[1] 中华人民共和国水利部. 2022年中国水资源公报[R]. 中华人民共和国水利部, 北京: 中华人民共和国水利部,2022: 34.
[2] 伏世红. 大中型输水工程输水管材比选分析[J]. 黑龙江水利科技, 2020, 48 (02): 115-117.
[3] 王玉良, 张海, 毕永清, 等. 大直径预应力钢筒混凝土海底输油管道受力性能分析[J]. 海洋技术, 2012, 31(01): 83-86.
[4] 孙岳阳, 胡少伟, 胡登兴, 等. 预应力钢筒混凝土管(PCCP)研究进展 [J]. 人民长江, 2023, 54(06): 162-168.
[5] American Water Works Association. Prestressed Concrete Pressure Pipe, Steel Cylinder Type: AWWA C301-14[S]. USA: American Water Works Association, 2014: 1-34.
[6] Washington Suburban Sanitary Commission. WSSC pipeline design manual amendment proposed 80-foot setback[R]. Laurel, Maryland: WSSC,2012: 1-86.
[7] 张旭苹, 周廣南, 王浩然, 等. 基于分布式光纤声场传感的预应力钢筒混凝土管断丝监测研究进展[J]. 光学学报, 2024, 44(01): 149-160.
[8] 张霄杰, 吴嘉瑜, 陈建飞. 内压作用下CFRP内衬加固PCCP承载力分析[J]. 工业建筑, 2024, 54(06): 10-20.
[9] Dong X N, Dou T S, Dong P, et al. Experimental study on the influence of scattered broken wires on the structural performance of prestressed concrete cylinder pipe[J]. Structures, 2023, 47 (01): 52-62.
[10] Zhang X J, Wu J Y, Hou C, et al. An analytical solution for stress transfer between a broken prestressing wire and mortar coating in PCCP[J]. Materials, 2022, 15 (16): 5779.
[11] Hassi S, Touhami M E, Ejbouh A, et al. Case study of the performance of prestressed concrete cylinder pipes in the greater Agadir of Morocco[J]. Journal of Pipeline Systems Engineering and Practice, 2021, 12 (2): 05021001.
[12] Villalobos J L. Evaluation of Prestressed Concrete Cylinder Pipe in a High Chloride Environment After 19 Years of Service[C]// Pipelines in the Constructed Environment, 1998: 575-583.
[13] Galleher J J, Stift M T. Internal inspection and database development of PCCP[C]// Pipeline Division Conference, 1998: 721-730.
[14] 张野, 袁思敏, 李炎隆, 等. 基于原型试验的输水工程PCCP断丝信号智能识别与分析方法 [J]. 水利学报, 2023, 54(05): 587-598.
[15] Hu Y Q, Hu S W, Li W H, et al. A time-variant model of chloride diffusion in prestressed concrete cylinder pipe (PCCP) considering the effects of curing age[J]. Construction and Building Materials, 2023, 368 (03): 130411.
[16] Hassi S, Touhami M E, Menu B, et al. Case study of the performance of prestressed concrete cylinder pipes in northeastern morocco[J]. Journal of Pipeline Systems Engineering and Practice, 2022, 13 (2): 05022002.
[17] Hassi S, Ejbouh A, Touhami M E, et al. Performance of prestressed concrete cylinder pipe in North Africa: case study of the water transmission systems in the tafilalet region of Morocco[J]. Journal of Pipeline Systems Engineering and Practice, 2021, 12 (2): 05021002.
[18] Hassi S, Touhami M E, Boujad A, et al. Assessing the effect of mineral admixtures on the durability of prestressed concrete cylinder pipe (PCCP) by means of electrochemical impedance spectroscopy[J]. Construction and Building Materials, 2020, 262 (11): 120925.
[19] Price R E. Investigation, cause, and prevention of PCCP failures[C]// AWWA conference, 1990: 1-10.
[20] Walsh T L, Hodge D S. Overcoming the challenges of replacing 20 km of defective 1524 mm diameter PCCP[C]// Pipelines in the Constructed Environment, 1998: 602-611.
[21] Parks R R, Drager J K, Ojdrovic R P. Condition Assessment and Rehabilitation of the Windy Gap Pipeline—An Owner's Perspective[C]// Pipelines, 2001: 1-13.
[22] Nielsen G, Shane A, Nardini P D, et al. Developing and Implementing a PCCP Condition Assessment Program[C]// Pipelines, 2017: 486-495.
[23] 赵绍华, 王英歌, 张海鹏, 等. 大口径PCCP断丝加固技术工程应用和效果评价[J]. 混凝土与水泥制品, 2023(04): 39-43.
