[1] 杨婷婷.基于AlN压电薄膜的水听器结构优化及测试[D]. 中北大学, 2022
[2] 尹义龙,李俊宝,邢建新,等. 弛豫铁电单晶弯曲梁矢量水听器研究[J]. 声学学报, 2014, 39(02): 243-250.
[3] 杨磊.氮化铝压电薄膜MEMS水听器的设计、加工与测试[D]. 浙江大学, 2020
[4] V Y, TOPOLOV C R, BOWEN P. et al. New aspect-ratio effect in three-component composites for piezoelectric sensor, hydrophone and energy-harvesting applications[J]. Sensors and Actuators A: Physical, 2015, 229: 94-103.
[5] HURRELL A, DUCK F. A two-dimensional hydrophone array using piezoelectric PVDF[J]. IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control, 2000, 47: 1345-1353.
[6] DUO T, GUO L Z, HU Y. Design and Test about High Sensitivity Thin Shell Piezoelectric Hollow Sphere Hydrophone[Z]: 1-6.
[7] 丁然,唐洁,赵珍阳,等. MEMS水听器国内研究现状与未来技术发展[J]. 传感器与微系统, 2022, 41(08): 157-160.
[8] 任薇戎. 纤毛式同振型矢量水听器的设计与实现_任薇戎[D]. 中北大学, 2023
[9] 申辉. 纤毛式MEMS矢量水听器研究_张国军[D]. 中北大学, 2015
[10] CHEN H, ZHENG Y J, HU H P, et al. ANALYSIS ON PERFORMANCE OF FLEXTENSIONAL PIEZOELECTRIC HYDROPHONE[C]//2016年全国压电和声波理论及器件应用研讨会论文摘要集, 2016: 64-65.
[11] GUI F F, HAO C, HONG-P H, et al. SENSITIVITY ANALYSIS OF THE INFRASOUND PIEZOELECTRIC HYDROPHONE OF RADIALLY POLARIZED CYLINDRICAL TUBE[Z]: 1-4.
[12] LEWIN P A. Miniature piezoelectric polymer ultrasonic hydrophone probes[J]: 1-4.
[13] KHARAT D K, SANDHYA M, SANIA A, et al. Polymeric Piezoelectric Transducers for Hydrophone Applications[Z]: 1-16.
[14] 杨光,张祥,李淑秋,等. 压电水听器线阵与DFB光纤水听器线阵的分析[J]. 声学技术, 2011, 30(03): 294-299.
[15] YANG K, LI Z G, CHEN D. Design and Fabrication of a Novel T-Shaped Piezoelectric ZnO Cantilever Sensor[J]. Active and Passive Electronic Components, 2012, 2012: 1-7.
[16] ABDUL B, MASTRONARDI V M, QUALTIERI A. et al. Design, fabrication and characterization of piezoelectric cantilever MEMS for underwater application[J]. Micro and Nano Engineering, 2020, 7: 100050.
[17] ROH T, YEO H G, JOH C, et al. Fabrication and Underwater Testing of a Vector Hydrophone Comprising a Triaxial Piezoelectric Accelerometer and Spherical Hydrophone[J]. Sensors, 2022, 22(24): 9796.
[18] 王文龙,姜兆祯,孙文祺,等. 紧凑型压电加速度计及其在矢量水听器中的应用_王文龙[J]. 中国惯性技术学报, 2022, 30(05): 631-637.
[19] 刘园园,谭晓兰. ZnO压电薄膜压力传感器的研究_张敏亮[J]. 压电与声光, 2017, 39(06): 945-949.
[20] 石树正,耿文平,毕开西,等. 一体化仿生结构压电MEMS水声传感器[J]. 微纳电子技术, 2022, 59(01): 50-57.
[21] 丁然,唐洁,赵珍阳,等. MEMS水听器国内研究现状与未来技术发展[J]. 传感器与微系统, 2022, 41(08): 157-160.
[22] 林荣辉,孙翠敏,尤晖,等. 基于ZnO压电薄膜的柔性MEMS超声波换能器[J]. 压电与声光, 2016, 38(06): 851-854, 860.
