中文版 | English
题名

碳纤维复合材料加固预应力钢筒混凝土管力学性能研究

其他题名
STUDY ON THE MECHANICAL BEHAVIORS OF PRESTRESSED CONCRETE CYLINDER PIPES STRENGTHENED WITH CARBON FIBER REINFORCED POLYMER COMPOSITES
姓名
姓名拼音
ZHANG Xiaojie
学号
11749327
学位类型
博士
学位专业
0801 力学
学科门类/专业学位类别
08 工学
导师
陈建飞
导师单位
海洋科学与工程系
论文答辩日期
2024-04-27
论文提交日期
2024-07-05
学位授予单位
哈尔滨工业大学
学位授予地点
哈尔滨
摘要

   预应力钢筒混凝土管(prestressed concrete cylinder pipe,简称PCCP)是一种由混凝土管芯、钢筒、预应力钢丝和砂浆保护层构成的大口径输水管。PCCP在腐蚀介质中服役一定年限后,易出现“断丝”现象,进而降低管道承载力,影响管线周边人和建筑物的安全。由于钢丝在PCCP中的重要作用,研究断丝后预应力钢丝和砂浆之间界面应力传递机理,对断丝PCCP力学行为评估具有重要意义。碳纤维复合材料(carbon fiber reinforced polymer composites,简称CFRP)内衬加固PCCP作为一种非开挖修复方法,具有施工周期短与耐腐蚀等优点,被广泛应用于PCCP的加固工程中。CFRP内衬加固PCCP的力学行为与承载力分析是其结构设计的关键问题。目前,断丝后预应力钢丝和砂浆之间界面应力传递机理仍不清晰,断丝PCCPCFRP内衬加固断丝PCCP承载力分析不够深入,严重影响PCCP安全评估和结构加固设计的可靠性。

   本文采用理论分析和数值仿真的方法,系统研究了完好PCCP、断丝PCCPCFRP内衬加固PCCP在三边支撑荷载和内压作用下的力学行为;解释了断丝后预应力钢丝和砂浆之间界面应力传递机理;提出了CFRP内衬加固断丝PCCP内压承载力简化计算模型,为CFRP内衬加固PCCP的结构设计提供理论基础。本文的主要研究工作和成果如下:

   建立了完好PCCPCFRP内衬加固PCCP在三边支撑荷载作用下的力学理论分析模型,得到了管顶位移、剥离荷载和极限承载力的计算公式,并采用有限元分析和已有试验数据验证了其准确性;在此基础上,分析了预应力水平、混凝土抗压强度和钢筒径厚比等参数对承载力的影响规律,揭示了CFRP内衬加固PCCP在三边支撑荷载作用下的破坏机理以及CFRP-PCCP界面剥离机理。

   构建了内压作用下CFRP内衬加固PCCP多层圆环模型,提出了界面压力和极限内压承载力的计算公式,理论计算得到的应力和应变与有限元和试验结果吻合良好;研究了混凝土管芯厚度、CFRP厚度和钢筒厚度等参数对内压承载力的影响规律,深入分析了CFRP内衬加固PCCP在内压作用下的破坏机理以及负压作用下CFRP-PCCP的界面剥离机理。

   基于剪滞模型,建立了断丝后钢丝和砂浆之间应力传递的力学理论分析模型,得到了预应力钢丝-砂浆界面切应力、滑移量、预应力损失范围与钢丝轴向应力的计算公式,并采用有限元分析方法验证了理论计算结果的准确性。研究了钢丝直径、预应力水平等对断丝后预应力钢丝界面切应力与轴向应力分布规律的影响,分析了预应力钢丝断丝后预应力钢丝和砂浆之间应力传递机理。

   采用Python语言编写的脚本在ABAQUS中建立了断丝PCCPCFRP内衬加固断丝PCCP的参数化有限元模型,节省了建模的时间。通过有限元分析得到的混凝土管芯应变、CFRP应变、钢筒应变与已有试验结果吻合良好。采用参数化有限元模型计算了断丝PCCP的内压承载力,得到了管径和断丝范围对PCCP内压承载力的影响规律,并提出了断丝PCCP内压承载力简化计算模型。基于此模型构建了CFRP内衬加固断丝PCCP的内压承载力简化计算模型。

 

关键词
语种
中文
培养类别
联合培养
入学年份
2017
学位授予年份
2024-06
参考文献列表

[1] 中华人民共和国水利部. 2022年中国水资源公报[R]. 中华人民共和国水利部, 北京: 中华人民共和国水利部,2022: 34.
[2] 伏世红. 大中型输水工程输水管材比选分析[J]. 黑龙江水利科技, 2020, 48 (02): 115-117.
[3] 王玉良, 张海, 毕永清, 等. 大直径预应力钢筒混凝土海底输油管道受力性能分析[J]. 海洋技术, 2012, 31(01): 83-86.
[4] 孙岳阳, 胡少伟, 胡登兴, 等. 预应力钢筒混凝土管(PCCP)研究进展 [J]. 人民长江, 2023, 54(06): 162-168.
[5] American Water Works Association. Prestressed Concrete Pressure Pipe, Steel Cylinder Type: AWWA C301-14[S]. USA: American Water Works Association, 2014: 1-34.