[24] Ball R T, Moore W G, Smith D L, et al. Prestressed concrete cylinder pipe rehabilitation repair and replacement: large diameter success stories[J]. Florida Water Resources Journal, 2012, 6 (9): 4-10.
[25] Zhao L, Dou T, Cheng B, et al. Experimental study on the reinforcement of prestressed concrete cylinder pipes with external prestressed steel strands[J]. Applied Sciences, 2019, 9 (01): 149-167.
[26] Zhao L, Dou T, Cheng B, et al. Theoretical study and application of the reinforcement of prestressed concrete cylinder pipes with external prestressed steel strands[J]. Applied Sciences, 2019, 9 (24): 248-247.
[27] Elnakhat H, Raymond R. Repair of PCCP by post tensioning[C]// Pipelines, 2006: 47-56.
[28] Zhai K J, Fang H Y, Fu B, et al. Mechanical response of externally bonded CFRP on repair of PCCPs with broken wires under internal water pressure[J]. Construction and Building Materials, 2020, 239 (04): 117878.
[29] Zhai K, Fang H, Fu B, et al. Using externally bonded CFRP to repair a PCCP with broken wires under combined loads[J]. International Journal of Polymer Science, 2019, 2019 (10): 1-11.
[30] Zhai K J, Fang H Y, Guo C C, et al. Strengthening of PCCP with broken wires using prestressed CFRP[J]. Construction and Building Materials, 2021, 267 (01): 120903.
[31] Stine G P, Stift M T. Rehabilitation of 183-cm PCCP with steel plate liners[C]// Pipelines in the Constructed Environment, 1998: 594-601.
[32] Rahman S, Smith G, Mielke R, et al. Rehabilitation of large diameter PCCP: relining and sliplining with steel pipe[C]// Pipelines, 2012: 494-504.
[33] Karbhari V M: Rehabilitation of pipelines using fiber-reinforced polymer (FRP) composites[M], USA: Woodhead Publishing,2015: 17-38.
[34] Zarghamee M S, Engindeniz M. CFRP renewal of PCCP - an overview[C]// Pipelines, 2014: 932-941.
[35] Henry G, Larsen M, Olinger G. Trenchless repair of coastal water authority's 60-Inch PCCP pipeline along independence parkway[C]// Pipelines, 2019: 14-23.
[36] Gipsov M P, Engindeniz M, Ojdrovic R O. Performance of CFRP-lined PCCP with continuing wire breakage[C]// Pipelines, 2019: 555-564.
[37] Engindeniz M, Zarghamee M S. Experimental basis of CFRP renewal of PCCP[C]// Pipelines, 2014: 920-931.
[38] American National Standards Institute. CFRP renewal and strengthening of prestressed concrete cylinder pipe (PCCP): ANSI/AWWA C305-18[S]. USA: American Water Works Association, 2018: 1-80.
[39] Kennison H F. Tests of prestressed concrete embedded cylinder pipe[J]. Journal of the Hydraulics Division, 1960, 86 (9): 77-98.
[40] Mccall J T, Valenziano F P. Combined load tests on 108 inch prestressed concrete embedded cylinder pipe[J]. Proc. Symp. on Prestressed Concrete 1961, 9 (01): 1-16.
[41] Erdogmus E, Skourup B N, Tadros M. Recommendations for design of reinforced concrete pipe[J]. Journal of Pipeline Systems Engineering and Practice, 2010, 1 (1): 25-32.
[42] American Concrete Pipe Association. Concrete pipe design manual[M].USA: American Concrete Pipe Association,2011: 326.
[43] Shang P R, Wang H, Zhang D, et al. Experimental study on external loading performance of large diameter prestressed concrete cylinder pipe[J]. Buildings, 2022, 12 (10): 1740.
[44] Dong X N, Dou T S, Dong P, et al. Failure experiment and calculation model for prestressed concrete cylinder pipe under three-edge bearing test using distributed fiber optic sensors[J]. Tunnelling and Underground Space Technology, 2022, 129 (11): 104682.
[45] 全国水泥制品标准化技术委员会. 预应力钢筒混凝土管: GB/T 19685-2017[S]. 中国: 中华人民共和国国家质量监督检验检疫总局,中国国家标准化管理委员会, 2017: 1-28.
[46] American Society of Testing Materials. ASTM C497-19a Standard Test Methods for Concrete Pipe, Concrete Box Sections, Manhole Sections, or Tile: ASTM C497-2019[S]. West Conshohocken, USA: ASTM International, 2019: 5-17.
