[1] ARTHUR J F, STOKES C R, JAMIESON S S, et al. Large interannual variability in supraglacial lakes around East Antarctica [J]. Nat Commun, 2022, 13(1): 1711.
[2] CHEN J L, WILSON C, BLANKENSHIP D, et al. Accelerated Antarctic ice loss from satellite gravity measurements [J]. Nat Geosci, 2009, 2(12): 859-862.
[3] TEAM T I. Mass balance of the Antarctic Ice Sheet from 1992 to 2017 [J]. Nature, 2018, 558(7709): 219-222.
[4] 郑雷. 南极冰盖和海冰表面融化微波遥感监测及多尺度影响因子研究 [D], 2019.
[5] 丁明虎. 南极冰盖物质平衡最新研究进展 [J]. 地球物理学进展, 2013, 28(1): 24-35.
[6] ROTT H, ABDEL JABER W, WUITE J, et al. Changing pattern of ice flow and mass balance for glaciers discharging into the Larsen A and B embayments, Antarctic Peninsula, 2011 to 2016 [J]. The Cryosphere, 2018, 12(4): 1273-1291.
[7] VELICOGNA I, MOHAJERANI Y, LANDERER F, et al. Continuity of ice sheet mass loss in Greenland and Antarctica from the GRACE and GRACE Follow‐On missions [J]. Geophys Res Lett, 2020, 47(8): e2020GL087291.
[8] VELICOGNA I, WAHR J. Measurements of time-variable gravity show mass loss in Antarctica [J]. science, 2006, 311(5768): 1754-1756.
[9] DECONTO R M, POLLARD D. Contribution of Antarctica to past and future sea-level rise [J]. Nature, 2016, 531(7596): 591-597.
[10] TUCKETT P A, ELY J C, SOLE A J, et al. Rapid accelerations of Antarctic Peninsula outlet glaciers driven by surface melt [J]. Nat Commun, 2019, 10(1): 4311.
[11] LENAERTS J T M, LHERMITTE S, DREWS R, et al. Meltwater produced by wind–albedo interaction stored in an East Antarctic ice shelf [J]. Nat Clim Change, 2017, 7(1): 58-62.
[12] BELL R E, BANWELL A F, TRUSEL L D, et al. Antarctic surface hydrology and impacts on ice-sheet mass balance [J]. Nature Climate Change, 2018, 8(12): 1044-1052.
[13] LEESON A, FORSTER E, RICE A, et al. Evolution of supraglacial lakes on the Larsen B ice shelf in the decades before it collapsed [J]. Geophys Res Lett, 2020, 47(4): e2019GL085591.
[14] BANWELL A F, MACAYEAL D R, SERGIENKO O V. Breakup of the Larsen B Ice Shelf triggered by chain reaction drainage of supraglacial lakes [J]. Geophys Res Lett, 2013, 40(22): 5872-5876.
[15] BANWELL A F, WILLIS I C, MACDONALD G J, et al. Direct measurements of ice-shelf flexure caused by surface meltwater ponding and drainage [J]. Nat Commun, 2019, 10(1): 730.
[16] ALLEY K E, SCAMBOS T A, MILLER J Z, et al. Quantifying vulnerability of Antarctic ice shelves to hydrofracture using microwave scattering properties [J]. Remote Sens Environ, 2018, 210: 297-306.
[17] TEDESCO M, LüTHJE M, STEFFEN K, et al. Measurement and modeling of ablation of the bottom of supraglacial lakes in western Greenland [J]. Geophys Res Lett, 2012, 39(2).
[18] LEESON A A, SHEPHERD A, BRIGGS K, et al. Supraglacial lakes on the Greenland ice sheet advance inland under warming climate [J]. Nature Climate Change, 2015, 5(1): 51-55.
[19] DUNMIRE D, LENAERTS J, BANWELL A, et al. Observations of buried lake drainage on the Antarctic Ice Sheet [J]. Geophys Res Lett, 2020, 47(15).
[20] HUMPHREY N F, HARPER J T, PFEFFER W T. Thermal tracking of meltwater retention in Greenland's accumulation area [J]. J Geophys Res: Earth Surf, 2012, 117(F1).
