[1] COHEN R E. Origin of ferroelectricity in perovskite oxides[J]. Nature, 1992, 358(6382): 136-138.
[2] HAERTLING G H. Ferroelectric ceramics: history and technology[J]. Journal of the American Ceramic Society, 1999, 82(4): 797-818.
[3] LV X, ZHENG T, ZHAO C L, et al. Multiscale structure engineering for high-performance Pb-free piezoceramics[J]. Accounts of Materials Research, 2022, 3(4): 461-471.
[4] KISHORE R A, PRIYA S. A review on low-grade thermal energy harvesting: materials, methods and devices[J]. Materials, 2018, 11(8): 1433.
[5] ABEL S, STöFERLE T, MARCHIORI C, et al. A strong electro-optically active lead-free ferroelectric integrated on silicon[J]. Nature Communications, 2013, 4(1): 1671.
[6] MA C, LUO Z, HUANG W C, et al. Sub-nanosecond memristor based on ferroelectric tunnel junction[J]. Nature Communications, 2020, 11(1): 1439.
[7] DAWBER M, RABE K M, SCOTT J F. Physics of thin-film ferroelectric oxides[J]. Reviews of Modern Physics, 2005, 77(4): 1083.
[8] SCOTT J F. Applications of modern ferroelectrics[J]. Science, 2007, 315(5814): 954-959.
[9] GAO P, NELSON C T, JOKISAARI J R, et al. Direct observations of retention failure in ferroelectric memories[J]. Advanced Materials, 2012, 24(1): 1106-1110.
[10] HOFFMAN J, PAN X, REINER J W, et al. Ferroelectric field effect transistors for memory applications[J]. Advanced Materials, 2010, 22(26‐27): 2957-2961.
[11] WEN Z, LI C, WU D, et al. Ferroelectric-field-effect-enhanced electroresistance in metal/ferroelectric/semiconductor tunnel junctions[J]. Nature Materials, 2013, 12(7): 617-621.
[12] KALININ S V, MOROZOVSKA A N, CHEN L Q, et al. Local polarization dynamics in ferroelectric materials[J]. Reports on Progress in Physics, 2010, 73(5): 056502.
[13] GAO P, ZHANG Z Y, LI M Q, et al. Possible absence of critical thickness and size effect in ultrathin perovskite ferroelectric films[J]. Nature Communications, 2017, 8(1): 15549.
[14] JIA C L, URBAN K W, ALEXE M, et al. Direct observation of continuous electric dipole rotation in flux-closure domains in ferroelectric Pb(Zr, Ti)O3[J]. Science, 2011, 331(6023): 1420-1423.
[15] YADAV A K, NELSON C T, HSU S L, et al. Observation of polar vortices in oxide superlattices[J]. Nature, 2016, 530(7589): 198-201.
[16] BALKE N, WINCHESTER B, REN W, et al. Enhanced electric conductivity at ferroelectric vortex cores in BiFeO3[J]. Nature Physics, 2012, 8(1): 81-88.
[17] YADAV A K, NGUYEN K X, HONG Z J, et al. Spatially resolved steadystate negative capacitance[J]. Nature, 2019, 565(7740): 468-471.
[18] LINES M E. Principles and Applications of Ferroelectrics and Related Materials[M]. USA: Oxford University Press, 2001.
[19] HOFFMANN M, SLESAZECK S, MIKOLAJICK T. Progress and future prospects of negative capacitance electronics: A materials perspective[J]. APL Materials, 2021, 9(2): 020902.
[20] KORNEV I, FU H X, BELLAICHE L. Ultrathin films of ferroelectric solid solutions under a residual depolarizing field[J]. Physical Review Letters, 2004, 93(19): 196104.
[21] ARLT G, SASKO P. Domain configuration and equilibrium size of domains in BaTiO3 ceramics[J]. Journal of Applied Physics, 1980, 51(9): 4956-4960.
[22] SCHILLING A, BYRNE D, CATALAN G, et al. Domains in ferroelectric nanodots[J]. Nano Letters, 2009, 9(9): 3359-3364.
[23] NELSON C T, WINCHESTER B, ZHANG Y, et al. Spontaneous vortex nanodomain arrays at ferroelectric heterointerfaces[J]. Nano Letters, 2011, 11(2): 828-834.
