[1] GALIANO F, BRICEÑO K, MARINO T, et al. Advances in biopolymer-based membrane preparation and applications [J]. Journal of Membrane Science, 2018, 564: 562-586.
[2] VATANPOUR V, YAVUZTURK GUL B, ZEYTUNCU B, et al. Polysaccharides in fabrication of membranes: A review [J]. Carbohydrate Polymers, 2022, 281: 119041.
[3] SALEHI E, KHAJAVIAN M, SAHEBJAMEE N, et al. Advances in nanocomposite and nanostructured chitosan membrane adsorbents for environmental remediation: A review [J]. Desalination, 2022, 527: 115565.
[4] RAI P, VERMA S, MEHROTRA S, et al. Sensor-integrated biocomposite membrane for food quality assessment [J]. Food Chemistry, 2023, 401: 134180.
[5] SHARMA S, MADHYASTHA H, KIRWALE S S, et al. Dual antibacterial and anti-inflammatory efficacy of a chitosan-chondroitin sulfate-based in-situ forming wound dressing [J]. Carbohydrate Polymers, 2022, 298: 120126.
[6] DING H, ZHANG J, HE H, et al. Do membrane filtration systems in drinking water treatment plants release nano/microplastics? [J]. Science of the Total Environment, 2020, 755: 142658.
[7] REDDY M M, VIVEKANANDHAN S, MISRA M, et al. Biobased plastics and bionanocomposites: Current status and future opportunities [J]. Progress in Polymer Science, 2013, 38(10): 1653-1689.
[8] IORDANSKII A L, KAMAEV P P, OL'KHOV A A, et al. Water transport phenomena in ‘green’ and ‘petrochemical’ polymers. Differences and similarities [J]. Desalination, 1999, 126(1): 139-145.
[9] MEHRABIAN M, KARGARI A. Bio-based nonporous membranes: Evolution and benchmarking review [J]. Journal of Industrial and Engineering Chemistry, 2023, 124: 17-39.
[10] BAIG U, FAIZAN M, WAHEED A. A review on super-wettable porous membranes and materials based on bio-polymeric chitosan for oil-water separation [J]. Advances in Colloid and Interface Science, 2022, 303: 102635.
[11] CHITRATTHA S, PHAECHAMUD T. Modifying poly(L-Lactic acid) matrix film properties with high loaded poly(ethylene glycol) [J]. Key Engineering Materials, 2013, 545: 57-62.
[12] PHAECHAMUD T, CHITRATTHA S. Pore formation mechanism of porous poly(DL-lactic acid) matrix membrane [J]. Materials Sciedce and Engineering C-Materials for Biological Applications, 2016, 61: 744-752.
[13] LIU F J, QIN B, HE L H, et al. Novel starch/chitosan blending membrane: Antibacterial, permeable and mechanical properties [J]. Carbohydrate Polymers, 2009, 78(1): 146-150.
[14] RINAUDO M. Chitin and chitosan: properties and applications [J]. Progress in Polymer Science (Oxford), 2006, 31(7): 603-632.
[15] MANSOORI S, DAVARNEJAD R, MATSUURA T, et al. Membranes based on non-synthetic (natural) polymers for wastewater treatment [J]. Polymer Testing, 2020, 84: 106381.
[16] PILLAI C K S, PAUL W, SHARMA C P. Chitin and chitosan polymers: chemistry, solubility and fiber formation [J]. Progress in Polymer Science, 2009, 34(7): 641-678.
[17] ZIELIŃSKA K, KUJAWSKI W, CHOSTENKO A G. Chitosan hydrogel membranes for pervaporative dehydration of alcohols [J]. Separation and Purification Technology, 2011, 83: 114-120.
[18] HAMED I, ÖZOGUL F, REGENSTEIN J M. Industrial applications of crustacean by-products (chitin, chitosan, and chitooligosaccharides): A review [J]. Trends in Food Science & Technology, 2016, 48: 40-50.
[19] QIAN X, LI N, WANG Q, et al. Chitosan/graphene oxide mixed matrix membrane with enhanced water permeability for high-salinity water desalination by pervaporation [J]. Desalination, 2018, 438: 83-96.