[21] VAN WESSEM J M, VAN DE BERG W J, NOëL B P, et al. Modelling the climate and surface mass balance of polar ice sheets using RACMO2–Part 2: Antarctica (1979–2016) [J]. The Cryosphere, 2018, 12(4): 1479-1498.
[22] CHUDLEY T R, CHRISTOFFERSEN P, DOYLE S H, et al. Supraglacial lake drainage at a fast-flowing Greenlandic outlet glacier [J]. Proceedings of the National Academy of Sciences, 2019, 116(51): 25468-25477.
[23] LEESON A, SHEPHERD A, BRIGGS K, et al. Supraglacial lakes on the Greenland ice sheet advance inland under warming climate [J]. Nat Clim Change, 2015, 5(1): 51-55.
[24] QUAYLE W C, PECK L S, PEAT H, et al. Extreme responses to climate change in Antarctic lakes [J]. Science, 2002, 295(5555): 645-645.
[25] DIRSCHERL M C, DIETZ A J, KUENZER C. Seasonal evolution of Antarctic supraglacial lakes in 2015–2021 and links to environmental controls [J]. The Cryosphere, 2021, 15(11): 5205-5226.
[26] TUCKETT P A, ELY J C, SOLE A J, et al. Automated mapping of the seasonal evolution of surface meltwater and its links to climate on the Amery Ice Shelf, Antarctica [J]. The Cryosphere, 2021, 15(12): 5785-5804.
[27] SMITH L C, SHENG Y, MACDONALD G, et al. Disappearing arctic lakes [J]. Science, 2005, 308(5727): 1429-1429.
[28] WILLIAMSON A G, ARNOLD N S, BANWELL A F, et al. A Fully Automated Supraglacial lake area and volume Tracking (“FAST”) algorithm: Development and application using MODIS imagery of West Greenland [J]. Remote Sens Environ, 2017, 196: 113-133.
[29] TRUSEL L D, FREY K E, DAS S B, et al. Divergent trajectories of Antarctic surface melt under two twenty-first-century climate scenarios [J]. Nat Geosci, 2015, 8(12): 927-932.
[30] GILBERT E, KITTEL C. Surface Melt and Runoff on Antarctic Ice Shelves at 1.5°C, 2°C, and 4°C of Future Warming [J]. Geophys Res Lett, 2021, 48(8).
[31] SHUGAR D H, BURR A, HARITASHYA U K, et al. Rapid worldwide growth of glacial lakes since 1990 [J]. Nat Clim Change, 2020, 10(10): 939-945.
[32] YAO F F, LIVNEH B, RAJAGOPALAN B, et al. Satellites reveal widespread decline in global lake water storage [J]. Science, 2023, 380(6646): 743-749.
[33] PI X H, LUO Q Q, FENG L, et al. Mapping global lake dynamics reveals the emerging roles of small lakes [J]. Nat Commun, 2022, 13(1): 5777.
[34] ZHENG L, LI L J, CHEN Z Q, et al. Multi-sensor imaging of winter buried lakes in the Greenland Ice Sheet [J]. Remote Sens Environ, 2023, 295: 113688.
[35] BASSIS J N. Crevasse analysis reveals vulnerability of ice shelves to global warming [Z]. Nature Publishing Group UK London. 2020
[36] SHENG Y, SONG C, WANG J, et al. Representative lake water extent mapping at continental scales using multi-temporal Landsat-8 imagery [J]. Remote Sens Environ, 2016, 185: 129-141.
[37] YAO F, WANG J, WANG C, et al. Constructing long-term high-frequency time series of global lake and reservoir areas using Landsat imagery [J]. Remote Sens Environ, 2019, 232: 111210.
[38] PEKEL J-F, COTTAM A, GORELICK N, et al. High-resolution mapping of global surface water and its long-term changes [J]. Nature, 2016, 540(7633): 418-422.
[39] 梁相安, 张闻松, 李雅, 等. 南极半岛巴赫冰架冰面融水动态遥感监测 [J]. 极地研究, 2022, 34(02): 149-158.
[40] 李青, 周春霞, 刘芮希, 等. 东南极极记录冰川表面冰面湖变化监测 [J]. 极地研究, 2021, 33(01): 27-36.