[47] Cheng B, Dou T, Xia S, et al. Mechanical properties and loading response of prestressed concrete cylinder pipes under internal water pressure[J]. Engineering Structures, 2020, 216 (08): 110674.
[48] Qu F L, Zhang D, Shang P R, et al. Full-scale test and bearing capacity evaluation of large diameter prestressed concrete cylinder pipe under internal water pressure[J]. Buildings, 2022, 12 (11): 1791.
[49] Tremblay A W. Combined load testing of prestressed concrete cylinder pipe[C]// Pipeline Design and Installation, 1990: 310-322.
[50] 胡少伟, 沈捷, 王东黎, 等. 南水北调中线工程超大口径PCCP外载试验研究 [J]. 水利水电技术, 2009, 40(12): 31-33.
[51] 胡少伟, 沈捷, 王东黎, 等. 超大口径预存裂缝的预应力钢筒混凝土管结构分析与试验研究 [J]. 水利学报, 2010, 41(07): 876-882.
[52] 熊欢. 南水北调超大口径PCCP预应力分析模型与试验研究[D]. 北京: 清华大学, 2010: 137.
[53] 窦铁生, 程冰清, 胡赫, 等. 预应力钢筒混凝土管结构变形规律的原型试验研究Ⅱ:外压 [J]. 水利学报, 2018, 49(02): 207-215.
[54] 胡少伟, 刘晓鑫. PCCP超载破坏试验与破坏机理分析 [J]. 水力发电学报, 2012, 31 (01): 103-107.
[55] 胡少伟, 刘晓鑫. PCCP超载破坏试验分析与研究[C]// 第三届全国水工抗震防灾学术交流会, 2011: 46-56.
[56] Sangit R. Development of finite element model for analysis of prestressed concrete cylinder pipe-embedded cylinder pipe with experimental comparsion[D]. Civil engineering, Arlington, USA: University of Texas, 2013: 71.
[57] 胡少伟, 沈捷, 刘晓鑫, 等. 超大口径PCCP管内水压承载能力试验[J]. 水利水电科技进展, 2009, 29(05): 9-12.
[58] 赵晓露, 窦铁生, 燕家琪, 等. 管芯外侧带有纵向裂缝PCCP管体承载能力的试验研究 [J]. 混凝土与水泥制品, 2012, 40(12): 37-40.
[59] 窦铁生, 程冰清, 胡赫, 等. 预应力钢筒混凝土管结构变形规律的原型试验研究Ⅰ:内压[J]. 水利学报, 2017, 48(12): 1438-1446.
[60] Zarghamee M S, Moharrami M. Experimental study and numerical simulation of three-edge bearing test of large diameter prestressed concrete cylinder pipes[C]// Pipelines 2018: 776-787.
[61] Li K P, Li Y L, Dong P, et al. Pressure test of a prestressed concrete cylinder pipe using distributed fiber optic sensors: Instrumentation and results[J]. Engineering Structures, 2022, 270 (11): 114835.
[62] Lotfi H R, Oesterle R G, Roller J. Reliability assessment of distressed prestressed concrete cylinder pipe[C]// Pipelines, 2005: 838-852.
[63] 钟胜. 大口径埋地管道结构分析与安全评价研究[D]. 大连: 大连理工大学, 2017: 54.
[64] 吴坤占. PCCP管道结构有限元分析研究[D]. 西安: 西安理工大学, 2008: 64.
[65] Li Y L, Li W M, Wen L F, et al. The longitudinal response of prestressed cylinder concrete pipe with bell-spigot joints subjected to normal fault[J]. Structural Concrete, 2022, 23 (5): 2852-2866.
[66] Zhai K J, Zhang C B, Fang H Y, et al. Mechanical responses of bell-and-spigot joints in buried prestressed concrete cylinder pipe under coupled service and surcharge loads[J]. Structural Concrete, 2021, 22 (2): 827-844.
[67] Hajali M, Shdid C A. Using numerical modeling for asset management of buried prestressed concrete cylinder pipes[J]. Structural Concrete, 2020, 22 (12): 1487-1499.
[68] Feng X, Li H Z, Chen B Z, et al. Numerical investigations into the failure mode of buried prestressed concrete cylinder pipes under differential settlement[J]. Engineering Failure Analysis, 2020, 111 (04): 104492.
[69] Hajali M, Alavinasab A, Abi Shdid C. Structural performance of buried prestressed concrete cylinder pipes with harnessed joints interaction using numerical modeling[J]. Tunnelling and Underground Space Technology, 2016, 51 (01): 11-19.
