[1] LEE H, CALVIN K, DASGUPTA D, et al. Synthesis report of the IPCC Sixth Assessment Report (AR6) [R]. Geneva: IPCC, 2023.
[2] TRIPATHY K P, MISHRA A K. How unusual is the 2022 European compound drought and heatwave event?[J]. Geophysical Research Letters, 2023, 50(15):e2023GL105453.
[3] 夏军, 陈进, 佘敦先. 2022 年长江流域极端干旱事件及其影响与对策[J]. 水利学报, 2022, 53(10):1143-1153.
[4] SVOBODA M, LECOMTE D, HAYES M, et al. The drought monitor[J]. Bulletin of the American Meteorological Society, 2002, 83(8):1181-1190.
[5] OTKIN J A, WOLOSZYN M, WANG H, et al. Getting ahead of flash drought: from early warning to early action[J]. Bulletin of the American Meteorological Society, 2022, 103(10):E2188-E2202.
[6] CHRISTIAN J I, BASARA J B, HUNT E D, et al. Flash drought development and cascading impacts associated with the 2010 Russian heatwave[J]. Environmental Research Letters, 2020, 15(9):094078.
[7] HOERLING M, EISCHEID J, KUMAR A, et al. Causes and predictability of the 2012 Great Plains drought[J]. Bulletin of the American Meteorological Society, 2014, 95(2):269-282.
[8] YUAN X, WANG Y, JI P, et al. A global transition to flash droughts under climate change[J]. Science, 2023, 380(6641):187-191.
[9] CHRISTIAN J I, BASARA J B, HUNT E D, et al. Global distribution, trends, and drivers of flash drought occurrence[J]. Nature Communications, 2021, 12(1):6330.
[10] MEKONG RIVER COMMISSION. Drought Management Strategy for the Lower Mekong Basin 2020–2025[R]. Vientiane: MRC, 2019.
[11] MEKONG RIVER COMMISSION. Mekong low flow and drought conditions in 2019–2021: Hydrological conditions in the Lower Mekong River Basin[R]. Vientiane: MRC, 2022.
[12] JONG B-T, TING M, SEAGER R, et al. ENSO teleconnections and impacts on US summertime temperature during a multiyear La Niña life cycle[J]. Journal of Climate, 2020, 33(14):6009-6024.
[13] WILHITE D A, BUCHANAN-SMITH M. Drought and water crises[M]. Boca Raton: CRC Press, 2017.
[14] WILHITE D A, SIVAKUMAR M V K, PULWARTY R. Managing drought risk in a changing climate: The role of national drought policy[J]. Weather and Climate Extremes, 2014, 3:4-13.
[15] 刘宪锋, 傅伯杰. 干旱对作物产量影响研究进展与展望[J]. 地理学报, 2021, 76(11):2632-2646.
[16] 刘永佳, 黄生志, 方伟, 等. 不同季节气象干旱向水文干旱的传播及其动态变化[J]. 水利学报, 2021, 52(1):93-102.
[17] SUNGMIN O, PARK S K. Flash drought drives rapid vegetation stress in arid regions in Europe[J]. Environmental Research Letters, 2023, 18(1):014028.
[18] OTKIN J A, ANDERSON M C, HAIN C, et al. Assessing the evolution of soil moisture and vegetation conditions during the 2012 United States flash drought[J]. Agricultural and Forest Meteorology, 2016, 218:230-242.
[19] FORD T W, LABOSIER C F. Meteorological conditions associated with the onset of flash drought in the eastern United States[J]. Agricultural and Forest Meteorology, 2017, 247:414-423.
[20] YUAN X, WANG L, WOOD E F. Anthropogenic intensification of southern African flash droughts as exemplified by the 2015/16 season[J]. Bulletin of the American Meteorological Society, 2018, 99(1):S86-S90.
[21] NGUYEN H, WHEELER M C, HENDON H H, et al. The 2019 flash droughts in subtropical eastern Australia and their association with large-scale climate drivers[J]. Weather and Climate Extremes, 2021, 32:100321.