[41] 王辉, 卢善龙, 丁俊, 等. 气候变化对南极冰面湖的影响研究—以埃默里和拉森 A 冰架为例 [J]. 极地研究, 2020, 32(3): 322.
[42] MOUSSAVI M, POPE A, HALBERSTADT A R W, et al. Antarctic supraglacial lake detection using Landsat 8 and Sentinel-2 imagery: Towards continental generation of lake volumes [J]. Remote Sens, 2020, 12(1): 134.
[43] WILLIAMSON A G, BANWELL A F, WILLIS I C, et al. Dual-satellite (Sentinel-2 and Landsat 8) remote sensing of supraglacial lakes in Greenland [J]. The Cryosphere, 2018, 12(9): 3045-3065.
[44] DIRSCHERL M, DIETZ A J, KNEISEL C, et al. A novel method for automated supraglacial lake mapping in Antarctica using Sentinel-1 SAR imagery and deep learning [J]. Remote Sens, 2021, 13(2): 197.
[45] SCHRöDER L, NECKEL N, ZINDLER R, et al. Perennial supraglacial lakes in northeast Greenland observed by polarimetric SAR [J]. Remote Sens, 2020, 12(17): 2798.
[46] MILES K E, WILLIS I C, BENEDEK C L, et al. Toward monitoring surface and subsurface lakes on the Greenland Ice Sheet using Sentinel-1 SAR and Landsat-8 OLI imagery [J]. Front Earth Sci, 2017, 5.
[47] RAN J J, LIU L, ZHANG G Q, et al. Contrasting lake changes in Tibet revealed by recent multi-modal satellite observations [J]. Sci Total Environ, 2023: 168342.
[48] LILLESAND T, KIEFER R W, CHIPMAN J. Remote sensing and image interpretation [M]. John Wiley & Sons, 2015.
[49] MCFEETERS S K. The use of the Normalized Difference Water Index (NDWI) in the delineation of open water features [J]. Int J Remote Sens, 1996, 17(7): 1425-1432.
[50] BELGIU M, DRĂGUŢ L. Random forest in remote sensing: A review of applications and future directions [J]. ISPRS J Photogramm Remote Sens, 2016, 114: 24-31.
[51] YANG K, SMITH L C. Supraglacial streams on the Greenland Ice Sheet delineated from combined spectral–shape information in high-resolution satellite imagery [J]. IEEE Geoscience and Remote Sensing Letters, 2013, 10(4): 801-805.
[52] HU J J, HUANG H B, CHI Z H, et al. Distribution and evolution of supraglacial lakes in Greenland during the 2016–2018 melt seasons [J] 2022, 14(1)
[53] HEIDLER K, MOU L, BAUMHOER C, et al. HED-UNet: Combined segmentation and edge detection for monitoring the Antarctic coastline [J]. IEEE Trans Geosci Remote Sens, 2021, 60: 1-14.
[54] DONG S, TANG X, GUO J, et al. EisNet: Extracting bedrock and internal layers from radiostratigraphy of ice sheets with machine learning [J]. IEEE Trans Geosci Remote Sens, 2021, 60: 1-12.
[55] 陈星宇. 利用深度学习提取青藏高原湖泊季节性面积变化的理论和方法研究 [D]; 南方科技大学, 2022.
[56] QAYYUM N, GHUFFAR S, AHMAD H M, et al. Glacial lakes mapping using multi-satellite PlanetScope imagery and deep learning [J/OL] 2020, 9(10)
[57] 党宇, 张继贤, 邓喀中, 等. 基于深度学习AlexNet的遥感影像地表覆盖分类评价研究 [J]. 地球信息科学学报, 2017, 19(11): 1530-1537.
[58] 周岩, 董金玮. 陆表水体遥感监测研究进展 [J]. 地球信息科学学报, 2019, 21(11): 1768-1778.
[59] WENG L G, XU Y M, XIA M, et al. Water areas segmentation from remote sensing images using a separable residual SegNet network [J/OL] 2020, 9(4)
[60] 何海清, 杜敬, 陈婷, 等. 结合水体指数与卷积神经网络的遥感水体提取 [J]. 遥感信息, 2017, 32(05): 82-86.