[70] Ge S. Development of a numerical model to analyze the condition of prestressed concrete cylinder pipe (PCCP)[D]. Blacksburg, Virginia: Faculty of the Virginia Polytechnic Institute and State University, 2016: 148.
[71] 费小霞, 李锋, 卓飞, 等. 病险PCCP预应力损失数值模拟研究[C]// 中国水利学会2016学术年会, 2016: 1-6.
[72] Wu H Y, Zhai K J, Fang H Y, et al. Bell-and-spigot joints mechanical properties study of PCCP under the uneven settlement of foundation: Simulation and full-scale test[J]. Structures, 2022, 43 (09): 1692-1703.
[73] 张宏宇. 预应力钢筒混凝土管结构性能及耐久性理论研究[D]. 武汉: 武汉大学, 2014: 158.
[74] Gomez R, Munoz D, Vera R, et al. Structural model for stress evaluation of prestressed concrete pipes of the Cutzamala system[C]// Pipelines, 2004: 265-273.
[75] Alavinasab A, Padewski Iii E, Holley M, et al. Damage identification based on vibration response of prestressed concrete pipes[C]// Pipelines, 2010: 909-919.
[76] Zarghamee M S, Fok K L. Analysis of prestressed concrete pipe under combined loads[J]. Journal of Structural Engineering, 1990, 116 (7): 2022-2039.
[77] 胡少伟, 刘晓鑫. PCCP管道结构承受内水压的全过程分析 [J]. 水利水电科技进展, 2011, 31 (02): 71-73.
[78] Lee Y. Analysis of prestressed concrete cylinder pipes for rehabilitation[D]. Civil Engineering, USA: University of California, 2011: 170.
[79] 张野, 袁思敏, 李炎隆, 等. 基于原型试验的输水工程PCCP断丝信号智能识别与分析方法[J]. 水利学报, 2023, 54(05): 587-598.
[80] Zhao P L, Si Z, Huang L Z, et al. Effects of prestressing wire corrosion on the load response law and bearing capacity of PCCP[J]. Composite Structures, 2024, 332: 117933.
[81] 王建慧, 黄悦, 张海鹏, 等. 基于数据驱动的PCCP管道断丝状态评估与预测方法研究[J]. 北京水务, 2023(S2): 92-96.
[82] 孙岳阳, 卢勇, 胡少伟, 等. 不同断丝比例对PCCP内外压承载能力影响研究[J]. 人民长江, 2023, 54(09): 160-165.
[83] Zarghamee M S. Hydrostatic pressure testing of prestressed concrete cylinder pipe with broken wires[C]// International Conference on Pipeline Engineering and Construction, 2003: 294-303.
[84] 胡少伟, 沈捷. 超大口径PCCP内断丝对其承载能力影响研究 [J]. 水利水电技术, 2011, 42 (04): 41-44.
[85] Hu B, Fang H, Wang F, et al. Full-scale test and numerical simulation study on load-carrying capacity of prestressed concrete cylinder pipe (PCCP) with broken wires under internal water pressure[J]. Engineering Failure Analysis, 2019, 104 (10): 513-530.
[86] Li K P, Li Y L, Dong P, et al. Mechanical properties of prestressed concrete cylinder pipe with broken wires using distributed fiber optic sensors[J]. Engineering Failure Analysis, 2022, 141 (11): 106635.
[87] 窦铁生, 董晓农, 章煊, 等. PCCP断丝破坏规律Ⅰ:原型试验研究[J]. 水利学报, 2023, 54(12): 1430-1439.
[88] Zarghamee M S, Eggers D W, Ojdrovic R P. Finite-element modeling of failure of PCCP with broken wires subjected to combined loads[C]// Pipelines, 2002: 66-72.
[89] Alavinasab A, Padewski Iii E, Higgins M. Effects of the location of broken prestressing wire wraps in structural integrity of a damaged PCCP[C]// Pipelines, 2013: 767-774.
[90] Hajali M, Alavinasab A, Shdid C A. Effect of the location of broken wire wraps on the failure pressure of prestressed concrete cylinder pipes[J]. Structural Concrete, 2015, 16 (2): 297-303.
[91] 张霄杰, 滕海文, 代春生. 预应力钢丝断丝对PCCP性能的影响 [J]. 人民黄河, 2014, 36(03): 138-140.
[92] 窦铁生, 胡赫, 杨进新, 等. PCCP断丝数量对内压承载力的影响[J]. 混凝土与水泥制品, 2015(7): 35-37.
[93] Ge S, Sinha S K. Effect of wire breaks on prestressed concrete cylinder pipe (PCCP) reinforced with steel liners - A case study[C]// Pipelines 2012: 1297-1306.