[20] BARAN E T, MANO J F, REIS R L. Starch–chitosan hydrogels prepared by reductive alkylation cross-linking [J]. Journal of Materials Science: Materials in Medicine, 2004, 15(7): 759-765.
[21] CHENITE A, CHAPUT C, WANG D, et al. Novel injectable neutral solutions of chitosan form biodegradable gels in situ [J]. Biomaterials, 2000, 21(21): 2155-2161.
[22] HIRANO S, YAMAGUCHI R, FUKUI N, et al. A chitosan oxalate gel: its conversion to an N-acetylchitosan gel via a chitosan gel [J]. Carbohydrate Research, 1990, 201(1): 145-149.
[23] RASHIDIPOUR M, MALEKI A, KORDI S, et al. Pectin/chitosan/tripolyphosphate nanoparticles: Efficient carriers for reducing soil sorption, cytotoxicity, and mutagenicity of paraquat and enhancing its herbicide activity [J]. Journal of Agricultural and Food Chemistry, 2019, 67(20): 5736-5745.
[24] YANG Y, CHENG J, GARAMUS V M, et al. Preparation of an environmentally friendly formulation of the insecticide nicotine hydrochloride through encapsulation in chitosan/tripolyphosphate nanoparticles [J]. Journal of Agricultural and Food Chemistry, 2018, 66(5): 1067-1074.
[25] JIANG S, CHEN M, WANG X, et al. MoS2-coated N-doped mesoporous carbon spherical composite cathode and CNT/chitosan modified separator for advanced lithium sulfur batteries [J]. ACS Sustainable Chemistry & Engineering, 2018, 6(12): 16828-16837.
[26] SUN X, FANG Y, TANG Z H, et al. Mesoporous silica nanoparticles carried on chitosan microspheres for traumatic bleeding control [J]. International Journal of Biological Macromolecules, 2019, 127: 311-319.
[27] WANG S F, SHEN L, ZHANG W D, et al. Preparation and mechanical properties of chitosan/carbon nanotubes composites [J]. Biomacromolecules, 2005, 6(6): 3067-3072.
[28] FIGOLI A, MARINO T, SIMONE S, et al. Towards non-toxic solvents for membrane preparation: a review [J]. Green Chemistry, 2014, 16(9): 4034-4059.
[29] CHEN R H, LIN W C, LIN J H. Effects of pH, ionic strength, and type of anion on the rheological properties of chitosan solutions [J]. Acta Polymerica, 1994, 45(1): 41-46.
[30] URAGAMI T, SAITO T, MIYATA T. Pervaporative dehydration characteristics of an ethanol/water azeotrope through various chitosan membranes [J]. Carbohydrate Polymers, 2015, 120: 1-6.
[31] SUNITHA K, SATYANARAYANA S V, SRIDHAR S. Phosphorylated chitosan membranes for the separation of ethanol–water mixtures by pervaporation [J]. Carbohydrate Polymers, 2012, 87(2): 1569-1574.
[32] VARGHESE J G, KITTUR A A, RACHIPUDI P S, et al. Synthesis, characterization and pervaporation performance of chitosan-g-polyaniline membranes for the dehydration of isopropanol [J]. Journal of Membrane Science, 2010, 364(1): 111-121.
[33] YANG T, ZALL R R. Chitosan membranes for reverse osmosis application [J]. Journal of Food Science, 1984, 49(1): 91-93.
[34] MAO Y, ZHOU J, CAI J, et al. Effects of coagulants on porous structure of membranes prepared from cellulose in NaOH/urea aqueous solution [J]. Journal of Membrane Science, 2006, 279(1): 246-255.
[35] CAI J, ZHANG L. Rapid dissolution of cellulose in LiOH/urea and NaOH/urea aqueous solutions [J]. Macromolecular Bioscience, 2005, 5(6): 539-548.
[36] XIONG B, ZHAO P, CAI P, et al. NMR spectroscopic studies on the mechanism of cellulose dissolution in alkali solutions [J]. Cellulose, 2013, 20(2): 613-621.
[37] CAI J, ZHANG L, LIU S, et al. Dynamic self-assembly induced rapid dissolution of cellulose at low temperatures [J]. Macromolecules, 2008, 41(23): 9345-9351.