[6] Washington Suburban Sanitary Commission. WSSC pipeline design manual amendment proposed 80-foot setback[R]. Laurel, Maryland: WSSC,2012: 1-86.
[7] 张旭苹, 周廣南, 王浩然, 等. 基于分布式光纤声场传感的预应力钢筒混凝土管断丝监测研究进展[J]. 光学学报, 2024, 44(01): 149-160.
[8] 张霄杰, 吴嘉瑜, 陈建飞. 内压作用下CFRP内衬加固PCCP承载力分析[J]. 工业建筑, 2024, 54(06): 10-20.
[9] Dong X N, Dou T S, Dong P, et al. Experimental study on the influence of scattered broken wires on the structural performance of prestressed concrete cylinder pipe[J]. Structures, 2023, 47 (01): 52-62.
[10] Zhang X J, Wu J Y, Hou C, et al. An analytical solution for stress transfer between a broken prestressing wire and mortar coating in PCCP[J]. Materials, 2022, 15 (16): 5779.
[11] Hassi S, Touhami M E, Ejbouh A, et al. Case study of the performance of prestressed concrete cylinder pipes in the greater Agadir of Morocco[J]. Journal of Pipeline Systems Engineering and Practice, 2021, 12 (2): 05021001.
[12] Villalobos J L. Evaluation of Prestressed Concrete Cylinder Pipe in a High Chloride Environment After 19 Years of Service[C]// Pipelines in the Constructed Environment, 1998: 575-583.
[13] Galleher J J, Stift M T. Internal inspection and database development of PCCP[C]// Pipeline Division Conference, 1998: 721-730.
[14] 张野, 袁思敏, 李炎隆, 等. 基于原型试验的输水工程PCCP断丝信号智能识别与分析方法 [J]. 水利学报, 2023, 54(05): 587-598.
[15] Hu Y Q, Hu S W, Li W H, et al. A time-variant model of chloride diffusion in prestressed concrete cylinder pipe (PCCP) considering the effects of curing age[J]. Construction and Building Materials, 2023, 368 (03): 130411.
[16] Hassi S, Touhami M E, Menu B, et al. Case study of the performance of prestressed concrete cylinder pipes in northeastern morocco[J]. Journal of Pipeline Systems Engineering and Practice, 2022, 13 (2): 05022002.
[17] Hassi S, Ejbouh A, Touhami M E, et al. Performance of prestressed concrete cylinder pipe in North Africa: case study of the water transmission systems in the tafilalet region of Morocco[J]. Journal of Pipeline Systems Engineering and Practice, 2021, 12 (2): 05021002.
[18] Hassi S, Touhami M E, Boujad A, et al. Assessing the effect of mineral admixtures on the durability of prestressed concrete cylinder pipe (PCCP) by means of electrochemical impedance spectroscopy[J]. Construction and Building Materials, 2020, 262 (11): 120925.
[19] Price R E. Investigation, cause, and prevention of PCCP failures[C]// AWWA conference, 1990: 1-10.
[20] Walsh T L, Hodge D S. Overcoming the challenges of replacing 20 km of defective 1524 mm diameter PCCP[C]// Pipelines in the Constructed Environment, 1998: 602-611.
[21] Parks R R, Drager J K, Ojdrovic R P. Condition Assessment and Rehabilitation of the Windy Gap Pipeline—An Owner's Perspective[C]// Pipelines, 2001: 1-13.
[22] Nielsen G, Shane A, Nardini P D, et al. Developing and Implementing a PCCP Condition Assessment Program[C]// Pipelines, 2017: 486-495.
[23] 赵绍华, 王英歌, 张海鹏, 等. 大口径PCCP断丝加固技术工程应用和效果评价[J]. 混凝土与水泥制品, 2023(04): 39-43.
[24] Ball R T, Moore W G, Smith D L, et al. Prestressed concrete cylinder pipe rehabilitation repair and replacement: large diameter success stories[J]. Florida Water Resources Journal, 2012, 6 (9): 4-10.
[25] Zhao L, Dou T, Cheng B, et al. Experimental study on the reinforcement of prestressed concrete cylinder pipes with external prestressed steel strands[J]. Applied Sciences, 2019, 9 (01): 149-167.
[26] Zhao L, Dou T, Cheng B, et al. Theoretical study and application of the reinforcement of prestressed concrete cylinder pipes with external prestressed steel strands[J]. Applied Sciences, 2019, 9 (24): 248-247.
[27] Elnakhat H, Raymond R. Repair of PCCP by post tensioning[C]// Pipelines, 2006: 47-56.
[28] Zhai K J, Fang H Y, Fu B, et al. Mechanical response of externally bonded CFRP on repair of PCCPs with broken wires under internal water pressure[J]. Construction and Building Materials, 2020, 239 (04): 117878.
[29] Zhai K, Fang H, Fu B, et al. Using externally bonded CFRP to repair a PCCP with broken wires under combined loads[J]. International Journal of Polymer Science, 2019, 2019 (10): 1-11.
[30] Zhai K J, Fang H Y, Guo C C, et al. Strengthening of PCCP with broken wires using prestressed CFRP[J]. Construction and Building Materials, 2021, 267 (01): 120903.