[23] YANG Y C, SONG C, WANG X H, et al. Giant piezoelectric d33 coefficient in ferroelectric vanadium doped ZnO films[J]. Applied Physics Letters, 2008, 92: 1-2.
[24] HAKSUE L, SUNGJOON C, WONKYU M. A micro-machined piezoelectric flexural-mode hydrophone with air backing: Benefit of air backing for enhancing sensitivity[J]. The Journal of the Acoustical Society of America, 2010: 1-13.
[25] ITO M, OKADA N, TAKABE M. et al. High sensitivity ultrasonic sensor for hydrophone applications, using an epitaxial Pb(Zr,Ti)O3 film grown on SrRuO3/Pt/γ-Al2O3/Si[J]. Sensors and Actuators A: Physical, 2008, 145-146: 278-282.
[26] 乔慧,刘俊,张斌珍,等. 一种新型压阻式硅微仿生矢量水听器的设计[J]. 传感技术学报, 2008.
[27] 黄威. 水声探测技术综述[J]. 中国新技术新产品, 2010.
[28] 王雁,刘梦然,张国军. 复合式MEMS水听器的设计[J]. 压电与声光, 2017.
[29] 华晴,沈拓,张轩雄. 带封装的压电麦克风声电模型[J]. 传感器与微系统, 2018.
[30] BAHRAM A G, MOJTABA S N, MORTEZA D. Design and modeling of a novel high sensitive MEMS piezoelectric vector hydrophone[J]. Microsystem Technologies, 2018, 24: 2085-2095.
[31] SHI S Z, GENG W P, BI K X, et al. Design and fabrication of a novel MEMS piezoelectric hydrophone[J]. Sensors and Actuators A: Physical, 2020, 313: 112203.
[32] PEYMAN A, ZOHEIR K, HOSSEIN G. Design and simulation of a flat cap mushroom shape microelectromechanical systems piezoelectric transducer with the application as hydrophone[J]. Iet Science, Measurement & Technology, 2020, 14: 157-164.
[33] AZIZOLLAH B, GANJI M, SHAMS N. The Effect of Material Properties on Sensitivity of the Microelectromechanical Systems Piezoelectric Hydrophone[J]: 1-8.
[34] YANG D F, YANG L, CHEN X Y, et al. A piezoelectric AlN MEMS hydrophone with high sensitivity and low noise density[J]. Sensors and Actuators A: Physical, 2021, 318: 112493.
[35] 刘云飞,周瑜,朱晓枭,等. Design of MEMS Piezoelectric Vector Hydrophone[J]. 传感器与微系统, 2021, 40(10): 87-89.
[36] 郝震宏,汪承灏,乔东海. _基于ZnO压电薄膜的弯曲振动硅微压电超声换能器的研究[J]. 声学学报(中文版), 2010, 35(01): 1-8.
[37] 李俊红,魏建辉,马军,等. MEMS压电矢量水听器研究[J]. 声学学报, 2016, 41(03): 273-280.
[38] 樊青青,李俊红,翟禹光,等. 新型MEMS压电矢量水听器[J]. 声学学报, 2023, 48(01): 102-111.
[39] XU J H, CHAI K V, CHU A T, WU G Q, et al. Low-Cost, Tiny-Sized MEMS Hydrophone Sensor for Water Pipeline Leak Detection[J]. IEEE Transactions on Industrial Electronics, 2019, 66: 6374-6382.
[40] 王玥. 稀土硼酸镧/软金属纳米铟复合材料的制备及摩擦学性能的研究[D]. 贵州大学, 2016
[41] LV T, LIANG X Q, ZHANG G J, et al. Design and implementation of beaded cilia MEMS vector hydrophone[J]. Measurement, 2021, 182: 109751.
[42] LI F, LI Z, JIN F J. Fabrication and characterization of ZnO micro and nanostructures prepared by thermal evaporation[J]. Physica B: Condensed Matter, 2008, 403: 664-669.