[61] 陈前, 郑利娟, 李小娟, 等. 基于深度学习的高分遥感影像水体提取模型研究 [J]. 地理与地理信息科学, 2019, 35(04): 43-49.
[62] NIU L, TANG X, YANG S, et al. Detection of Antarctic surface meltwater using Sentinel-2 remote sensing images via U-Net with attention blocks: a case study over the Amery Ice Shelf [J]. IEEE Trans Geosci Remote Sens, 2023, 61: 1-13.
[63] KINGSLAKE J, ELY J C, DAS I, et al. Widespread movement of meltwater onto and across Antarctic ice shelves [J]. Nature, 2017, 544(7650): 349-352.
[64] 林祥, 卞林根. 南极长城站和中山站的近期气候变化及其对南极涛动的响应 [J]. 极地研究, 2017, 29(3): 357-367.
[65] 效存德. 南极地区气候系统变化: 过去, 现在和将来 [J]. 气候变化研究进展, 2008, 4(001): 1.
[66] GERRISH L, FRETWELL, P., & COOPER, P. . Medium resolution vector polygons of the Antarctic coastline (7.3) [Data set]. [DS]. 2020,
[67] ZWALLY H J, GIOVINETTO M B, BECKLEY M A, et al. Antarctic and Greenland drainage systems [J]. GSFC Cryospheric Sciences Laboratory, 2012, 265.
[68] GORELICK N, HANCHER M, DIXON M, et al. Google Earth Engine: Planetary-scale geospatial analysis for everyone [J]. Remote Sensing of Environment, 2017, 202: 18-27.
[69] GOWARD S N, WILLIAMS D L, ARVIDSON T, et al. Landsat's enduring legacy: Pioneering global land observations from space [J]. Photogrammetric Engineering & Remote Sensing, 2022, 88(6): 357-358.
[70] WULDER M A, LOVELAND T R, ROY D P, et al. Current status of Landsat program, science, and applications [J]. Remote Sens Environ, 2019, 225: 127-147.
[71] ROY D P, WULDER M A, LOVELAND T R, et al. Landsat-8: Science and product vision for terrestrial global change research [J]. Remote Sens Environ, 2014, 145: 154-172.
[72] MASEK J G, WULDER M A, MARKHAM B, et al. Landsat 9: Empowering open science and applications through continuity [J]. Remote Sens Environ, 2020, 248: 111968.
[73] DRUSCH M, DEL BELLO U, CARLIER S, et al. Sentinel-2: ESA's optical high-resolution mission for GMES operational services [J]. Remote Sens Environ, 2012, 120: 25-36.
[74] VAN WESSEM J, VAN DE BERG W, VAN DEN BROEKE M. Data set: Monthly averaged RACMO2. 3p2 variables (1979–2022); Antarctica, Zenodo [data set] [Z]. 2023
[75] MUñOZ-SABATER J, DUTRA E, AGUSTí-PANAREDA A, et al. ERA5-Land: A state-of-the-art global reanalysis dataset for land applications [J]. Earth Syst Sci Data, 2021, 13(9): 4349-4383.
[76] BARNSTON A G, CHELLIAH M, GOLDENBERG S B. Documentation of a highly ENSO-related SST region in the equatorial Pacific [J]. Atmosphere--Ocean (Canadian Meteorological & Oceanographic Society), 1997, 35(3).
[77] SAJI N, GOSWAMI B N, VINAYACHANDRAN P, et al. A dipole mode in the tropical Indian Ocean [J]. Nature, 1999, 401(6751): 360-363.
[78] CHANG P, JI L, LI H. A decadal climate variation in the tropical Atlantic Ocean from thermodynamic air-sea interactions [J]. Nature, 1997, 385(6616): 516-518.
[79] LIMPASUVAN V, HARTMANN D L. Eddies and the annular modes of climate variability [J]. Geophys Res Lett, 1999, 26(20): 3133-3136.
[80] KRIZHEVSKY A, SUTSKEVER I, HINTON G E. Imagenet classification with deep convolutional neural networks [J]. Advances in neural information processing systems, 2012, 25.