[31] Stine G P, Stift M T. Rehabilitation of 183-cm PCCP with steel plate liners[C]// Pipelines in the Constructed Environment, 1998: 594-601.
[32] Rahman S, Smith G, Mielke R, et al. Rehabilitation of large diameter PCCP: relining and sliplining with steel pipe[C]// Pipelines, 2012: 494-504.
[33] Karbhari V M: Rehabilitation of pipelines using fiber-reinforced polymer (FRP) composites[M], USA: Woodhead Publishing,2015: 17-38.
[34] Zarghamee M S, Engindeniz M. CFRP renewal of PCCP - an overview[C]// Pipelines, 2014: 932-941.
[35] Henry G, Larsen M, Olinger G. Trenchless repair of coastal water authority's 60-Inch PCCP pipeline along independence parkway[C]// Pipelines, 2019: 14-23.
[36] Gipsov M P, Engindeniz M, Ojdrovic R O. Performance of CFRP-lined PCCP with continuing wire breakage[C]// Pipelines, 2019: 555-564.
[37] Engindeniz M, Zarghamee M S. Experimental basis of CFRP renewal of PCCP[C]// Pipelines, 2014: 920-931.
[38] American National Standards Institute. CFRP renewal and strengthening of prestressed concrete cylinder pipe (PCCP): ANSI/AWWA C305-18[S]. USA: American Water Works Association, 2018: 1-80.
[39] Kennison H F. Tests of prestressed concrete embedded cylinder pipe[J]. Journal of the Hydraulics Division, 1960, 86 (9): 77-98.
[40] Mccall J T, Valenziano F P. Combined load tests on 108 inch prestressed concrete embedded cylinder pipe[J]. Proc. Symp. on Prestressed Concrete 1961, 9 (01): 1-16.
[41] Erdogmus E, Skourup B N, Tadros M. Recommendations for design of reinforced concrete pipe[J]. Journal of Pipeline Systems Engineering and Practice, 2010, 1 (1): 25-32.
[42] American Concrete Pipe Association. Concrete pipe design manual[M].USA: American Concrete Pipe Association,2011: 326.
[43] Shang P R, Wang H, Zhang D, et al. Experimental study on external loading performance of large diameter prestressed concrete cylinder pipe[J]. Buildings, 2022, 12 (10): 1740.
[44] Dong X N, Dou T S, Dong P, et al. Failure experiment and calculation model for prestressed concrete cylinder pipe under three-edge bearing test using distributed fiber optic sensors[J]. Tunnelling and Underground Space Technology, 2022, 129 (11): 104682.
[45] 全国水泥制品标准化技术委员会. 预应力钢筒混凝土管: GB/T 19685-2017[S]. 中国: 中华人民共和国国家质量监督检验检疫总局,中国国家标准化管理委员会, 2017: 1-28.
[46] American Society of Testing Materials. ASTM C497-19a Standard Test Methods for Concrete Pipe, Concrete Box Sections, Manhole Sections, or Tile: ASTM C497-2019[S]. West Conshohocken, USA: ASTM International, 2019: 5-17.
[47] Cheng B, Dou T, Xia S, et al. Mechanical properties and loading response of prestressed concrete cylinder pipes under internal water pressure[J]. Engineering Structures, 2020, 216 (08): 110674.
[48] Qu F L, Zhang D, Shang P R, et al. Full-scale test and bearing capacity evaluation of large diameter prestressed concrete cylinder pipe under internal water pressure[J]. Buildings, 2022, 12 (11): 1791.
[49] Tremblay A W. Combined load testing of prestressed concrete cylinder pipe[C]// Pipeline Design and Installation, 1990: 310-322.
[50] 胡少伟, 沈捷, 王东黎, 等. 南水北调中线工程超大口径PCCP外载试验研究 [J]. 水利水电技术, 2009, 40(12): 31-33.
[51] 胡少伟, 沈捷, 王东黎, 等. 超大口径预存裂缝的预应力钢筒混凝土管结构分析与试验研究 [J]. 水利学报, 2010, 41(07): 876-882.
[52] 熊欢. 南水北调超大口径PCCP预应力分析模型与试验研究[D]. 北京: 清华大学, 2010: 137.
[53] 窦铁生, 程冰清, 胡赫, 等. 预应力钢筒混凝土管结构变形规律的原型试验研究Ⅱ:外压 [J]. 水利学报, 2018, 49(02): 207-215.
[54] 胡少伟, 刘晓鑫. PCCP超载破坏试验与破坏机理分析 [J]. 水力发电学报, 2012, 31 (01): 103-107.
[55] 胡少伟, 刘晓鑫. PCCP超载破坏试验分析与研究[C]// 第三届全国水工抗震防灾学术交流会, 2011: 46-56.
[56] Sangit R. Development of finite element model for analysis of prestressed concrete cylinder pipe-embedded cylinder pipe with experimental comparsion[D]. Civil engineering, Arlington, USA: University of Texas, 2013: 71.
[57] 胡少伟, 沈捷, 刘晓鑫, 等. 超大口径PCCP管内水压承载能力试验[J]. 水利水电科技进展, 2009, 29(05): 9-12.