[24] TANG Y L, ZHU Y L, MA X L, et al. Observation of a periodic array of flux-closure quadrants in strained ferroelectric PbTiO3 films[J]. Science, 2015, 348(6234): 547-551.
[25] LI S, ZHU Y L, TANG Y L, et al. Thickness-dependent a1/a2 domain evolution in ferroelectric PbTiO3 films[J]. Acta Materialia, 2017, 131: 123-130.
[26] LIU Y, WANG Y J, ZHU Y L, et al. Large scale two-dimensional flux-closure domain arrays in oxide multilayers and their controlled growth[J]. Nano Letters, 2017, 17(12): 7258-7266.
[27] DAMODARAN A R, CLARKSON J D, HONG Z, et al. Phase coexistence and electric-field control of toroidal order in oxide superlattices[J]. Nature Materials, 2017, 16(10): 1003-1009.
[28] TAN C B, DONG Y Q, SUN Y W, et al. Engineering polar vortex from topologically trivial domain architecture[J]. Nature Communications, 2021, 12(1): 4620.
[29] LI X M, TAN C B, LIU C, et al. Atomic-scale observations of electrical and mechanical manipulation of topological polar flux closure[J]. Proceedings of the National Academy of Sciences, 2020, 117(32): 18954-18961.
[30] CHEN P, ZHONG X L, ZORN J A, et al. Atomic imaging of mechanically induced topological transition of ferroelectric vortices[J]. Nature Communications, 2020, 11(1): 1840.
[31] CHEN P, TAN C B, JIANG Z X, et al. Electrically driven motion, destruction, and chirality change of polar vortices in oxide superlattices[J]. Science China Physics, Mechanics & Astronomy, 2022, 65(3): 237011.
[32] ABID A Y, SUN Y W, HOU X, et al. Creating polar antivortex in PbTiO3/SrTiO3 superlattice[J]. Nature Communications, 2021, 12(1): 2054.
[33] DU K, ZHANG M, DAI C, et al. Manipulating topological transformations of polar structures through real-time observation of the dynamic polarization evolution[J]. Nature Communications, 2019, 10(1): 4864.
[34] FOX D, ZHOU Y B, O’NEILL A, et al. Helium ion microscopy of graphene: beam damage, image quality and edge contrast[J]. Nanotechnology, 2013, 24(33): 335702.
[35] FOX D S, ZHOU Y B, MAGUIRE P, et al. Nanopatterning and electrical tuning of MoS2 layers with a subnanometer helium ion beam[J]. Nano Letters, 2015, 15(8): 5307-5313.
[36] STANFORD M G, PUDASAINI P R, BELIANINOV A, et al. Focused helium-ion beam irradiation effects on electrical transport properties of fewlayer WSe2: enabling nanoscale direct write homo-junctions[J]. Scientific Reports, 2016, 6(1): 27276.
[37] IBERI V, LIANG L, IEVLEV A V, et al. Nanoforging single layer MoSe2through defect engineering with focused helium ion beams[J]. Scientific Reports, 2016, 6(1): 30481.
[38] CHOE H S, PRABHAKAR R, WEHMEYER G, et al. Ion write microthermotics: Programing thermal metamaterials at the microscale[J]. Nano Letters, 2019, 19(6): 3830-3837.
[39] KLEIN J, LORKE M, FLORIAN M, et al. Site-selectively generated photon emitters in monolayer MoS2 via local helium ion irradiation[J]. Nature Communications, 2019, 10(1): 2755.
[40] SAREMI S, XU R, ALLEN F I, et al. Local control of defects and switching properties in ferroelectric thin films[J]. Physical Review Materials, 2018, 2(8): 084414.
[41] KANG S, JANG W-S, MOROZOVSKA A N, et al. Highly enhanced ferroelectricity in HfO2-based ferroelectric thin film by light ion bombardment[J]. Science, 2022, 376(6594): 731-738.
[42] PAL A, NARASIMHAN V K, WEEKS S, et al. Enhancing ferroelectricity in dopant-free hafnium oxide[J]. Applied Physics Letters, 2017, 110(2): 022903.