[38] CAI J, ZHANG L, CHANG C, et al. Hydrogen-bond-induced inclusion complex in aqueous cellulose/LiOH/urea solution at low temperature [J]. ChemPhysChem, 2007, 8(10): 1572-1579.
[39] MEDRONHO B, LINDMAN B. Brief overview on cellulose dissolution/regeneration interactions and mechanisms [J]. Advances in Colloid and Interface Science, 2015, 222: 502-508.
[40] XIONG B, ZHAO P, HU K, et al. Dissolution of cellulose in aqueous NaOH/urea solution: role of urea [J]. Cellulose, 2014, 21(3): 1183-1192.
[41] FANG Y, ZHANG R, DUAN B, et al. Recyclable universal solvents for chitin to chitosan with various degrees of acetylation and construction of robust hydrogels [J]. ACS Sustainable Chemistry & Engineering, 2017, 5(3): 2725-2733.
[42] SHI S, LIU X, LI W, et al. Tuning the biodegradability of chitosan membranes: characterization and conceptual design [J]. ACS Sustainable Chemistry & Engineering, 2020, 8(38): 14484-14492.
[43] SOURIRAJAN S. Mechanism of demineralization of aqueous sodium chloride solutions by flow, under pressure, through porous membranes [J]. Industrial & Engineering Chemistry Fundamentals, 1963, 2(1): 51-55.
[44] TANG Y, LIN Y, FORD D M, et al. A review on models and simulations of membrane formation via phase inversion processes [J]. Journal of Membrane Science, 2021, 640: 119810.
[45] NUNES S P, CULFAZ-EMECEN P Z, RAMON G Z, et al. Thinking the future of membranes: Perspectives for advanced and new membrane materials and manufacturing processes [J]. Journal of Membrane Science, 2020, 598: 117761.
[46] STRATHMANN H, SCHEIBLE P, BAKER R W. A rationale for the preparation of Loeb-Sourirajan-type cellulose acetate membranes [J]. Journal of Applied Polymer Science, 1971, 15(4): 811-828.
[47] CAHN J W. Phase separation by spinodal decomposition in isotropic systems [J]. The Journal of Chemical Physics, 1965, 42(1): 93-99.
[48] ISMAIL N, VENAULT A, MIKKOLA J P, et al. Investigating the potential of membranes formed by the vapor induced phase separation process [J]. Journal of Membrane Science, 2020, 597: 117601.
[49] KIM J F, KIM J H, LEE Y M, et al. Thermally induced phase separation and electrospinning methods for emerging membrane applications: A review [J]. AIChE Journal, 2016, 62(2): 461-490.
[50] WILLOTT J D, NIELEN W M, DE VOS W M. Stimuli-responsive membranes through sustainable aqueous phase separation [J]. ACS Applied Polymer Materials, 2020, 2(2): 659-667.
[51] TU G, LIU X, LI Z, et al. Characterizing gelation kinetics of chitosan dissolved in an alkali/urea aqueous solution: mechanisms accounting for the morphological development [J]. Journal of Membrane Science, 2021, 635: 119516.
[52] LI L, BAIG M I, DE VOS W M, et al. Preparation of sodium carboxymethyl cellulose–chitosan complex membranes through sustainable aqueous phase separation [J]. ACS Applied Polymer Materials, 2023, 5(3): 1810-1818.
[53] VAN LENTE J J, BAIG M I, DE VOS W M, et al. Biocatalytic membranes through aqueous phase separation [J]. Journal of Colloid and Interface Science, 2022, 616: 903-910.
[54] BAIG M I, PEJMAN M, WILLOTT J D, et al. Polyelectrolyte Complex Hollow Fiber Membranes Prepared via Aqueous Phase Separation [J]. ACS Applied Polymer Materials, 2022, 4(2): 1010-1020.
[55] NIELEN W M, WILLOTT J D, GALICIA J A R, et al. Effect of solution viscosity on the precipitation of PSaMA in aqueous phase separation-based membrane formation [J]. Polymers, 2021, 13(11).
[56] NIELEN W M, WILLOTT J D, DE VOS W M. Solvent and pH stability of poly(styrene-alt-maleic acid) (PSaMA) membranes prepared by aqueous phase separation (APS) [J]. Membranes, 2021, 11(11).