[22] OTKIN J A, SVOBODA M, HUNT E D, et al. Flash droughts: A review and assessment of the challenges imposed by rapid-onset droughts in the United States[J]. Bulletin of the American Meteorological Society, 2018, 99(5):911-919.
[23] LISONBEE J, WOLOSZYN M, SKUMANICH M. Making sense of flash drought: Definitions, indicators, and where we go from here[J]. Journal of Applied and Service Climatology, 2022, 2021.
[24] HUNT E D, HUBBARD K G, WILHITE D A, et al. The development and evaluation of a soil moisture index[J]. International Journal of Climatology: A Journal of the Royal Meteorological Society, 2009, 29(5):747-759.
[25] MO K C, LETTENMAIER D P. Heat wave flash droughts in decline[J]. Geophysical Research Letters, 2015, 42(8):2823-2829.
[26] MO K C, LETTENMAIER D P. Precipitation deficit flash droughts over the United States[J]. Journal of Hydrometeorology, 2016, 17(4):1169-1184.
[27] ANDERSON M C, HAIN C, OTKIN J, et al. An intercomparison of drought indicators based on thermal remote sensing and NLDAS-2 simulations with US Drought Monitor classifications[J]. Journal of Hydrometeorology, 2013, 14(4):1035-1056.
[28] OTKIN J A, ANDERSON M C, HAIN C, et al. Examining rapid onset drought development using the thermal infrared–based evaporative stress index[J]. Journal of Hydrometeorology, 2013, 14(4):1057-1074.
[29] 叶天, 余锦华, 施欣池. 区域性极端骤发干旱与传统干旱事件形成过程的对比[J]. 气候变化研究进展, 2022, 18(3):319.
[30] KANG M, HAO Y, CHOI M. The effects of flash drought on the terrestrial ecosystem in Korea[J]. Journal of Hydrology, 2023, 624:129874.
[31] GONG Z, ZHU J, LI T, et al. The features of regional flash droughts in four typical areas over China and the possible mechanisms[J]. Science of The Total Environment, 2022, 827:154217.
[32] LI J, WANG Z, WU X, et al. Flash droughts in the Pearl River Basin, China: Observed characteristics and future changes[J]. Science of the Total Environment, 2020, 707:136074.
[33] LIU Y, ZHU Y, REN L, et al. Two different methods for flash drought identification: Comparison of their strengths and limitations[J]. Journal of Hydrometeorology, 2020, 21(4):691-704.
[34] PARKER T, GALLANT A, HOBBINS M, et al. Flash drought in Australia and its relationship to evaporative demand[J]. Environmental Research Letters, 2021, 16(6):064033.
[35] KANG H, SRIDHAR V, ALI S A. Climate change impacts on conventional and flash droughts in the Mekong River Basin[J]. Science of The Total Environment, 2022, 838:155845.
[36] MISHRA V, AADHAR S, MAHTO S S. Anthropogenic warming and intraseasonal summer monsoon variability amplify the risk of future flash droughts in India[J]. npj Climate and Atmospheric Science, 2021, 4(1):1.
[37] KOSTER R D, SCHUBERT S D, WANG H, et al. Flash drought as captured by reanalysis data: Disentangling the contributions of precipitation deficit and excess evapotranspiration[J]. Journal of Hydrometeorology, 2019, 20(6):1241-1258.
[38] MOHAMMADI K, JIANG Y, WANG G. Flash drought early warning based on the trajectory of solar-induced chlorophyll fluorescence[J]. Proceedings of the National Academy of Sciences, 2022, 119(32):e2202767119.
[39] MUKHERJEE S, MISHRA A K. A multivariate flash drought indicator for identifying global hotspots and associated climate controls[J]. Geophysical Research Letters, 2022, 49(2):e2021GL096804.
[40] FU K, WANG K. Quantifying flash droughts over China from 1980 to 2017[J]. Journal of Geophysical Research: Atmospheres, 2022, 127(24):e2022JD037152.
[41] NOGUERA I, DOMíNGUEZ‐CASTRO F, VICENTE‐SERRANO S M. Characteristics and trends of flash droughts in Spain, 1961–2018[J]. Annals of the New York Academy of Sciences, 2020, 1472(1):155-172.