[58] 赵晓露, 窦铁生, 燕家琪, 等. 管芯外侧带有纵向裂缝PCCP管体承载能力的试验研究 [J]. 混凝土与水泥制品, 2012, 40(12): 37-40.
[59] 窦铁生, 程冰清, 胡赫, 等. 预应力钢筒混凝土管结构变形规律的原型试验研究Ⅰ:内压[J]. 水利学报, 2017, 48(12): 1438-1446.
[60] Zarghamee M S, Moharrami M. Experimental study and numerical simulation of three-edge bearing test of large diameter prestressed concrete cylinder pipes[C]// Pipelines 2018: 776-787.
[61] Li K P, Li Y L, Dong P, et al. Pressure test of a prestressed concrete cylinder pipe using distributed fiber optic sensors: Instrumentation and results[J]. Engineering Structures, 2022, 270 (11): 114835.
[62] Lotfi H R, Oesterle R G, Roller J. Reliability assessment of distressed prestressed concrete cylinder pipe[C]// Pipelines, 2005: 838-852.
[63] 钟胜. 大口径埋地管道结构分析与安全评价研究[D]. 大连: 大连理工大学, 2017: 54.
[64] 吴坤占. PCCP管道结构有限元分析研究[D]. 西安: 西安理工大学, 2008: 64.
[65] Li Y L, Li W M, Wen L F, et al. The longitudinal response of prestressed cylinder concrete pipe with bell-spigot joints subjected to normal fault[J]. Structural Concrete, 2022, 23 (5): 2852-2866.
[66] Zhai K J, Zhang C B, Fang H Y, et al. Mechanical responses of bell-and-spigot joints in buried prestressed concrete cylinder pipe under coupled service and surcharge loads[J]. Structural Concrete, 2021, 22 (2): 827-844.
[67] Hajali M, Shdid C A. Using numerical modeling for asset management of buried prestressed concrete cylinder pipes[J]. Structural Concrete, 2020, 22 (12): 1487-1499.
[68] Feng X, Li H Z, Chen B Z, et al. Numerical investigations into the failure mode of buried prestressed concrete cylinder pipes under differential settlement[J]. Engineering Failure Analysis, 2020, 111 (04): 104492.
[69] Hajali M, Alavinasab A, Abi Shdid C. Structural performance of buried prestressed concrete cylinder pipes with harnessed joints interaction using numerical modeling[J]. Tunnelling and Underground Space Technology, 2016, 51 (01): 11-19.
[70] Ge S. Development of a numerical model to analyze the condition of prestressed concrete cylinder pipe (PCCP)[D]. Blacksburg, Virginia: Faculty of the Virginia Polytechnic Institute and State University, 2016: 148.
[71] 费小霞, 李锋, 卓飞, 等. 病险PCCP预应力损失数值模拟研究[C]// 中国水利学会2016学术年会, 2016: 1-6.
[72] Wu H Y, Zhai K J, Fang H Y, et al. Bell-and-spigot joints mechanical properties study of PCCP under the uneven settlement of foundation: Simulation and full-scale test[J]. Structures, 2022, 43 (09): 1692-1703.
[73] 张宏宇. 预应力钢筒混凝土管结构性能及耐久性理论研究[D]. 武汉: 武汉大学, 2014: 158.
[74] Gomez R, Munoz D, Vera R, et al. Structural model for stress evaluation of prestressed concrete pipes of the Cutzamala system[C]// Pipelines, 2004: 265-273.
[75] Alavinasab A, Padewski Iii E, Holley M, et al. Damage identification based on vibration response of prestressed concrete pipes[C]// Pipelines, 2010: 909-919.
[76] Zarghamee M S, Fok K L. Analysis of prestressed concrete pipe under combined loads[J]. Journal of Structural Engineering, 1990, 116 (7): 2022-2039.
[77] 胡少伟, 刘晓鑫. PCCP管道结构承受内水压的全过程分析 [J]. 水利水电科技进展, 2011, 31 (02): 71-73.
[78] Lee Y. Analysis of prestressed concrete cylinder pipes for rehabilitation[D]. Civil Engineering, USA: University of California, 2011: 170.
[79] 张野, 袁思敏, 李炎隆, 等. 基于原型试验的输水工程PCCP断丝信号智能识别与分析方法[J]. 水利学报, 2023, 54(05): 587-598.
[80] Zhao P L, Si Z, Huang L Z, et al. Effects of prestressing wire corrosion on the load response law and bearing capacity of PCCP[J]. Composite Structures, 2024, 332: 117933.
[81] 王建慧, 黄悦, 张海鹏, 等. 基于数据驱动的PCCP管道断丝状态评估与预测方法研究[J]. 北京水务, 2023(S2): 92-96.
[82] 孙岳阳, 卢勇, 胡少伟, 等. 不同断丝比例对PCCP内外压承载能力影响研究[J]. 人民长江, 2023, 54(09): 160-165.
[83] Zarghamee M S. Hydrostatic pressure testing of prestressed concrete cylinder pipe with broken wires[C]// International Conference on Pipeline Engineering and Construction, 2003: 294-303.