[57] DURMAZ E N, WILLOTT J D, MIZAN M M H, et al. Tuning the charge of polyelectrolyte complex membranes prepared via aqueous phase separation [J]. Soft Matter, 2021, 17(41): 9420-9427.
[58] BAIG M I, WILLOTT J D, DE VOS W M. Enhancing the separation performance of Aqueous Phase Separation-based membranes through polyelectrolyte multilayer coatings and interfacial polymerization [J]. ACS Applied Polymer Materials, 2021, 3(7): 3560-3568.
[59] BAIG M I, SARI P P I, LI J, et al. Sustainable aqueous phase separation membranes prepared through mild pH shift induced polyelectrolyte complexation of PSS and PEI [J]. Journal of Membrane Science, 2021, 625: 119114.
[60] NIELEN W M, WILLOTT J D, ESGUERRA Z M, et al. Ion specific effects on aqueous phase separation of responsive copolymers for sustainable membranes [J]. Journal of Colloid and Interface Science, 2020, 576: 186-194.
[61] NIELEN W M, WILLOTT J D, DE VOS W M. Aqueous phase separation of responsive copolymers for sustainable and mechanically stable membranes [J]. ACS Applied Polymer Materials, 2020, 2(4): 1702-1710.
[62] DURMAZ E N, WILLOTT J D, FATIMA A, et al. Weak polyanion and strong polycation complex based membranes: linking aqueous phase separation to traditional membrane fabrication [J]. European Polymer Journal, 2020, 139: 110015.
[63] DURMAZ E N, BAIG M I, WILLOTT J D, et al. Polyelectrolyte complex membranes via salinity change induced aqueous phase separation [J]. ACS Applied Polymer Materials, 2020, 2(7): 2612-2621.
[64] BAIG M I, WILLOTT J D, DE VOS W M. Tuning the structure and performance of polyelectrolyte complexation based aqueous phase separation membranes [J]. Journal of Membrane Science, 2020, 615: 118502.
[65] BAIG M I, DURMAZ E N, WILLOTT J D, et al. Sustainable membrane production through polyelectrolyte complexation induced aqueous phase separation [J]. Advanced Functional Materials, 2020, 30(5): 1907344.
[66] 陈咏萱, 周东山, 胡文兵. 示差扫描量热法进展及其在高分子表征中的应用 [J]. 高分子学报, 2021, 52(04): 423-444.
[67] KOGISO M, OHNISHI S, YASE K, et al. Dicarboxylic oligopeptide bolaamphiphiles: Proton-triggered self-assembly of microtubes with loose solid surfaces [J]. Langmuir, 1998, 14(18): 4978-4986.
[68] MAITRA U, VIJAY KUMAR P, CHANDRA N, et al. First donor–acceptor interaction promoted gelation of organic fluids [J]. Chemical Communications, 1999, (7): 595-596.
[69] CACCAVO D, STRÖM A, LARSSON A, et al. Modeling capillary formation in calcium and copper alginate gels [J]. Materials Science and Engineering: C, 2016, 58: 442-449.
[70] ZHANG S, LI F-X, YU J-Y J C C, et al. Kinetics of cellulose regeneration from cellulose-NaOH/thiourea/urea/H2O system [J]. Cellulose Chemistry and Technology, 2011, 45(9): 593.
[71] KÖLBEL M, MENGER F M. Hierarchical structure of a self-assembled xerogel [J]. Chemical Communications, 2001, (3): 275-276.
[72] SONG J, CHENG Q, KOPTA S, et al. Modulating artificial membrane morphology: pH-induced chromatic transition and nanostructural transformation of a bolaamphiphilic conjugated polymer from blue helical ribbons to red nanofibers [J]. Journal of the American Chemical Society, 2001, 123(14): 3205-3213.
[73] FUHRHOP J H, SVENSON S, BOETTCHER C, et al. Long-lived micellar N-alkylaldonamide fiber gels. Solid-state NMR and electron microscopic studies [J]. Journal of the American Chemical Society, 1990, 112(11): 4307-4312.