[94] Ge S, Sinha S K. The effect of negative pressure on a failed 54-inch PCCP with a malfunctioning valve in the pipeline - a case study[C]// Pipelines 2013: 693-704.
[95] Ge S, Sinha S. Effect of mortar coating’s bond quality on the structural integrity of prestressed concrete cylinder pipe with broken wires[J]. Journal of Materials Science Research, 2015, 4 (3): 59-75.
[96] Zhang Z, Li T C, Zhao L H, et al. Effect of the location of broken wires on prestressed concrete cylinder pipes under working pressure[J]. Coatings, 2022, 12 (9): 1361.
[97] 钟胜, 冯新, 赵琳, 等. 大型PCCP断丝效应的数值模型对比研究 [J]. 市政技术, 2017, 35(3): 109-114.
[98] 徐维强, 王五平. 准东供水工程PCCP预应力钢丝完整性检测及结构评估 [J]. 特种结构, 2017, 34 (02): 113-116.
[99] 胡少伟, 卢勇, 孙岳阳, 等. 实际埋置条件下断丝对PCCP内水压承载能力影响研究 [J]. 混凝土与水泥制品, 2019(10): 27-30.
[100] Li H Z, Feng X, Chen B Z, et al. Damage evaluation of a PCCP joint with a localized soil void and broken wires[J]. Advances in Structural Engineering, 2021, 24 (14): 3133-3143.
[101] 胡冰磊. PCCP断丝数值分析及纤维筋新型管材可行性研究[D]. 南京: 南京航空航天大学, 2018: 68.
[102] 江雷. 预应力钢筒混凝土管(PCCP)承载能力评估研究[D]. 南京: 南京航空航天大学, 2018: 76.
[103] 尚海龙, 马宝龙, 田苡菲, 等. PCCP管道工作性态的高性能仿真研究 [J]. 中国水利水电科学研究院学报(中英文), 2023, 21(04): 384-395.
[104] 窦铁生, 董晓农, 牛文龙, 等. PCCP断丝破坏规律Ⅱ:数值模拟研究[J]. 水利学报, 2024, 55(01): 48-59+70.
[105] Zhai K J, Wang F M, Fang H Y, et al. Serviceability assessment of prestressed concrete cylinder pipes with broken wires: Analytical solution and numerical simulation[J]. Tunnelling and Underground Space Technology, 2022, 126 (08): 104551.
[106] Dong X N, Dou T S, Cheng B Q, et al. Failure analysis of a prestressed concrete cylinder pipe under clustered broken wires by FEM[J]. Structures, 2021, 33 (10): 3284-3297.
[107] Zhai K J, Guo C C, Fang H Y, et al. Stress distribution and mechanical response of PCCP with broken wires[J]. Engineering Structures, 2021, 245 (11): 112858.
[108] American Concrete Institute. Guide for the Design and Construction of Externally Bonded FRP Systems for Strengthening Concrete Structures: ACI 440.2R-17[S]. USA: American Concrete Institute, 2017: 116.
[109] 中华人民共和国住房和城乡建设部, 中华人民共和国质量监督检验检疫总局. 混凝土结构加固设计规范: GB 50367-2013[S]. 北京: 中国建筑工业出版社, 2013: 1-272.
[110] International Federation for Structural Concrete. Model code for concrete structures 2010: CEB-FIP 2010[S]. Lausanne, Switzerland: International Federation for Structural Concrete 2010: 1-292.
[111] Moncrief W J, Kendall D R, Mulligan S B, et al. Rehabilitation of 78-inch PCCP with carbon fiber reinforced composite material[C]// Pipelines, 2001: 56-64.
[112] Fiori S R, Kendall D R, Mulligan S B. Rehabilitation of prestressed concrete cylinder Pipe - A utility perspective[C]// Pipelines, 2001: 1-7.
[113] Alkhrdaji T, Thomas J. Carbon FRP strengthening of PCCP aqueducts[C]// International Conference on Pipeline Engineering and Construction, 2003: 892-901.
[114] Lee D C, Karbhari V M. Rehabilitation of large diameter prestressed cylinder concrete pipe (PCCP) with FRP composites - Experimental investigation[J]. Advances in Structural Engineering, 2005, 8 (1): 31-44.
[115] Manos G, Katakalos K, Soulis V, et al. Experimental investigation of the structural performance of existing and RC or CFRP jacket-strengthened prestressed cylindrical concrete pipes (PCCP)-part A[J]. Fibers, 2022, 10 (9): 71.