[43] HOFFMANN M, SCHROEDER U, SCHENK T, et al. Stabilizing the ferroelectric phase in doped hafnium oxide[J]. Journal of Applied Physics, 2015, 118(7): 072006.
[44] MIZOGUCHI T, SAITOH M, IKUHARA Y. First-principles calculation of oxygen K-electron energy loss near edge structure of HfO2[J]. Journal of Physics: Condensed Matter, 2009, 21(10): 4212.
[45] GONG F H, TANG Y L, WANG Y J, et al. Absence of critical thickness for polar skyrmions with breaking the Kittel’s law[J]. Nature Communications, 2023, 14(1): 3376.
[46] GENG W R, GUO X W, ZHU Y L, et al. Rhombohedral–orthorhombic ferroelectric morphotropic phase boundary associated with a polar vortex in BiFeO3 films[J]. ACS Nano, 2018, 12(11): 11098-11105.
[47] WANG S X, LI W, DENG C G, et al. Giant electric field-induced second harmonic generation in polar skyrmions[J]. Nature Communications, 2024, 15(1): 1374.
[48] DAS S, HONG Z J, STOICA V, et al. Local negative permittivity and topological phase transition in polar skyrmions[J]. Nature Materials, 2021, 20(2): 194-201.
[49] CAI X B, CHEN C, XIE L, et al. In-plane charged antiphase boundary and 180° domain wall in a ferroelectric film[J]. Nature Communications, 2023, 14(1): 8174.
[50] WILLIAMS D B, CARTER C B. Transmission Electron Microscopy: A Textbook for Materials Science[M]. USA: Springer, 1996.
[51] CHEN P, ZHONG X L, ZORN J A, et al. Atomic imaging of mechanically induced topological transition of ferroelectric vortices[J]. Nature Communications, 2020, 11(1): 1840.
[52] 戎咏华. 分析电子显微学导论[M]. 北京: 高等教育出版社, 2006.
[53] KIM S, JUNG Y, KIM J J, et al. Z-contrast dependence of quantitative scanning transmission electron microscopy image of Si1− xGex binary crystals[J]. Journal of Alloys and Compounds, 2015, 618: 545-550.
[54] BROWNING N D, CHISHOLM M F, PENNYCOOK S J. Atomic-resolution chemical analysis using a scanning transmission electron microscope[J]. Nature, 1993, 366(6451): 143-146
[55] LUO R C, GAO M, WANG C W, et al. Probing functional structures, defects, and interfaces of 2D transition metal dichalcogenides by electron microscopy[J]. Advanced Functional Materials, 2024, 34(2): 2307625.
[56] CHOE H S, PRABHAKAR R, WEHMEYER G, et al. Ion write microthermotics: Programing thermal metamaterials at the microscale[J]. Nano Letters, 2019, 19(6): 3830-3837.
[57] LONG D M, SINGH M K, SMALL K A, et al. Cryo-FIB for TEM investigation of soft matter and beam sensitive energy materials[J]. Nanotechnology, 2022, 33(50): 503001.
[58] MALIS T, CHENG S C, EGERTON R F. EELS log‐ratio technique for specimen ‐ thickness measurement in the TEM[J]. Journal of Electron Microscopy Technique, 1988, 8(2): 193-200.
[59] MCGILVERY C M, GOODE A E, SHAFFER M S, et al. Contamination of holey/lacey carbon films in STEM[J]. Micron, 2012, 43(2-3): 450-455.
[60] HE D S. Removal of silicon-containing contaminants from TEM specimens[J]. Ultramicroscopy, 2023, 253: 113797.
[61] HÿTCH M J, SNOECK E, KILAAS R. Quantitative measurement of displacement and strain fields from HREM micrographs[J]. Ultramicroscopy, 1998, 74(3): 131-146.
[62] HÿTCH M J, PLAMANN T. Imaging conditions for reliable measurement of displacement and strain in high-resolution electron microscopy[J]. Ultramicroscopy, 2001, 87(4): 199-212.
[63] MCQUAID R G, GRUVERMAN A, SCOTT J F, et al. Exploring vertex interactions in ferroelectric flux-closure domains[J]. Nano Letters, 2014, 14(8): 4230-4237.
修改评论