[42] CHRISTIAN J I, BASARA J B, OTKIN J A, et al. A methodology for flash drought identification: Application of flash drought frequency across the United States[J]. Journal of Hydrometeorology, 2019, 20(5):833-846.
[43] HOBBINS M T, WOOD A, MCEVOY D J, et al. The evaporative demand drought index. Part I: Linking drought evolution to variations in evaporative demand[J]. Journal of Hydrometeorology, 2016, 17(6):1745-1761.
[44] MCEVOY D J, HUNTINGTON J L, HOBBINS M T, et al. The evaporative demand drought index. Part II: CONUS-wide assessment against common drought indicators[J]. Journal of Hydrometeorology, 2016, 17(6):1763-1779.
[45] AHMAD S K, KUMAR S V, LAHMERS T M, et al. Flash drought onset and development mechanisms captured with soil moisture and vegetation data assimilation[J]. Water Resources Research, 2022, 58(12):e2022WR032894.
[46] HAN J, ZHANG J, YANG S, et al. Improved Understanding of Flash Drought from a Comparative Analysis of Drought with Different Intensification Rates[J]. Remote Sensing, 2023, 15(8):2049.
[47] MAHTO S S, MISHRA V. Dominance of summer monsoon flash droughts in India[J]. Environmental Research Letters, 2020, 15(10):104061.
[48] 赵宗慈, 罗勇, 黄建斌. 全球变暖与季风[J]. 气候变化研究进展, 2024, 20(1):118.
[49] HE Q, WANG M, LIU K, et al. Spatiotemporal analysis of meteorological drought across China based on the high-spatial-resolution multiscale SPI generated by machine learning[J]. Weather and Climate Extremes, 2023, 40:100567.
[50] VICENTE-SERRANO S M, BEGUERíA S, LóPEZ-MORENO J I. A multiscalar drought index sensitive to global warming: the standardized precipitation evapotranspiration index[J]. Journal of Climate, 2010, 23(7):1696-1718.
[51] HOFFMANN D, GALLANT A J E, HOBBINS M. Flash drought in CMIP5 models[J]. Journal of Hydrometeorology, 2021, 22(6):1439-1454.
[52] NOGUERA I, VICENTE‐SERRANO S M, DOMíNGUEZ‐CASTRO F. The rise of atmospheric evaporative demand is increasing flash droughts in Spain during the warm season[J]. Geophysical Research Letters, 2022, 49(11):e2021GL097703.
[53] AADHAR S, MISHRA V. Increased drought risk in South Asia under warming climate: Implications of uncertainty in potential evapotranspiration estimates[J]. Journal of Hydrometeorology, 2020, 21(12):2979-2996.
[54] ZHANG G, GAN T Y, SU X. Twenty-first century drought analysis across China under climate change[J]. Climate Dynamics, 2022, 59(5-6):1665-1685.
[55] HOBBINS M T, RAMíREZ J A, BROWN T C. Trends in pan evaporation and actual evapotranspiration across the conterminous US: Paradoxical or complementary?[J]. Geophysical Research Letters, 2004, 31(13):e2004GL019846.
[56] PENDERGRASS A G, MEEHL G A, PULWARTY R, et al. Flash droughts present a new challenge for subseasonal-to-seasonal prediction[J]. Nature Climate Change, 2020, 10(3):191-199.
[57] ANDERSON M C, NORMAN J R, MECIKALSKI J R, et al. A climatological study of fluxes and moisture stress across the continental US based on thermal remote sensing. 1: Model formulation[J]. Journal of Geophysical Research: Atmospheres, 2007, 112:D10117.
[58] ANDERSON M C, NORMAN J M, MECIKALSKI J R, et al. A climatological study of evapotranspiration and moisture stress across the continental United States based on thermal remote sensing: 2. Surface moisture climatology[J]. Journal of Geophysical Research: Atmospheres, 2007, 112(D11):e2006JD007506.
[59] NGUYEN H, WHEELER M C, OTKIN J A, et al. Using the evaporative stress index to monitor flash drought in Australia[J]. Environmental Research Letters, 2019, 14(6):064016.