[74] LAITY P R, GLOVER P M, BARRY A, et al. Studies of non-solvent induced polymer coagulation by magnetic resonance imaging [J]. Polymer, 2001, 42(18): 7701-7710.
[75] LAITY P R, GLOVER P M, HAY J N. Composition and phase changes observed by magnetic resonance imaging during non-solvent induced coagulation of cellulose [J]. Polymer, 2002, 43(22): 5827-5837.
[76] CAI Y, LI J, ZHANG X, et al. In-situ monitoring of polysulfone membrane formation via immersion precipitation using an ultrasonic through-transmission technique [J]. Desalination and Water Treatment, 2011, 32(1-3): 214-225.
[77] WANG S, LI Q, HE B, et al. Preparation of small-pore ultrafiltration membranes with high surface porosity by In situ CO2 nanobubble-assisted NIPS [J]. ACS Applied Materials & Interfaces, 2022, 14(6): 8633-8643.
[78] JOHN G, JUNG J H, MASUDA M, et al. Unsaturation Effect on Gelation Behavior of Aryl Glycolipids [J]. Langmuir, 2004, 20(6): 2060-2065.
[79] ISOBE N, KIMURA S, WADA M, et al. Mechanism of cellulose gelation from aqueous alkali-urea solution [J]. Carbohydrate Polymers, 2012, 89(4): 1298-1300.
[80] KIM H J, TYAGI R K, FOUDA A E, et al. The kinetic study for asymmetric membrane formation via phase-inversion process [J]. Journal of Applied Polymer Science, 1996, 62(4): 621-629.
[81] HUNG W-L, WANG D-M, LAI J-Y, et al. On the initiation of macrovoids in polymeric membranes – effect of polymer chain entanglement [J]. Journal of Membrane Science, 2016, 505: 70-81.
[82] YAO C W, BURFORD R P, FANE A G, et al. Effect of coagulation conditions on structure and properties of membranes from aliphatic polyamides [J]. Journal of Membrane Science, 1988, 38(2): 113-125.
[83] YONG S K, HYO J K, UN Y K. Asymmetric membrane formation via immersion precipitation method. I. Kinetic effect [J]. Journal of Membrane Science, 1991, 60(2): 219-232.
[84] GUILLEN G R, RAMON G Z, KAVEHPOUR H P, et al. Direct microscopic observation of membrane formation by nonsolvent induced phase separation [J]. Journal of Membrane Science, 2013, 431: 212-220.
[85] HUYNH U T D, CHAMBIN O, DU POSET A M, et al. Insights into gelation kinetics and gel front migration in cation-induced polysaccharide hydrogels by viscoelastic and turbidity measurements: Effect of the nature of divalent cations [J]. Carbohydrate Polymers, 2018, 190: 121-128.
[86] MACHADO P S T, HABERT A C, BORGES C P. Membrane formation mechanism based on precipitation kinetics and membrane morphology: flat and hollow fiber polysulfone membranes [J]. Journal of Membrane Science, 1999, 155(2): 171-183.
[87] NUNES S P, INOUE T. Evidence for spinodal decomposition and nucleation and growth mechanisms during membrane formation [J]. Journal of Membrane Science, 1996, 111(1): 93-103.
[88] WANG Y-N, WEI J, SHE Q, et al. Microscopic characterization of FO/PRO membranes – A comparative study of CLSM, TEM and SEM [J]. Environmental Science & Technology, 2012, 46(18): 9995-10003.
[89] BJØRNØY S H, MANDARIC S, BASSETT D C, et al. Gelling kinetics and in situ mineralization of alginate hydrogels: A correlative spatiotemporal characterization toolbox [J]. Acta Biomaterialia, 2016, 44: 243-253.
[90] WANG Z, NIE J, QIN W, et al. Gelation process visualized by aggregation-induced emission fluorogens [J]. Nature Communications, 2016, 7(1): 12033.
[91] PODOLEANU A G. Optical coherence tomography [J]. British Journal of Radiology, 2005, 78(935): 976-988.
[92] TOMLINS P H, WANG R K. Theory, developments and applications of optical coherence tomography [J]. Applied Physics, 2005, 38(15): 2519.