[84] 胡少伟, 沈捷. 超大口径PCCP内断丝对其承载能力影响研究 [J]. 水利水电技术, 2011, 42 (04): 41-44.
[85] Hu B, Fang H, Wang F, et al. Full-scale test and numerical simulation study on load-carrying capacity of prestressed concrete cylinder pipe (PCCP) with broken wires under internal water pressure[J]. Engineering Failure Analysis, 2019, 104 (10): 513-530.
[86] Li K P, Li Y L, Dong P, et al. Mechanical properties of prestressed concrete cylinder pipe with broken wires using distributed fiber optic sensors[J]. Engineering Failure Analysis, 2022, 141 (11): 106635.
[87] 窦铁生, 董晓农, 章煊, 等. PCCP断丝破坏规律Ⅰ:原型试验研究[J]. 水利学报, 2023, 54(12): 1430-1439.
[88] Zarghamee M S, Eggers D W, Ojdrovic R P. Finite-element modeling of failure of PCCP with broken wires subjected to combined loads[C]// Pipelines, 2002: 66-72.
[89] Alavinasab A, Padewski Iii E, Higgins M. Effects of the location of broken prestressing wire wraps in structural integrity of a damaged PCCP[C]// Pipelines, 2013: 767-774.
[90] Hajali M, Alavinasab A, Shdid C A. Effect of the location of broken wire wraps on the failure pressure of prestressed concrete cylinder pipes[J]. Structural Concrete, 2015, 16 (2): 297-303.
[91] 张霄杰, 滕海文, 代春生. 预应力钢丝断丝对PCCP性能的影响 [J]. 人民黄河, 2014, 36(03): 138-140.
[92] 窦铁生, 胡赫, 杨进新, 等. PCCP断丝数量对内压承载力的影响[J]. 混凝土与水泥制品, 2015(7): 35-37.
[93] Ge S, Sinha S K. Effect of wire breaks on prestressed concrete cylinder pipe (PCCP) reinforced with steel liners - A case study[C]// Pipelines 2012: 1297-1306.
[94] Ge S, Sinha S K. The effect of negative pressure on a failed 54-inch PCCP with a malfunctioning valve in the pipeline - a case study[C]// Pipelines 2013: 693-704.
[95] Ge S, Sinha S. Effect of mortar coating’s bond quality on the structural integrity of prestressed concrete cylinder pipe with broken wires[J]. Journal of Materials Science Research, 2015, 4 (3): 59-75.
[96] Zhang Z, Li T C, Zhao L H, et al. Effect of the location of broken wires on prestressed concrete cylinder pipes under working pressure[J]. Coatings, 2022, 12 (9): 1361.
[97] 钟胜, 冯新, 赵琳, 等. 大型PCCP断丝效应的数值模型对比研究 [J]. 市政技术, 2017, 35(3): 109-114.
[98] 徐维强, 王五平. 准东供水工程PCCP预应力钢丝完整性检测及结构评估 [J]. 特种结构, 2017, 34 (02): 113-116.
[99] 胡少伟, 卢勇, 孙岳阳, 等. 实际埋置条件下断丝对PCCP内水压承载能力影响研究 [J]. 混凝土与水泥制品, 2019(10): 27-30.
[100] Li H Z, Feng X, Chen B Z, et al. Damage evaluation of a PCCP joint with a localized soil void and broken wires[J]. Advances in Structural Engineering, 2021, 24 (14): 3133-3143.
[101] 胡冰磊. PCCP断丝数值分析及纤维筋新型管材可行性研究[D]. 南京: 南京航空航天大学, 2018: 68.
[102] 江雷. 预应力钢筒混凝土管(PCCP)承载能力评估研究[D]. 南京: 南京航空航天大学, 2018: 76.
[103] 尚海龙, 马宝龙, 田苡菲, 等. PCCP管道工作性态的高性能仿真研究 [J]. 中国水利水电科学研究院学报(中英文), 2023, 21(04): 384-395.
[104] 窦铁生, 董晓农, 牛文龙, 等. PCCP断丝破坏规律Ⅱ:数值模拟研究[J]. 水利学报, 2024, 55(01): 48-59+70.
[105] Zhai K J, Wang F M, Fang H Y, et al. Serviceability assessment of prestressed concrete cylinder pipes with broken wires: Analytical solution and numerical simulation[J]. Tunnelling and Underground Space Technology, 2022, 126 (08): 104551.
[106] Dong X N, Dou T S, Cheng B Q, et al. Failure analysis of a prestressed concrete cylinder pipe under clustered broken wires by FEM[J]. Structures, 2021, 33 (10): 3284-3297.
[107] Zhai K J, Guo C C, Fang H Y, et al. Stress distribution and mechanical response of PCCP with broken wires[J]. Engineering Structures, 2021, 245 (11): 112858.
[108] American Concrete Institute. Guide for the Design and Construction of Externally Bonded FRP Systems for Strengthening Concrete Structures: ACI 440.2R-17[S]. USA: American Concrete Institute, 2017: 116.
[109] 中华人民共和国住房和城乡建设部, 中华人民共和国质量监督检验检疫总局. 混凝土结构加固设计规范: GB 50367-2013[S]. 北京: 中国建筑工业出版社, 2013: 1-272.