[60] SENEVIRATNE S I, CORTI T, DAVIN E L, et al. Investigating soil moisture–climate interactions in a changing climate: A review[J]. Earth-Science Reviews, 2010, 99(3-4):125-161.
[61] DORIGO W A, WAGNER W, HOHENSINN R, et al. The International Soil Moisture Network: a data hosting facility for global in situ soil moisture measurements[J]. Hydrology and Earth System Sciences, 2011, 15(5):1675-1698.
[62] BAKER C B, COSH M, BOLTEN J, et al. Working toward a National Coordinated Soil Moisture Monitoring Network: vision, progress, and future directions[J]. Bulletin of the American Meteorological Society, 2022, 103(12):E2719-E2732.
[63] FORD T W, QUIRING S M. Comparison of contemporary in situ, model, and satellite remote sensing soil moisture with a focus on drought monitoring[J]. Water Resources Research, 2019, 55(2):1565-1582.
[64] BABAEIAN E, SADEGHI M, JONES S B, et al. Ground, proximal, and satellite remote sensing of soil moisture[J]. Reviews of Geophysics, 2019, 57(2):530-616.
[65] SEHGAL V, GAUR N, MOHANTY B P. Global flash drought monitoring using surface soil moisture[J]. Water Resources Research, 2021, 57(9):e2021WR029901.
[66] ENTEKHABI D, NJOKU E G, O'NEILL P E, et al. The soil moisture active passive (SMAP) mission[J]. Proceedings of the IEEE, 2010, 98(5):704-716.
[67] SADEGHI M, GAO L, EBTEHAJ A, et al. Retrieving global surface soil moisture from GRACE satellite gravity data[J]. Journal of Hydrology, 2020, 584:124717.
[68] XIA Y, MITCHELL K, EK M, et al. Continental‐scale water and energy flux analysis and validation for North American Land Data Assimilation System project phase 2 (NLDAS‐2): 2. Validation of model‐simulated streamflow[J]. Journal of Geophysical Research: Atmospheres, 2012, 117(D3):e2011JD016051.
[69] MCDONOUGH K R, HUTCHINSON S L, HUTCHINSON J M S, et al. Validation and assessment of SPoRT-LIS surface soil moisture estimates for water resources management applications[J]. Journal of Hydrology, 2018, 566:43-54.
[70] BASARA J B, CHRISTIAN J I, WAKEFIELD R A, et al. The evolution, propagation, and spread of flash drought in the Central United States during 2012[J]. Environmental Research Letters, 2019, 14(8):084025.
[71] VICENTE‐SERRANO S M, MCVICAR T R, MIRALLES D G, et al. Unraveling the influence of atmospheric evaporative demand on drought and its response to climate change[J]. Wiley Interdisciplinary Reviews: Climate Change, 2020, 11(2):e632.
[72] BAJRANG C, ATTADA R, GOSWAMI B N. Possible factors for the recent changes in frequency of central Indian Summer Monsoon precipitation extremes during 2005–2020[J]. npj Climate and Atmospheric Science, 2023, 6(1):120.
[73] 张翔, 陈能成, 胡楚丽, 等. 1983—2015年我国农业区域三类骤旱时空分布特征分析[J]. 地球科学进展, 2018, 33(10):1048.
[74] DOLE R, HOERLING M, PERLWITZ J, et al. Was there a basis for anticipating the 2010 Russian heat wave?[J]. Geophysical Research Letters, 2011, 38(6).
[75] GERKEN T, BROMLEY G T, RUDDELL B L, et al. Convective suppression before and during the United States Northern Great Plains flash drought of 2017[J]. Hydrology and Earth System Sciences, 2018, 22(8):4155-4163.
[76] DEANGELIS A M, WANG H, KOSTER R D, et al. Prediction skill of the 2012 US Great Plains flash drought in subseasonal experiment (SubX) models[J]. Journal of Climate, 2020, 33(14):6229-6253.
[77] PAIMAZUMDER D, DONE J M. Potential predictability sources of the 2012 US drought in observations and a regional model ensemble[J]. Journal of Geophysical Research: Atmospheres, 2016, 121(21):12581-12592.