[93] FERCHER A F. Optical coherence tomography – development, principles, applications [J]. Zeitschrift fur Medizinische Physik, 2010, 20(4): 251-276.
[94] WOJTKOWSKI M. High-speed optical coherence tomography: basics and applications [J]. Applied Optics, 2010, 49(16): D30-D61.
[95] GAO Y, HAAVISTO S, TANG C Y, et al. Characterization of fluid dynamics in spacer-filled channels for membrane filtration using Doppler optical coherence tomography [J]. Journal of Membrane Science, 2013, 448: 198-208.
[96] GAO Y, HAAVISTO S, LI W, et al. Novel approach to characterizing the growth of a fouling layer during membrane filtration via optical coherence tomography [J]. Environmental Science & Technology, 2014, 48(24): 14273-14281.
[97] LI W, LIU X, WANG Y-N, et al. Analyzing the evolution of membrane fouling via a novel nethod based on 3D optical coherence tomography imaging [J]. Environmental Science and Technology, 2016, 50(13): 6930-6939.
[98] LIU X, LI W, CHONG T H, et al. Effects of spacer orientations on the cake formation during membrane fouling: Quantitative analysis based on 3D OCT imaging [J]. Water Research, 2017, 110: 1-14.
[99] HAN Q, LI W, TRINH T A, et al. Effect of the surface charge of monodisperse particulate foulants on cake formation [J]. Journal of Membrane Science, 2018, 548: 108-116.
[100] HAN Q, LAY H T, LI W, et al. Effect of initial particle deposition rate on cake formation during dead-end microfiltration [J]. Journal of Membrane Science, 2021, 618: 118672.
[101] TRINH T A, LI W, CHEW J W. Internal fouling during microfiltration with foulants of different surface charges [J]. Journal of Membrane Science, 2020, 602: 117983.
[102] LIU J, LI Z, WANG Y, et al. Analyzing scaling behavior of calcium sulfate in membrane distillation via optical coherence tomography [J]. Water Research, 2021, 191: 116809.
[103] LIU J, WANG Y, LI Z, et al. Flux decline induced by scaling of calcium sulfate in membrane distillation: theoretical analysis on the role of different mechanisms [J]. Journal of Membrane Science, 2021, 628: 119257.
[104] LIU J, WANG Y, LI S, et al. Insights into the wetting phenomenon induced by scaling of calcium sulfate in membrane distillation [J]. Water Research, 2022, 216: 118282.
[105] LIU J, WANG Y, LI Z, et al. Unraveling relative roles of bulk precipitation and surface growth in developing a scaling layer in membrane distillation [J]. Desalination, 2022, 544: 116133.
[106] WANG Y, LIU J, LI Z, et al. Revisiting scaling of calcium sulfate in membrane distillation: Uncertainty of crystal-membrane interactions [J]. Water Research, 2023, 239.
[107] LI W, LIU X, LI Z, et al. Unraveling the film-formation kinetics of interfacial polymerization via low coherence interferometry [J]. AIChE Journal, 2020, 66(4): e16863.
[108] STRATHMANN H, KOCK K. The formation mechanism of phase inversion membranes [J]. Desalination, 1977, 21(3): 241-255.
[109] STRATHMANN H, KOCK K, AMAR P, et al. The formation mechanism of asymmetric membranes [J]. Desalination, 1975, 16(2): 179-203.
[110] MATZ R. The structure of cellulose acetate membranes 1. The development of porous structures in anisotropic membranes [J]. Desalination, 1972, 10(1): 1-15.
[111] RAY R J, KRANTZ W B, SANI R L. Linear stability theory model for finger formation in asymmetric membranes [J]. Journal of Membrane Science, 1985, 23(2): 155-182.
[112] BOOM R M, WIENK I M, VAN DEN BOOMGAARD T, et al. Microstructures in phase inversion membranes. Part 2. The role of a polymeric additive [J]. Journal of Membrane Science, 1992, 73(2): 277-292.
[113] SMOLDERS C A, REUVERS A J, BOOM R M, et al. Microstructures in phase-inversion membranes. Part 1. Formation of macrovoids [J]. Journal of Membrane Science, 1992, 73(2): 259-275.