[116] Zarghamee M S. AWWA C305-a new standard for CFRP renewal and strengthening of PCCP[C]// Pipelines, 2019: 535-544.
[117] Zarghamee M S, Engindeniz M, Wang N. CFRP Renewal of Prestressed Concrete Cylinder Pipe[R]. Foundation W R, Washington, DC, USA: Water Research Foundation,2013: 1-172.
[118] Lee Y, Lee E T. Analysis of prestressed concrete cylinder pipes with fiber reinforced polymer[J]. KSCE Journal of Civil Engineering, 2015, 19 (3): 682-688.
[119] Lee Y, Lee E T. Retrofit design of damaged prestressed concrete cylinder pipes[J]. International Journal of Concrete Structures and Materials, 2013, 7 (4): 265-271.
[120] Zhai K J, Fang H Y, Li B, et al. Failure experiment on CFRP-strengthened prestressed concrete cylinder pipe with broken wires[J]. Tunnelling and Underground Space Technology, 2023, 135 (05): 105032.
[121] Zhai K J, Fang H Y, Yang M, et al. The impacts of CFRP widths and thicknesses on the strengthening of PCCP[J]. Structures, 2023, 56 (10): 104856.
[122] Zhai K J, Fang H Y, Guo C C, et al. Mechanical properties of CFRP-strengthened prestressed concrete cylinder pipe based on multi-field coupling[J]. Thin-Walled Structures, 2021, 162 (05): 107629.
[123] Zhai K J, Fang H Y, Guo C C, et al. Full-scale experiment and numerical simulation of prestressed concrete cylinder pipe with broken wires strengthened by prestressed CFRP[J]. Tunnelling and Underground Space Technology, 2021, 115 (09): 104021.
[124] 窦铁生, 程冰清, 胡赫, 等. CFRP修复PCCP断丝管的试验研究[J]. 中国水利水电科学研究院学报, 2019, 17(01): 68-74.
[125] 胡赫. CFRP修复预应力钢筒混凝土管(PCCP)内压试验与数值分析[D]. 北京: 中国水利水电科学研究院, 2017: 201.
[126] 窦铁生, 程冰清, 胡赫, 等. CFRP修复PCCP的内水压试验 [J]. 混凝土与水泥制品, 2017, 12(12): 35-40.
[127] Hu H, Dou T, Niu F, et al. Experimental and numerical study on CFRP-lined prestressed concrete cylinder pipe under internal pressure[J]. Engineering Structures, 2019, 190 (07): 480-492.
[128] Hu H, Niu F, Dou T, et al. Rehabilitation effect evaluation of CFRP-lined prestressed concrete cylinder pipe under combined loads using numerical simulation[J]. Mathematical Problems in Engineering, 2018, 2018 (10): 1-16.
[129] 程冰清. CFRP补强加固PCCP外压试验与数值分析[D]. 北京: 中国水利水电科学研究院, 2018: 131.
[130] 窦铁生, 程冰清, 夏世法, 等. CFRP内衬法加固预应力钢筒混凝土管的内水压力试验研究 [J]. 混凝土与水泥制品, 2021(11): 44-48.
[131] 翟科杰, 方宏远, 付兵, 等. 断丝PCCP管道外贴CFRP修复足尺模型试验研究[J]. 岩土工程学报, 2019, 41(S1): 157-160.
[132] 董晓农, 李萌, 孙志恒, 等. 预应力钢筒混凝土管内壁复式碳纤维加固试验与计算分析[J]. 水利学报, 2019, 50(06): 780-786.
[133] 董晓农. 预应力钢筒混凝土管(PCCP)内壁复式碳纤维加固技术的研究[D]. 北京: 中国水利水电科学研究院, 2019: 80.
[134] 孙志恒, 董晓农, 郝巨涛, 等. PCCP内壁复式碳纤维加固技术及应力计算分析 [J]. 水利水电技术, 2018, 49(7): 88-93.
[135] Cheng B, Dou T, Xia S, et al. Experimental study on mechanical properties of prestressed concrete cylinder pipes (PCCPs) under external load[J]. International Journal of Pressure Vessels and Piping, 2021, 191 (06): 104365.
[136] American Water Works Association. Design of prestressed concrete cylinder pipe: AWWA C304[S]. USA: AWWA, 2014: 1-144.
[137] 熊欢, 李鹏辉, 李庆斌, 等. PCCP受载响应分析中三种预应力施加方法的比较研究 [J]. 水力发电学报, 2010, 29(06): 178-186.