[78] WANG H, SCHUBERT S, KOSTER R, et al. On the role of SST forcing in the 2011 and 2012 extreme US heat and drought: A study in contrasts[J]. Journal of Hydrometeorology, 2014, 15(3):1255-1273.
[79] WANG H, SCHUBERT S D, KOSTER R D, et al. Attribution of the 2017 northern High Plains drought[J]. Bulletin of the American Meteorological Society, 2019, 100(GSFC-E-DAA-TN61281).
[80] MA F, YUAN X, LI H, et al. Flash drought in the south of Yangtze River and the potential impact of North Atlantic sea surface temperature[J]. Journal of Geophysical Research: Atmospheres, 2024, 129(5):e2023JD039820.
[81] HERRERA‐ESTRADA J E, MARTINEZ J A, DOMINGUEZ F, et al. Reduced moisture transport linked to drought propagation across North America[J]. Geophysical Research Letters, 2019, 46(10):5243-5253.
[82] GUAN Y, GU X, SLATER L J, et al. Tracing anomalies in moisture recycling and transport to two record-breaking droughts over the Mid-to-Lower Reaches of the Yangtze River[J]. Journal of Hydrology, 2022, 609:127787.
[83] WANG Y, YUAN X. Land-atmosphere coupling speeds up flash drought onset[J]. Science of the Total Environment, 2022, 851:158109.
[84] MAHTO S S, MISHRA V. Flash drought intensification due to enhanced land-atmospheric coupling in India[J]. Journal of Climate, 2023:1-31.
[85] QING Y, WANG S, ANCELL B C, et al. Accelerating flash droughts induced by the joint influence of soil moisture depletion and atmospheric aridity[J]. Nature Communications, 2022, 13(1):1139.
[86] SREEPARVATHY V, SRINIVAS V V. Meteorological flash droughts risk projections based on CMIP6 climate change scenarios[J]. npj Climate and Atmospheric Science, 2022, 5(1):77.
[87] MAHTO S S, MISHRA V. Increasing risk of simultaneous occurrence of flash drought in major global croplands[J]. Environmental Research Letters, 2023, 18(4):044044.
[88] ZHANG F, BIEDERMAN J A, DANNENBERG M P, et al. Five decades of observed daily precipitation reveal longer and more variable drought events across much of the western United States[J]. Geophysical Research Letters, 2021, 48(7):e2020GL092293.
[89] EDRIS S G, BASARA J B, CHRISTIAN J I, et al. Analysis of the critical components of flash drought using the standardized evaporative stress ratio[J]. Agricultural and Forest Meteorology, 2023, 330:109288.
[90] CHRISTIAN J I, MARTIN E R, BASARA J B, et al. Global projections of flash drought show increased risk in a warming climate[J]. Communications Earth & Environment, 2023, 4(1):165.
[91] SHAH J, KUMAR R, SAMANIEGO L, et al. On the role of antecedent meteorological conditions on flash drought initialization in Europe[J]. Environmental Research Letters, 2023, 18(6):064039.
[92] SHAH J, HARI V, RAKOVEC O, et al. Increasing footprint of climate warming on flash droughts occurrence in Europe[J]. Environmental Research Letters, 2022, 17(6):064017.
[93] ALLAN R P, WILLETT K M, JOHN V O, et al. Global changes in water vapor 1979–2020[J]. Journal of Geophysical Research: Atmospheres, 2022, 127(12):e2022JD036728.
[94] ALLAN R P, BARLOW M, BYRNE M P, et al. Advances in understanding large‐scale responses of the water cycle to climate change[J]. Annals of the New York Academy of Sciences, 2020, 1472(1):49-75.
[95] LI Q, ZENG T, CHEN Q, et al. Spatio-temporal changes in daily extreme precipitation for the Lancang–Mekong River Basin[J]. Natural Hazards, 2023, 115(1):641-672.
[96] TOMAS‐BURGUERA M, VICENTE‐SERRANO S M, PEñA‐ANGULO D, et al. Global characterization of the varying responses of the standardized precipitation evapotranspiration index to atmospheric evaporative demand[J]. Journal of Geophysical Research: Atmospheres, 2020, 125(17):e2020JD033017.