[114] TSAI J T, SU Y S, WANG D M, et al. Retainment of pore connectivity in membranes prepared with vapor-induced phase separation [J]. Journal of Membrane Science, 2010, 362(1): 360-373.
[115] SU Y S, KUO C Y, WANG D M, et al. Interplay of mass transfer, phase separation, and membrane morphology in vapor-induced phase separation [J]. Journal of Membrane Science, 2009, 338(1): 17-28.
[116] GUILLEN G R, PAN Y, LI M, et al. Preparation and characterization of membranes formed by nonsolvent induced phase separation: a review [J]. Industrial & Engineering Chemistry Research, 2011, 50(7): 3798-3817.
[117] MOSQUEDA-JIMENEZ D B, NARBAITZ R M, MATSUURA T, et al. Influence of processing conditions on the properties of ultrafiltration membranes [J]. Journal of Membrane Science, 2004, 231(1): 209-224.
[118] GHOSH A K, JEONG B-H, HUANG X, et al. Impacts of reaction and curing conditions on polyamide composite reverse osmosis membrane properties [J]. Journal of Membrane Science, 2008, 311(1): 34-45.
[119] BOOM R M, VAN DEN BOOMGAARD T, SMOLDERS C A. Mass transfer and thermodynamics during immersion precipitation for a two-polymer system: Evaluation with the system PES—PVP—NMP—water [J]. Journal of Membrane Science, 1994, 90(3): 231-249.
[120] EGERTON R F, ZHU Y. Spatial resolution in secondary-electron microscopy [J]. Microscopy, 2022: dfac022.
[121] NWEKE M C, TURMAINE M, MCCARTNEY R G, et al. Drying techniques for the visualisation of agarose-based chromatography media by scanning electron microscopy [J]. Biotechnology Journal, 2017, 12(3): 1600583.
[122] NAKAO S-I. Determination of pore size and pore size distribution: 3. Filtration membranes [J]. Journal of Membrane Science, 1994, 96(1): 131-165.
[123] CALVO J I, HERNÁNDEZ A, PRÁDANOS P, et al. Pore size distributions in microporous membranes II. Bulk characterization of track-etched filters by air porometry and nercury porosimetry [J]. Journal of Colloid and Interface Science, 1995, 176(2): 467-478.
[124] BRUN M, LALLEMAND A, QUINSON J-F, et al. A new method for the simultaneous determination of the size and shape of pores: the thermoporometry [J]. Thermochimica Acta, 1977, 21(1): 59-88.
[125] KONG J, LI K. Oil removal from oil-in-water emulsions using PVDF membranes [J]. Separation and Purification Technology, 1999, 16(1): 83-93.
[126] IRITANI E, TACHI S, MURASE T. Influence of protein adsorption on flow resistance of microfiltration membrane [J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 1994, 89(1): 15-22.
[127] SCHMIDT J R, SKINNER J L. Brownian motion of a rough sphere and the Stokes−Einstein law [J]. The Journal of Physical Chemistry B, 2004, 108(21): 6767-6771.
[128] HO C-C, ZYDNEY A L. Measurement of membrane pore interconnectivity [J]. Journal of Membrane Science, 2000, 170(1): 101-112.
[129] KRANTZ W B, BILODEAU R R, VOORHEES M E, et al. Use of axial membrane vibrations to enhance mass transfer in a hollow tube oxygenator [J]. Journal of Membrane Science, 1997, 124(2): 283-299.
[130] NABIKA H, ITATANI M, LAGZI I. Pattern formation in precipitation reactions: the Liesegang phenomenon [J]. Langmuir, 2020, 36(2): 481-497.
[131] ANTAL T, DROZ M, MAGNIN J, et al. Formation of Liesegang patterns: a spinodal decomposition scenario [J]. Physical Review Letters, 1999, 83(15): 2880-2883.
[132] HOPP-HIRSCHLER M, NIEKEN U. Modeling of pore formation in phase inversion processes: Model and numerical results [J]. Journal of Membrane Science, 2018, 564: 820-831.
[133] AHMADZADEH S, DESOBRY S, KERAMAT J, et al. Crystalline structure and morphological properties of porous cellulose/clay composites: The effect of water and ethanol as coagulants [J]. Carbohydrate Polymers, 2016, 141: 211-219.
