives[J]. The Journal of Chemical Physics, 2009, 131(16): 164104.

[61].JOHNSON E R, KEINAN S, MORI-SANCHEZ P, et al. Revealing noncovalent interactions[J]. Journal of the American Chemical Society, 2010, 132(18): 6498 -6506.

[62].BADER R F W. Atoms in molecules: a quantum theory[M]. Oxford University Press, 1990.

[63].LU T, CHEN F. Multiwfn: a multifunctional wavefunction analyzer[J]. J ournal of Computational Chemistry, 2012, 33(5): 580-592.

[64].LEGAULT C Y. CYLview, 1.0b[CP]. Université de Sherbrooke, 2009, http://www.cylview.org.

[65].HUMPHREY W, DALKE A, SCHULTEN K. VMD: Visual molecular dynamics[J]. Journal of Molecular Graphics, 1996, 14(1): 33-38.

[66].SCHRÖDINGER L, DELANO W. PyMOL[CP], 2020, http://www.pymol.org/pymol.

[67].ZHU D X, XIA H, LIU J G, et al. Regiospecific and enantioselective arylvinylcarbene insertion of a C-H bond of aniline derivatives enabled by a Rh(I)-diene catalyst[J]. Journal of the American Chemical Society, 2021, 143(6): 2608-2619.

[68].ZHOU M, LIN Y, CHEN X X, et al. Asymmetric synthesis of vicinal tetrasubstituted diamines via reductive coupling of ketimines templated by chiral diborons[J]. Angewandte Chemie-International Edition, 2023, 135(17): e202300334.

[69].GRIMME S. Supramolecular binding thermodynamics by dispersion-corrected density functional theory[J]. Chemistry-A European Journal, 2012, 18(32): 9955-9964.

[70].LUCHINI G, ALEGRE-REQUENA J V, FUNES-ARDOIZ I, et al. GoodVibes: automated thermochemistry for heterogeneous computational chemistry data[J]. F1000Reasearch, 2020, 9: 291.

[71].CHAI J D, HEAD-GORDON M. Long-range corrected hybrid density functionals with damped atom-atom dispersion corrections[J]. Physical chemistry chemical physics, 2008, 10(44): 6615-6620.

[72].PRACHT P, BOHLE F, GRIMME S. Automated exploration of the low-energy chemical space with fast quantum chemical methods[J]. Physical chemistry chemical physics, 2020, 22(14): 7169-7192.

[73].TUBIANA T, CARVAILLO J C, BOULARD Y, et al. TTClust: a versatile molecular simulation trajectory clustering program with graphical summaries[J]. Journal of Chemical Information and Modeling, 2018, 58(11): 2178-2182.

[74].YANG R, FENG J, XIANG H, et al. Ketoreductase domain-catalyzed polyketide chain release in fungal alkyl salicylaldehyde biosynthesis[J]. Journal of the American Chemical Society, 2023, 145(20): 11293-11300.

[75].TROTT O, OLSON A J. AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading[J]. Journal of chemical theory and computation, 2010, 31(2): 455-461.

[76].SONDERGAARD C R, OLSSON M H, ROSTKOWSKI M, et al. Improved treatment of ligands and coupling effects in empirical calculation and rationalization of pKa values[J]. Journal of chemical theory and computation, 2011, 7(7): 2284-2295.

[77].HAY P J, WADT W R. Ab initio effective core potentials for molecular calculations. potentials for the transition metal atoms Sc to Hg[J]. The Journal of Chemical Physics, 1985, 82(1): 270-283.

所在学位评定分委会
化学
国内图书分类号
O643.3
来源库
人工提交
成果类型学位论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/779053
专题理学院_化学系
推荐引用方式
GB/T 7714
陈晓璇. 碳-碳键构建反应机理的计算研究[D]. 深圳. 南方科技大学,2024.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
12132725-陈晓璇-化学系.pdf(9368KB)----限制开放--请求全文
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[陈晓璇]的文章
百度学术
百度学术中相似的文章
[陈晓璇]的文章
必应学术
必应学术中相似的文章
[陈晓璇]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。