[97] KIM D, CHUN J A, YEO J-H, et al. Divergent flash drought risks indicated by evaporative stress and soil moisture projections under warming scenarios[J]. Environmental Research Letters, 2023, 18(9):094023.
[98] BREEDEN M L, BUTLER A H, ALBERS J R, et al. The spring transition of the North Pacific jet and its relation to deep stratosphere-to-troposphere mass transport over western North America[J]. Atmospheric Chemistry and Physics, 2021, 21(4):2781-2794.
[99] LIU X, LIU X, YU M, et al. Characteristics and driving conditions of flash drought in different grassland ecosystems[J]. Science of the Total Environment, 2022, 849:157923.
[100] THIRUMALAI K, DINEZIO P N, OKUMURA Y, et al. Extreme temperatures in Southeast Asia caused by El Niño and worsened by global warming[J]. Nature Communications, 2017, 8(1):15531.
[101] NIE J, RUETENIK G, GALLAGHER K, et al. Rapid incision of the Mekong River in the middle Miocene linked to monsoonal precipitation[J]. Nature Geoscience, 2018, 11(12):944-948.
[102] LIU J, CHEN D, MAO G, et al. Past and future changes in climate and water resources in the lancang–mekong River Basin: Current understanding and future research directions[J]. Engineering, 2022, 13:144-152.
[103] GERVAIS M, ATALLAH E, GYAKUM J R, et al. Arctic air masses in a warming world[J]. Journal of Climate, 2016, 29(7):2359-2373.
[104] HAN X, LI Q, YANG X, et al. The influence of anthropogenic climate change on meteorological drought in the Lancang-Mekong River basin[J]. Journal of Hydrology, 2023, 626:130334.
[105] DONG Z, LIU H, HU H, et al. Future projection of seasonal drought characteristics using CMIP6 in the Lancang-Mekong River Basin[J]. Journal of Hydrology, 2022, 610:127815.
[106] MEKONG RIVER COMMISSION. Mekong River Commission: state of the basin report 2010[R]. Vientiane: MRC, 2010.
[107] GAO J, YAO T, MASSON-DELMOTTE V, et al. Collapsing glaciers threaten Asia’s water supplies[J]. Nature, 2019, 565(7737):19-21.
[108] JOHNSTON R, KUMMU M. Water resource models in the Mekong Basin: a review[J]. Water Resources Management, 2012, 26:429-455.
[109] THILAKARATHNE M, SRIDHAR V. Characterization of future drought conditions in the Lower Mekong River Basin[J]. Weather and Climate Extremes, 2017, 17:47-58.
[110] CHEA R, GRENOUILLET G, LEK S. Evidence of water quality degradation in lower Mekong basin revealed by self-organizing map[J]. PloS one, 2016, 11(1):e0145527.
[111] HERSBACH H, BELL B, BERRISFORD P, et al. The ERA5 global reanalysis[J]. Quarterly Journal of the Royal Meteorological Society, 2020, 146(730):1999-2049.
[112] BENGTSSON L, HAGEMANN S, HODGES K I. Can climate trends be calculated from reanalysis data?[J]. Journal of Geophysical Research: Atmospheres, 2004, 109(D11):e2004JD004536.
[113] CHARLESWORTH E, PLöGER F, BIRNER T, et al. Stratospheric water vapor affecting atmospheric circulation[J]. Nature Communications, 2023, 14(1):3925.
[114] KISTLER R, KALNAY E, COLLINS W, et al. The NCEP–NCAR 50-year reanalysis: monthly means CD-ROM and documentation[J]. Bulletin of the American Meteorological Society, 2001, 82(2):247-268.
[115] STEIN A F, DRAXLER R R, ROLPH G D, et al. NOAA’s HYSPLIT atmospheric transport and dispersion modeling system[J]. Bulletin of the American Meteorological Society, 2015, 96(12):2059-2077.
[116] PENMAN H L. Natural evaporation from open water, bare soil and grass[J]. Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences, 1948, 193(1032):120-145.