[134] YOUNG T-H, CHEN L-W. Pore formation mechanism of membranes from phase inversion process [J]. Desalination, 1995, 103(3): 233-247.
[135] VAN DE WITTE P, DIJKSTRA P J, VAN DEN BERG J W A, et al. Phase separation processes in polymer solutions in relation to membrane formation [J]. Journal of Membrane Science, 1996, 117(1): 1-31.
[136] NEOGI P. Mechanism of pore formation in reverse osmosis membranes during the casting process [J]. AIChE Journal, 1983, 29(3): 402-410.
[137] SANO M, HOSOYA O, TAOKA S, et al. Relationship between Solubility of Chitosan in Alcoholic Solution and Its Gelation [J]. Chemical & Pharmaceutical Bulletin, 1999, 47(7): 1044-1046.
[138] PINHO S P, MACEDO E A. Solubility of NaCl, NaBr, and KCl in water, methanol, ethanol, and their mixed solvents [J]. Journal of Chemical & Engineering Data, 2005, 50(1): 29-32.
[139] PARRY A O, RASCÓN C, JAMIE E A G, et al. Capillary emptying and short-range wetting [J]. Physical Review Letters, 2012, 108(24): 246101.
[140] RADOVANOVIC P, THIEL S W, HWANG S-T. Formation of asymmetric polysulfone membranes by immersion precipitation. Part I. Modelling mass transport during gelation [J]. Journal of Membrane Science, 1992, 65(3): 213-229.
[141] KOBAYASHI K, KIMURA S, TOGAWA E, et al. Crystal transition from Na–cellulose IV to cellulose II monitored using synchrotron X-ray diffraction [J]. Carbohydrate Polymers, 2011, 83(2): 483-488.
[142] MISRA G P, SIEGEL R A. Ionizable drugs and pH oscillators: Buffering effects [J]. Journal of Pharmaceutical Sciences, 2002, 91(9): 2003-2015.
[143] MA B, LI X, QIN A, et al. A comparative study on the chitosan membranes prepared from glycine hydrochloride and acetic acid [J]. Carbohydrate Polymers, 2013, 91(2): 477-482.
[144] WEI P, HUANG J, LU Y, et al. Unique stress whitening and high-toughness double-cross-linked cellulose films [J]. ACS Sustainable Chemistry & Engineering, 2019, 7(1): 1707-1717.
[145] DUAN J, LIANG X, CAO Y, et al. High strength chitosan hydrogels with biocompatibility via new avenue based on constructing nanofibrous architecture [J]. Macromolecules, 2015, 48(8): 2706-2714.
[146] LI W, GAO Y, TANG C Y. Network modeling for studying the effect of support structure on internal concentration polarization during forward osmosis: Model development and theoretical analysis with FEM [J]. Journal of Membrane Science, 2011, 379(1): 307-321.
[147] LI W, DUCLOS-ORSELLO C, HO C-C. Theoretical analysis of the effects of asymmetric membrane structure on fouling during microfiltration [J]. AIChE Journal, 2009, 55(6): 1434-1446.
[148] HO C-C, ZYDNEY A L. Theoretical analysis of the effect of membrane morphology on fouling during microfiltration [J]. Separation Science and Technology, 1999, 34(13): 2461-2483.
[149] DUCLOS-ORSELLO C, LI W, HO C-C. A three mechanism model to describe fouling of microfiltration membranes [J]. Journal of Membrane Science, 2006, 280(1): 856-866.
[150] LIU X, ZOU Z, WANG D, et al. Sustainable fabrication of chitosan membranes with optimized performance for ultrafiltration [J]. Separation and Purification Technology, 2024, 330: 125276.
[151] KUNST B, ŠKEVIN Đ, DEŽELIĆ G, et al. A light-scattering and membrane formation study on concentrated cellulose acetate solutions [J]. Journal of Applied Polymer Science, 1976, 20(5): 1339-1353.
[152] LI Z, LIU X, CHEN G, et al. Effects of membrane morphology on the rejection of oil droplets: Theoretical analysis based on network modeling [J]. Journal of Membrane Science, 2019, 588: 117198.
修改评论