[138] Rots J G. Smeared and discrete representations of localized fracture[J]. International Journal of Fracture, 1991, 51 (1): 45-59.
[139] Yang Z J, Su X T, Chen J F, et al. Monte Carlo simulation of complex cohesive fracture in random heterogeneous quasi-brittle materials[J]. International Journal of Solids and Structures, 2009, 46 (17): 3222-3234.
[140] Yang Z J, Chen J F. Finite element modelling of multiple cohesive discrete crack propagation in reinforced concrete beams[J]. Engineering Fracture Mechanics, 2005, 72 (14): 2280-2297.
[141] Saenz L P. Discussion of ``equation for the stress-strain curve of concrete'',by Desayi and Krishman[J]. ACI Journal, 1964, 61 (9): 1229-1235.
[142] Prakash D, Krishnan S. Equation for the stress-strain curve of concrete[J]. ACI Journal, 1964, 61 (3): 15.
[143] Bažant Z P, Oh B H. Crack band theory for fracture of concrete[J]. Matériaux et Construction, 1983, 16 (3): 155-177.
[144] Hillerborg A, Modéer M, Petersson P E. Analysis of crack formation and crack growth in concrete by means of fracture mechanics and finite elements[J]. Cement and Concrete Research, 1976, 6 (6): 773-781.
[145] Hordijk D A. Local approach to fatigue of concrete[D]. Delft University of Technology, 1991: 171.
[146] Tao Y, Chen J F. Concrete damage plasticity model for modeling FRP-to-concrete bond behavior[J]. Journal of Composites for Construction, 2015, 19 (01): 23-35.
[147] Grassl P, Xenos D, Nystrom U, et al. CDPM2: A damage-plasticity approach to modelling the failure of concrete[J]. International Journal of Solids and Structures, 2013, 50 (24): 3805-3816.
[148] Luccioni B M, Rougier V C. A plastic damage approach for confined concrete[J]. Computers & Structures, 2005, 83 (27): 2238-2256.
[149] Ragueneau F, La Borderie C, Mazars J. Damage model for concrete-like materials coupling cracking and friction, contribution towards structural damping: first uniaxial applications[J]. Mechanics of Cohesive-Frictional Materials, 2000, 5 (8): 607-625.
[150] Burlion N, Gatuingt F, Pijaudier-Cabot G, et al. Compaction and tensile damage in concrete: constitutive modelling and application to dynamics[J]. Computer Methods in Applied Mechanics and Engineering, 2000, 183 (3): 291-308.
[151] Lubliner J, Oliver J, Oller S, et al. A plastic-damage model for concrete[J]. International Journal of Solids and Structures, 1989, 25 (3): 299-326.
[152] Dassault Systemes Simulia Corp. ABAQUS analysis user's manual[M]. version 6.14.Providence, RI, USA: Dassault Systemes Simulia Corp.,2014: 1-368.
[153] Slobbe A T. Propagation and band width of smeared cracks[D]. Civil Engineering, Rotterdam: Technische Universiteit Delft, 2015: 162.
[154] Jirásek M, Bauer M. Numerical aspects of the crack band approach[J]. Computers & Structures, 2012, 110 (01): 60-78.
[155] Govindjee S, Kay G J, Simo J C. Anisotropic modelling and numerical simulation of brittle damage in concrete[J]. International Journal for Numerical Methods in Engineering, 1995, 38 (21): 3611-3633.
[156] Oliver J. A consistent characteristic length for smeared cracking models[J]. International Journal for Numerical Methods in Engineering, 1989, 28 (2): 461-474.
[157] Bazant Z P, Cedolin L. Finite element modeling of crack band propagation[J]. Journal of Structural Engineering, 1983, 109 (1): 69-92.
[158] British Standards Institution. Code for practice for temporary works procedures and the permissible stress design of false work: BS 5975:2008+A1:2011[S]. British: British Standards Institution, 2011: 228.
[159] Ojdrovic R P, Zarghamee M S. Concrete creep and shrinkage prediction from short-term tests[J]. ACI Materials Journal, 1996, 93 (2): 169-177.
[160] Zarghamee M S, Heger F J, Dana W R. Concrete creep and shrinkage and wire relaxation in buried prestressed concrete pipe[J]. ACI Structural Journal, 1990, 87 (5): 512-522.
[161] Teng J G, Smith S T, Yao J, et al. Intermediate crack-induced debonding in RC beams and slabs[J]. Construction and Building Materials, 2003, 17 (6): 447-462.
[162] Chen J F, Teng J G. Anchorage strength models for FRP and steel plates bonded to concrete[J]. Journal of Structural Engineering, 2001, 127 (7): 784-791.