[81] LECUN Y, BENGIO Y, HINTON G. Deep learning [J]. Nature, 2015, 521(7553): 436-444.
[82] HAN J, MORAGA C. The influence of the sigmoid function parameters on the speed of backpropagation learning [C]. Proceedings of the International Workshop on Artificial Neural Networks, 1995.
[83] GLOROT X, BORDES A, BENGIO Y. Deep sparse rectifier neural networks [C]. Proceedings of the Fourteenth International Conference on Artificial Intelligence and Statistics,2011.
[84] MAAS A L, HANNUN A Y, NG A Y. Rectifier nonlinearities improve neural network acoustic models [C]. Proceedings of the Proc ICML, F, 2013.
[85] EVES H W. Foundations and fundamental concepts of mathematics [M]. Courier Corporation, 1997.
[86] SHARMA S, SHARMA S, ATHAIYA A. Activation functions in neural networks [J]. Towards Data Sci, 2017, 6(12): 310-316.
[87] LONG J, SHELHAMER E, DARRELL T. Fully convolutional networks for semantic segmentation [C]. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, F, 2015.
[88] JIANG D, LI X W, ZHANG K, et al. Automatic Supraglacial Lake Extraction in Greenland Using Sentinel-1 SAR Images and Attention-Based U-Net [J]. Remote Sens, 2022, 14(19): 4998.
[89] RONNEBERGER O, FISCHER P, BROX T. U-net: Convolutional networks for biomedical image segmentation [C]. Medical Image Computing and Computer-Assisted Intervention–MICCAI 2015: 18th International Conference, Munich, Germany, October 5-9, 2015, Proceedings, Part III 18, F, 2015.
[90] LI R R, LIU W J, YANG L, et al. DeepUNet: A deep fully convolutional network for pixel-level sea-land segmentation [J]. IEEE J Sel Top Appl Earth Obs Remote Sens, 2018, 11(11): 3954-3962.
[91] REICHSTEIN M, CAMPS-VALLS G, STEVENS B, et al. Deep learning and process understanding for data-driven Earth system science [J]. Nature, 2019, 566(7743): 195-204.
[92] YU H S, YANG Z G, TAN L, et al. Methods and datasets on semantic segmentation: A review [J]. Neurocomputing, 2018, 304: 82-103.
[93] YUAN Q Q, SHEN H F, LI T W, et al. Deep learning in environmental remote sensing: Achievements and challenges [J]. Remote Sens Environ, 2020, 241: 111716.
[94] ZHOU Z W, RAHMAN SIDDIQUEE M M, TAJBAKHSH N, et al. Unet++: A nested u-net architecture for medical image segmentation [C]. Deep Learning in Medical Image Analysis and Multimodal Learning for Clinical Decision Support: 4th International Workshop, DLMIA 2018, and 8th International Workshop, ML-CDS 2018, Held in Conjunction with MICCAI 2018, Granada, Spain, September 20, 2018, Proceedings 4, F, 2018.
[95] CHEN L-C, ZHU Y, PAPANDREOU G, et al. Encoder-decoder with atrous separable convolution for semantic image segmentation [C]. European Conference on Computer Vision (ECCV), F, 2018.
[96] LIU W, CHEN X Y, RAN J J, et al. LaeNet: A novel lightweight multitask CNN for automatically extracting lake area and shoreline from remote sensing images [J]. Remote Sens, 2021, 13(1): 56.
[97] MOHAJERANI S, SAEEDI P. Cloud-net+: A cloud segmentation cnn for landsat 8 remote sensing imagery optimized with filtered jaccard loss function [J]. arXiv e-prints, 2020.
[98] BADRINARAYANAN V, KENDALL A, CIPOLLA R. Segnet: A deep convolutional encoder-decoder architecture for image segmentation [J]. IEEE Trans Pattern Anal Mach Intell, 2017, 39(12): 2481-2495.
[99] SIMONYAN K, ZISSERMAN A. Very deep convolutional networks for large-scale image recognition [J], ArXiv Preprint ArXiv:1409.1556, 2014.