[110] International Federation for Structural Concrete. Model code for concrete structures 2010: CEB-FIP 2010[S]. Lausanne, Switzerland: International Federation for Structural Concrete 2010: 1-292.
[111] Moncrief W J, Kendall D R, Mulligan S B, et al. Rehabilitation of 78-inch PCCP with carbon fiber reinforced composite material[C]// Pipelines, 2001: 56-64.
[112] Fiori S R, Kendall D R, Mulligan S B. Rehabilitation of prestressed concrete cylinder Pipe - A utility perspective[C]// Pipelines, 2001: 1-7.
[113] Alkhrdaji T, Thomas J. Carbon FRP strengthening of PCCP aqueducts[C]// International Conference on Pipeline Engineering and Construction, 2003: 892-901.
[114] Lee D C, Karbhari V M. Rehabilitation of large diameter prestressed cylinder concrete pipe (PCCP) with FRP composites - Experimental investigation[J]. Advances in Structural Engineering, 2005, 8 (1): 31-44.
[115] Manos G, Katakalos K, Soulis V, et al. Experimental investigation of the structural performance of existing and RC or CFRP jacket-strengthened prestressed cylindrical concrete pipes (PCCP)-part A[J]. Fibers, 2022, 10 (9): 71.
[116] Zarghamee M S. AWWA C305-a new standard for CFRP renewal and strengthening of PCCP[C]// Pipelines, 2019: 535-544.
[117] Zarghamee M S, Engindeniz M, Wang N. CFRP Renewal of Prestressed Concrete Cylinder Pipe[R]. Foundation W R, Washington, DC, USA: Water Research Foundation,2013: 1-172.
[118] Lee Y, Lee E T. Analysis of prestressed concrete cylinder pipes with fiber reinforced polymer[J]. KSCE Journal of Civil Engineering, 2015, 19 (3): 682-688.
[119] Lee Y, Lee E T. Retrofit design of damaged prestressed concrete cylinder pipes[J]. International Journal of Concrete Structures and Materials, 2013, 7 (4): 265-271.
[120] Zhai K J, Fang H Y, Li B, et al. Failure experiment on CFRP-strengthened prestressed concrete cylinder pipe with broken wires[J]. Tunnelling and Underground Space Technology, 2023, 135 (05): 105032.
[121] Zhai K J, Fang H Y, Yang M, et al. The impacts of CFRP widths and thicknesses on the strengthening of PCCP[J]. Structures, 2023, 56 (10): 104856.
[122] Zhai K J, Fang H Y, Guo C C, et al. Mechanical properties of CFRP-strengthened prestressed concrete cylinder pipe based on multi-field coupling[J]. Thin-Walled Structures, 2021, 162 (05): 107629.
[123] Zhai K J, Fang H Y, Guo C C, et al. Full-scale experiment and numerical simulation of prestressed concrete cylinder pipe with broken wires strengthened by prestressed CFRP[J]. Tunnelling and Underground Space Technology, 2021, 115 (09): 104021.
[124] 窦铁生, 程冰清, 胡赫, 等. CFRP修复PCCP断丝管的试验研究[J]. 中国水利水电科学研究院学报, 2019, 17(01): 68-74.
[125] 胡赫. CFRP修复预应力钢筒混凝土管(PCCP)内压试验与数值分析[D]. 北京: 中国水利水电科学研究院, 2017: 201.
[126] 窦铁生, 程冰清, 胡赫, 等. CFRP修复PCCP的内水压试验 [J]. 混凝土与水泥制品, 2017, 12(12): 35-40.
[127] Hu H, Dou T, Niu F, et al. Experimental and numerical study on CFRP-lined prestressed concrete cylinder pipe under internal pressure[J]. Engineering Structures, 2019, 190 (07): 480-492.
[128] Hu H, Niu F, Dou T, et al. Rehabilitation effect evaluation of CFRP-lined prestressed concrete cylinder pipe under combined loads using numerical simulation[J]. Mathematical Problems in Engineering, 2018, 2018 (10): 1-16.
[129] 程冰清. CFRP补强加固PCCP外压试验与数值分析[D]. 北京: 中国水利水电科学研究院, 2018: 131.
[130] 窦铁生, 程冰清, 夏世法, 等. CFRP内衬法加固预应力钢筒混凝土管的内水压力试验研究 [J]. 混凝土与水泥制品, 2021(11): 44-48.
[131] 翟科杰, 方宏远, 付兵, 等. 断丝PCCP管道外贴CFRP修复足尺模型试验研究[J]. 岩土工程学报, 2019, 41(S1): 157-160.
[132] 董晓农, 李萌, 孙志恒, 等. 预应力钢筒混凝土管内壁复式碳纤维加固试验与计算分析[J]. 水利学报, 2019, 50(06): 780-786.
[133] 董晓农. 预应力钢筒混凝土管(PCCP)内壁复式碳纤维加固技术的研究[D]. 北京: 中国水利水电科学研究院, 2019: 80.
[134] 孙志恒, 董晓农, 郝巨涛, 等. PCCP内壁复式碳纤维加固技术及应力计算分析 [J]. 水利水电技术, 2018, 49(7): 88-93.