[163] Timoshenko S P, Goodier J N. Theory of elasticity[M]. 3rd Edition.New York: McGraw-Hill,1970: 682.
[164] Zarghamee M S, Moharrami M, Jalber C, et al. A study of life extension of two prestressed concrete cylinder pipelines[C]// Pipelines, 2019: 522-534.
[165] Hall S C. Cathodic protection criteria for prestressed concrete pipe - an update[C]// CORROSION 98, 1998: NACE-98637.
[166] Loganathan K, Najafi M, Kaushal V, et al. Development of a decision support tool for inspection and monitoring of large-diameter steel and prestressed concrete cylinder water pipes[J]. Journal of Pipeline Systems Engineering and Practice, 2022, 13 (1): 04021067.
[167] Ge S, Sinha S. Failure analysis, condition assessment technologies, and performance prediction of prestressed-concrete cylinder pipe: State-of-the-art literature review[J]. Journal of Performance of Constructed Facilities, 2014, 28 (3): 618-628.
[168] Liu Z, Kleiner Y. State of the art review of inspection technologies for condition assessment of water pipes[J]. Measurement, 2013, 46 (1): 68-83.
[169] Atherton D L, Morton K, Mergelas B J. Detecting breaks in prestressing pipe wire[J]. Journal of American Water Works Association, 2000, 92 (7): 50-56.
[170] Villalobos S, Stark R, Fisk P. Ultrasonic measurements for condition assessment of prestressed concrete cylinder pipe[C]// Pipelines, 2019: 411-416.
[171] Huang J, Zhou Z, Zhang D, et al. Online monitoring of wire breaks in prestressed concrete cylinder pipe utilising fibre Bragg grating sensors[J]. Measurement, 2016, 79 (02): 112-118.
[172] Zhang Y, Li Y. Prediction of PCCP failure based on hydrophne detecting[J]. International Journal on Smart Sensing and Intelligent Systems, 2013, 6 (4): 1582-1598.
[173] Zhang X P, Zhou G N, Wang H R, et al. Research Progress of Broken Wire Monitoring of Prestressed Concrete Cylinder Pipe Based on Distributed Optical Fiber Acoustic Sensing[J]. ACTA Optica Sinica, 2024, 44 (1): 1-12.
[174] Yang G, Luan B W, Sun J, et al. Sparrow search mechanism-based effective feature mining algorithm for the broken wire signal detection of prestressed concrete cylinder pipe[J]. Mechanical Systems and Signal Processing, 2024, 212 (04): 111270.
[175] Li Y L, Sun K Y, Si Z, et al. Monitoring and identification of wire breaks in prestressed concrete cylinder pipe based on distributed fiber optic acoustic sensing[J]. Journal of Civil Structural Health Monitoring, 2024, 14 (1): 3-14.
[176] Wang X, Hu S W, Li W H, et al. Corrosion monitoring for prestressed concrete cylinder pipe spigot with combined use of Tafel extrapolation and surface acoustic wave methods[J]. Construction and Building Materials, 2022, 337 (06): 127572.
[177] Liu X D, Feng X. A near-wall acoustic wave-based localization method for broken wires in a large diameter PCCP using an FBG sensor array[J]. Measurement, 2022, 205 (12): 112154.
[178] Goldaran R, Turer A, Kouhdaragh M, et al. Identification of corrosion in a prestressed concrete pipe utilizing acoustic emission technique[J]. Construction and Building Materials, 2020, 242 (05): 118053.
[179] Eligehausen R, Popov E, Bertero V. Local bond stress-slip relationships of deformed bars under generalized excitations : experimental results and analytical model[R]. USA: Earthquake engineering research center,1983: 69-80.
[180] 耿红斌, 穆卓辉, 于晓光. 光圆钢筋与混凝土界面粘结滑移本构模型研究 [J]. 硅酸盐通报, 2017, 36(09): 3064-3069.
[181] Ren F F, Yang Z J, Chen J F, et al. An analytical analysis of the full-range behaviour of grouted rockbolts based on a tri-linear bond-slip model[J]. Construction and Building Materials, 2010, 24 (3): 361-370.
[182] Feldman L R, Bartlett F M. Bond Strength Variability in Pullout Specimens with Plain Reinforcement[J]. ACI Structural Journal, 2005, 102 (6): 860-867.
[183] Sun Y Y, Hu S W, Huang Y Q, et al. Analytical stress model for embedded bar-wrapped cylinder concrete pressure pipe under internal load[J]. Thin-Walled Structures, 2020, 149 (04): 106540.
修改评论