[117] XIANG K, LI Y, HORTON R, et al. Similarity and difference of potential evapotranspiration and reference crop evapotranspiration–a review[J]. Agricultural Water Management, 2020, 232:106043.
[118] LI S, KANG S, ZHANG L, et al. Evaluation of six potential evapotranspiration models for estimating crop potential and actual evapotranspiration in arid regions[J]. Journal of Hydrology, 2016, 543:450-461.
[119] MILLY P C D, DUNNE K A. Potential evapotranspiration and continental drying[J]. Nature Climate Change, 2016, 6(10):946-949.
[120] YANG Y, RODERICK M L, GUO H, et al. Evapotranspiration on a greening Earth[J]. Nature Reviews Earth & Environment, 2023, 4(9):626-641.
[121] 季芳, 范林峰, 匡星星, 等. 青藏高原多年冻土退化对蒸散发的影响[J]. 水科学进展, 2022, 33(3):390-400.
[122] GAVILAN P, BERENGENA J, ALLEN R G. Measuring versus estimating net radiation and soil heat flux: Impact on Penman–Monteith reference ET estimates in semiarid regions[J]. Agricultural Water Management, 2007, 89(3):275-286.
[123] BEGUERí A S, VICENTE‐SERRANO S M, REIG F, et al. Standardized precipitation evapotranspiration index (SPEI) revisited: parameter fitting, evapotranspiration models, tools, datasets and drought monitoring[J]. International Journal of Climatology, 2014, 34(10):3001-3023.
[124] CHIANG F, MAZDIYASNI O, AGHAKOUCHAK A. Evidence of anthropogenic impacts on global drought frequency, duration, and intensity[J]. Nature Communications, 2021, 12(1):2754.
[125] BäCK T, KOK J N, ROZENBERG G. Handbook of natural computing[M]. Springer, Heidelberg, 2012: 585-622.
[126] KOHONEN T. Essentials of the self-organizing map[J]. Neural Networks, 2013, 37:52-65.
[127] BRERETON R G. Self organising maps for visualising and modelling[J]. Chemistry Central Journal, 2012, 6(2):1-15.
[128] KOHONEN T. Comparison of SOM point densities based on different criteria[J]. Neural Computation, 1999, 11(8):2081-2095.
[129] COOK B I, SMERDON J E, SEAGER R, et al. Global warming and 21 st century drying[J]. Climate Dynamics, 2014, 43:2607-2627.
[130] WILLIAMS A P, SEAGER R, ABATZOGLOU J T, et al. Contribution of anthropogenic warming to California drought during 2012–2014[J]. Geophysical Research Letters, 2015, 42(16):6819-6828.
[131] AYANTOBO O O, WEI J, HOU M, et al. Characterizing potential sources and transport pathways of intense moisture during extreme precipitation events over the Tibetan Plateau[J]. Journal of Hydrology, 2022, 615:128734.
[132] PAPRITZ L, HAUSWIRTH D, HARTMUTH K. Moisture origin, transport pathways, and driving processes of intense wintertime moisture transport into the Arctic[J]. Weather and Climate Dynamics, 2022, 3(1):1-20.
[133] AHMADI A, DACCACHE A, SNYDER R L, et al. Meteorological driving forces of reference evapotranspiration and their trends in California[J]. Science of The Total Environment, 2022, 849:157823.
[134] KRASKOV A, STöGBAUER H, GRASSBERGER P. Estimating mutual information[J]. Physical review E, 2004, 69(6):066138.
[135] JAISWAL J K, SAMIKANNU R. Application of random forest algorithm on feature subset selection and classification and regression[C]. Tiruchirappalli: World Congress on Computing and Communication Technologies, 2017: 65-68.
[136] DEWI C, CHEN R-C. Random forest and support vector machine on features selection for regression analysis[J]. International Journal of Innovative Computing, Information and Control, 2019, 15(6):2027-2037.
[137] FUNK C, HARRISON L, ALEXANDER L, et al. Exploring trends in wet-season precipitation and drought indices in wet, humid and dry regions[J]. Environmental Research Letters, 2019, 14(11):115002.