[135] Cheng B, Dou T, Xia S, et al. Experimental study on mechanical properties of prestressed concrete cylinder pipes (PCCPs) under external load[J]. International Journal of Pressure Vessels and Piping, 2021, 191 (06): 104365.
[136] American Water Works Association. Design of prestressed concrete cylinder pipe: AWWA C304[S]. USA: AWWA, 2014: 1-144.
[137] 熊欢, 李鹏辉, 李庆斌, 等. PCCP受载响应分析中三种预应力施加方法的比较研究 [J]. 水力发电学报, 2010, 29(06): 178-186.
[138] Rots J G. Smeared and discrete representations of localized fracture[J]. International Journal of Fracture, 1991, 51 (1): 45-59.
[139] Yang Z J, Su X T, Chen J F, et al. Monte Carlo simulation of complex cohesive fracture in random heterogeneous quasi-brittle materials[J]. International Journal of Solids and Structures, 2009, 46 (17): 3222-3234.
[140] Yang Z J, Chen J F. Finite element modelling of multiple cohesive discrete crack propagation in reinforced concrete beams[J]. Engineering Fracture Mechanics, 2005, 72 (14): 2280-2297.
[141] Saenz L P. Discussion of ``equation for the stress-strain curve of concrete'',by Desayi and Krishman[J]. ACI Journal, 1964, 61 (9): 1229-1235.
[142] Prakash D, Krishnan S. Equation for the stress-strain curve of concrete[J]. ACI Journal, 1964, 61 (3): 15.
[143] Bažant Z P, Oh B H. Crack band theory for fracture of concrete[J]. Matériaux et Construction, 1983, 16 (3): 155-177.
[144] Hillerborg A, Modéer M, Petersson P E. Analysis of crack formation and crack growth in concrete by means of fracture mechanics and finite elements[J]. Cement and Concrete Research, 1976, 6 (6): 773-781.
[145] Hordijk D A. Local approach to fatigue of concrete[D]. Delft University of Technology, 1991: 171.
[146] Tao Y, Chen J F. Concrete damage plasticity model for modeling FRP-to-concrete bond behavior[J]. Journal of Composites for Construction, 2015, 19 (01): 23-35.
[147] Grassl P, Xenos D, Nystrom U, et al. CDPM2: A damage-plasticity approach to modelling the failure of concrete[J]. International Journal of Solids and Structures, 2013, 50 (24): 3805-3816.
[148] Luccioni B M, Rougier V C. A plastic damage approach for confined concrete[J]. Computers & Structures, 2005, 83 (27): 2238-2256.
[149] Ragueneau F, La Borderie C, Mazars J. Damage model for concrete-like materials coupling cracking and friction, contribution towards structural damping: first uniaxial applications[J]. Mechanics of Cohesive-Frictional Materials, 2000, 5 (8): 607-625.
[150] Burlion N, Gatuingt F, Pijaudier-Cabot G, et al. Compaction and tensile damage in concrete: constitutive modelling and application to dynamics[J]. Computer Methods in Applied Mechanics and Engineering, 2000, 183 (3): 291-308.
[151] Lubliner J, Oliver J, Oller S, et al. A plastic-damage model for concrete[J]. International Journal of Solids and Structures, 1989, 25 (3): 299-326.
[152] Dassault Systemes Simulia Corp. ABAQUS analysis user's manual[M]. version 6.14.Providence, RI, USA: Dassault Systemes Simulia Corp.,2014: 1-368.
[153] Slobbe A T. Propagation and band width of smeared cracks[D]. Civil Engineering, Rotterdam: Technische Universiteit Delft, 2015: 162.
[154] Jirásek M, Bauer M. Numerical aspects of the crack band approach[J]. Computers & Structures, 2012, 110 (01): 60-78.
[155] Govindjee S, Kay G J, Simo J C. Anisotropic modelling and numerical simulation of brittle damage in concrete[J]. International Journal for Numerical Methods in Engineering, 1995, 38 (21): 3611-3633.
[156] Oliver J. A consistent characteristic length for smeared cracking models[J]. International Journal for Numerical Methods in Engineering, 1989, 28 (2): 461-474.
[157] Bazant Z P, Cedolin L. Finite element modeling of crack band propagation[J]. Journal of Structural Engineering, 1983, 109 (1): 69-92.
[158] British Standards Institution. Code for practice for temporary works procedures and the permissible stress design of false work: BS 5975:2008+A1:2011[S]. British: British Standards Institution, 2011: 228.
[159] Ojdrovic R P, Zarghamee M S. Concrete creep and shrinkage prediction from short-term tests[J]. ACI Materials Journal, 1996, 93 (2): 169-177.
[160] Zarghamee M S, Heger F J, Dana W R. Concrete creep and shrinkage and wire relaxation in buried prestressed concrete pipe[J]. ACI Structural Journal, 1990, 87 (5): 512-522.
[161] Teng J G, Smith S T, Yao J, et al. Intermediate crack-induced debonding in RC beams and slabs[J]. Construction and Building Materials, 2003, 17 (6): 447-462.
[162] Chen J F, Teng J G. Anchorage strength models for FRP and steel plates bonded to concrete[J]. Journal of Structural Engineering, 2001, 127 (7): 784-791.