[100] WOO S, PARK J, LEE J-Y, et al. Cbam: Convolutional block attention module [C]. Proceedings of the European Conference on Computer Vision (ECCV), F, 2018.
[101] VASWANI A, SHAZEER N, PARMAR N, et al. Attention is all you need [J]. Advances in Neural Information Processing Systems, 2017, 30.
[102] HOU Q B, ZHOU D Q, FENG J S. Coordinate attention for efficient mobile network design [C]. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, F, 2021.
[103] WARMERDAM F. The geospatial data abstraction library [M]. Open source approaches in spatial data handling. Springer. 2008: 87-104.
[104] TOMS S. ArcPy and ArcGIS–Geospatial Analysis with Python [M]. Packt Publishing Ltd, 2015.
[105] WESSEL B, HUBER M, WOHLFART C, et al. TanDEM-X PolarDEM 90 m of Antarctica: Generation and error characterization [J]. The Cryosphere, 2021, 15(11): 5241-5260.
[106] SCHNEIDER T. Analysis of incomplete climate data: Estimation of mean values and covariance matrices and imputation of missing values [J]. J Clim, 2001, 14(5): 853-871.
[107] CLAVERIE M, JU J, MASEK J G, et al. The Harmonized Landsat and Sentinel-2 surface reflectance data set [J]. Remote Sens Environ, 2018, 219: 145-161.
[108] CLAVERIE M, MASEK J G, JU J, et al. Harmonized landsat-8 sentinel-2 (HLS) product user’s guide [J]. National Aeronautics and Space Administration (NASA): Washington, DC, USA, 2017.
[109] YUNUS A P, DOU J, SONG X, et al. Improved bathymetric mapping of coastal and lake environments using Sentinel-2 and Landsat-8 images [J]. Sensors, 2019, 19(12): 2788.
[110] 张国庆, 王蒙蒙, 周陶, 等. 青藏高原湖泊面积, 水位与水量变化遥感监测研究进展 [J]. 遥感学报, 2022.
[111] MOUSSAVI M S, ABDALATI W, POPE A, et al. Derivation and validation of supraglacial lake volumes on the Greenland Ice Sheet from high-resolution satellite imagery [J]. Remote Sens Environ, 2016, 183: 294-303.
[112] POPE A, SCAMBOS T A, MOUSSAVI M, et al. Estimating supraglacial lake depth in West Greenland using Landsat 8 and comparison with other multispectral methods [J]. The Cryosphere, 2016, 10(1): 15-27.
[113] YANG K, SMITH L C. Supraglacial streams on the Greenland Ice Sheet delineated from combined spectral–shape information in high-resolution satellite imagery [J]. IEEE Geosci Remote Sens Lett, 2012, 10(4): 801-805.
[114] OTSU N. A threshold selection method from gray-level histograms [J]. IEEE Transactions on Systems, Man, and Cybernetics, 1979, 9(1): 62-66.
[115] GULLI A, PAL S. Deep learning with Keras [M]. Packt Publishing Ltd, 2017.
[116] KINGMA D P, BA J. Adam: A method for stochastic optimization [J], 2014.
[117] METZ C E. Basic principles of ROC analysis [C]. Proceedings of the Semin Nucl Med, F, 1978.
[118] TAHA A A, HANBURY A. Metrics for evaluating 3D medical image segmentation: Analysis, selection, and tool [J]. BMC Med Imaging, 2015, 15(1): 1-28.
[119] TANIMOTO T T. Elementary mathematical theory of classification and prediction [J]. 1958.
[120] BESTLEY S, ROPERT-COUDERT Y, BENGTSON NASH S, et al. Marine ecosystem assessment for the Southern Ocean: Birds and marine mammals in a changing climate [J]. Front Ecol Evol, 2020: 338.
[121] LI X C, CAI W J, MEEHL G A, et al. Tropical teleconnection impacts on Antarctic climate changes [J]. Nature Reviews Earth & Environment, 2021, 2(10): 680-698.
[122] CHEN X Y, LI S L, ZHANG C. Distinct impacts of two kinds of El Niño on precipitation over the Antarctic Peninsula and West Antarctica in austral spring [J]. Atmos Oceanic Sci Lett, 2023: 100387.
修改评论