[138] MIAO L, LI S, ZHANG F, et al. Future drought in the dry lands of Asia under the 1.5 and 2.0 °C warming scenarios[J]. Earth's Future, 2020, 8(6):e2019EF001337.
[139] PAPASTEFANOU P, ZANG C S, ANGELOV Z, et al. Recent extreme drought events in the Amazon rainforest: assessment of different precipitation and evapotranspiration datasets and drought indicators[J]. Biogeosciences, 2022, 19(16):3843-3861.
[140] SANDEEP S, AJAYAMOHAN R S, BOOS W R, et al. Decline and poleward shift in Indian summer monsoon synoptic activity in a warming climate[J]. Proceedings of the National Academy of Sciences, 2018, 115(11):2681-2686.
[141] NAIDU C V, DURGALAKSHMI K, MUNI KRISHNA K, et al. Is summer monsoon rainfall decreasing over India in the global warming era?[J]. Journal of Geophysical Research: Atmospheres, 2009, 114(D24):e2008JD011288.
[142] RAMESH K V, GOSWAMI P. Reduction in temporal and spatial extent of the Indian summer monsoon[J]. Geophysical Research Letters, 2007, 34(23):e2007GL031631.
[143] SEO K-H, YOON S-P, LU J, et al. What controls the interannual variation of Hadley cell extent in the Northern Hemisphere: physical mechanism and empirical model for edge variation[J]. npj Climate and Atmospheric Science, 2023, 6(1):204.
[144] LI F, XIAO J, CHEN J, et al. Global water use efficiency saturation due to increased vapor pressure deficit[J]. Science, 2023, 381(6658):672-677.
[145] BRUBAKER K L, ENTEKHABI D, EAGLESON P S. Estimation of continental precipitation recycling[J]. Journal of Climate, 1993, 6(6):1077-1089.
[146] BURDE G I, ZANGVIL A. The estimation of regional precipitation recycling. Part I: Review of recycling models[J]. Journal of Climate, 2001, 14(12):2497-2508.
[147] ZHAO Y, ZHOU T. Interannual variability of precipitation recycle ratio over the Tibetan Plateau[J]. Journal of Geophysical Research: Atmospheres, 2021, 126(2):e2020JD033733.
[148] VAN DER ENT R J, TUINENBURG O A, KNOCHE H R, et al. Should we use a simple or complex model for moisture recycling and atmospheric moisture tracking?[J]. Hydrology and Earth System Sciences, 2013, 17(12):4869-4884.
[149] SEAGER R, NAIK N, VECCHI G A. Thermodynamic and dynamic mechanisms for large-scale changes in the hydrological cycle in response to global warming[J]. Journal of Climate, 2010, 23(17):4651-4668.
[150] JING W, ZHAO X, YAO L, et al. Variations in terrestrial water storage in the Lancang-Mekong river basin from GRACE solutions and land surface model[J]. Journal of Hydrology, 2020, 580:124258.
[151] RATNA S B, CHERCHI A, OSBORN T J, et al. The extreme positive Indian Ocean dipole of 2019 and associated Indian summer monsoon rainfall response[J]. Geophysical Research Letters, 2021, 48(2):e2020GL091497.
[152] LIU Y, HU Z Z, WU R. Was the extremely wet winter of 2018/2019 in the lower reach of the Yangtze River driven by El Niño–Southern Oscillation?[J]. International Journal of Climatology, 2020, 40(15):6441-6457.
[153] SABEERALI C T, AJAYAMOHAN R S. On the shortening of Indian summer monsoon season in a warming scenario[J]. Climate Dynamics, 2018, 50(5-6):1609-1624.
[154] LI J, WU Z, JIANG Z, et al. Can global warming strengthen the East Asian summer monsoon?[J]. Journal of Climate, 2010, 23(24):6696-6705.
[155] HA K J, MOON S, TIMMERMANN A, et al. Future changes of summer monsoon characteristics and evaporative demand over Asia in CMIP6 simulations[J]. Geophysical Research Letters, 2020, 47(8):e2020GL087492.
修改评论