[163] Timoshenko S P, Goodier J N. Theory of elasticity[M]. 3rd Edition.New York: McGraw-Hill,1970: 682.
[164] Zarghamee M S, Moharrami M, Jalber C, et al. A study of life extension of two prestressed concrete cylinder pipelines[C]// Pipelines, 2019: 522-534.
[165] Hall S C. Cathodic protection criteria for prestressed concrete pipe - an update[C]// CORROSION 98, 1998: NACE-98637.
[166] Loganathan K, Najafi M, Kaushal V, et al. Development of a decision support tool for inspection and monitoring of large-diameter steel and prestressed concrete cylinder water pipes[J]. Journal of Pipeline Systems Engineering and Practice, 2022, 13 (1): 04021067.
[167] Ge S, Sinha S. Failure analysis, condition assessment technologies, and performance prediction of prestressed-concrete cylinder pipe: State-of-the-art literature review[J]. Journal of Performance of Constructed Facilities, 2014, 28 (3): 618-628.
[168] Liu Z, Kleiner Y. State of the art review of inspection technologies for condition assessment of water pipes[J]. Measurement, 2013, 46 (1): 68-83.
[169] Atherton D L, Morton K, Mergelas B J. Detecting breaks in prestressing pipe wire[J]. Journal of American Water Works Association, 2000, 92 (7): 50-56.
[170] Villalobos S, Stark R, Fisk P. Ultrasonic measurements for condition assessment of prestressed concrete cylinder pipe[C]// Pipelines, 2019: 411-416.
[171] Huang J, Zhou Z, Zhang D, et al. Online monitoring of wire breaks in prestressed concrete cylinder pipe utilising fibre Bragg grating sensors[J]. Measurement, 2016, 79 (02): 112-118.
[172] Zhang Y, Li Y. Prediction of PCCP failure based on hydrophne detecting[J]. International Journal on Smart Sensing and Intelligent Systems, 2013, 6 (4): 1582-1598.
[173] Zhang X P, Zhou G N, Wang H R, et al. Research Progress of Broken Wire Monitoring of Prestressed Concrete Cylinder Pipe Based on Distributed Optical Fiber Acoustic Sensing[J]. ACTA Optica Sinica, 2024, 44 (1): 1-12.
[174] Yang G, Luan B W, Sun J, et al. Sparrow search mechanism-based effective feature mining algorithm for the broken wire signal detection of prestressed concrete cylinder pipe[J]. Mechanical Systems and Signal Processing, 2024, 212 (04): 111270.
[175] Li Y L, Sun K Y, Si Z, et al. Monitoring and identification of wire breaks in prestressed concrete cylinder pipe based on distributed fiber optic acoustic sensing[J]. Journal of Civil Structural Health Monitoring, 2024, 14 (1): 3-14.
[176] Wang X, Hu S W, Li W H, et al. Corrosion monitoring for prestressed concrete cylinder pipe spigot with combined use of Tafel extrapolation and surface acoustic wave methods[J]. Construction and Building Materials, 2022, 337 (06): 127572.
[177] Liu X D, Feng X. A near-wall acoustic wave-based localization method for broken wires in a large diameter PCCP using an FBG sensor array[J]. Measurement, 2022, 205 (12): 112154.
[178] Goldaran R, Turer A, Kouhdaragh M, et al. Identification of corrosion in a prestressed concrete pipe utilizing acoustic emission technique[J]. Construction and Building Materials, 2020, 242 (05): 118053.
[179] Eligehausen R, Popov E, Bertero V. Local bond stress-slip relationships of deformed bars under generalized excitations : experimental results and analytical model[R]. USA: Earthquake engineering research center,1983: 69-80.
[180] 耿红斌, 穆卓辉, 于晓光. 光圆钢筋与混凝土界面粘结滑移本构模型研究 [J]. 硅酸盐通报, 2017, 36(09): 3064-3069.
[181] Ren F F, Yang Z J, Chen J F, et al. An analytical analysis of the full-range behaviour of grouted rockbolts based on a tri-linear bond-slip model[J]. Construction and Building Materials, 2010, 24 (3): 361-370.
[182] Feldman L R, Bartlett F M. Bond Strength Variability in Pullout Specimens with Plain Reinforcement[J]. ACI Structural Journal, 2005, 102 (6): 860-867.
[183] Sun Y Y, Hu S W, Huang Y Q, et al. Analytical stress model for embedded bar-wrapped cylinder concrete pressure pipe under internal load[J]. Thin-Walled Structures, 2020, 149 (04): 106540.

所在学位评定分委会
力学
国内图书分类号
O342
来源库
人工提交
成果类型学位论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/779054
专题工学院_海洋科学与工程系
推荐引用方式
GB/T 7714
张霄杰. 碳纤维复合材料加固预应力钢筒混凝土管力学性能研究[D]. 哈尔滨. 哈尔滨工业大学,2024.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
11749327-张霄杰-海洋科学与工程(6770KB)----限制开放--请求全文
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[张霄杰]的文章
百度学术
百度学术中相似的文章
[张霄杰]的文章
必应学术
必应学术中相似的文章
[张霄杰]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。