[43] Xing Y J, Xi Z H, Zhang X D, et al. Thermal evaporation synthesis of zinc oxide nanowires[J]. Applied Physics a, 2003, 80: 1-2.
[44] NURUL R, MASAHIRO T, MOHAMAD M, et al. Growth of High-Density Zinc Oxide Nanorods on Porous Silicon by Thermal Evaporation[J]. Materials, 2012, 5: 1-2.
[45] DEEPAK B, HIMANSHU S, R.S. M, et al. A novel ZnO piezoelectric microcantilever energy scavenger: Fabrication and characterization[J]. Sensing and Bio-sensing Research, 2016, 9: 45-52.
[46] CRISTINA V, MAN Z, LAETITIA P. Recent progress in the electrochemical deposition of ZnO nanowires: synthesis approaches and applications[J]. Critical Reviews in Solid State and Materials Sciences, 2021, 47: 772-805.
[47] SHAN L W, ZHANG X, FAN H Z. Synthesis and Characterization of ZnO Nanowires Using a Simple PVD Approach without Catalysts[J]. Materials Science Forum, 2005, 475-479: 3535-3538.
[48] ZHONG Z Y, WANG C C, HAN R Y, et al. Synthesis of zinc oxide/carbon fiber composites with improved piezoelectric response by plasma-liquid interaction[J]. Composites Communications, 2023, 38: 101495.
[49] 耿茜,汪建华,王升高. 射频溅射法生长ZnO薄膜的参数研究[J]. 微纳电子技术, 2007, (05): 250-253.
[50] JIMENEZ G, COMINI E, FERRONI M, et al. Synthesis of different ZnO nanostructures by modified PVD process and potential use for dye-sensitized solar cells[J]. Materials Chemistry and Physics, 2010, 124: 694-698.
[51] MIKHLIF H M, DAWOOD M O, ABDULMUNEM O M, et al. Preparation of High-Performance Room Temperature ZnO Nanostructures Gas Sensor[J]. Acta Physica Polonica: A, 2021, 140(4).
[52] GEORGE A, KUMARI P, SOIN N, et al. Microstructure and field emission characteristics of ZnO nanoneedles grown by physical vapor deposition[J]. Materials Chemistry and Physics, 2010, 123: 634-638.
[53] 李学玲,王文,范淑瑶. 基于LGS的声表面波高温传感器件优化设计[C]//2019年全国声学大会论文集, 2019: 379-380.
[54] GORLA C R, EMANETOGLU N, LIANG S, et al. Ultraviolet Detectors Based on Epitaxial ZnO Films Grown by MOCVD[Z]: 1-6.
[55] 索春光,张文斌,王华,等. 微型DMFC用新型双催化层膜电极的制备_索春光[J]. 江苏大学学报(自然科学版), 2013, 34(06): 626-630.
[56] MARK M, WANG L Y, XU H T, et al. Low‐frequency nanocomposite piezoelectric energy harvester with embedded zinc oxide nanowires[J]. Polymer Composites, 2021, 42: 4573-4585.
[57] KEVIN T, SHERIF A T, MICHELLE J S. SPENCER. Restoring Piezoelectric Properties in 2D Zinc Oxide Nanosheets by Surface Modifications: Implications for Piezoelectric Nanogenerators[J]. Acs Applied Nano Materials, 2023, 6: 14767-14776.
[58] PALLAVI S, ZEYNEL G, NATHAN J. Development and characterization of confocal sputtered piezoelectric zinc oxide thin film[J]. Vacuum, 2021, 184: 109930.
[59] PRASANNA P D, RAJESH S P, RAJENDRA M. P. Fabrication and characterization of zinc oxide piezoelectric MEMS resonator[J]. Microsystem Technologies, 2019, 26: 415-423.
[60] ZHANG H R, GUO T, XIONG D, et al. Carrier concentration-dependent interface engineering for high-performance zinc oxide piezoelectric device[J]. Journal of Colloid and Interface Science, 2023, 629: 534-540.
[61] LIU Y, ZHANG G J, WU D Y, et al. Research on DOA estimation method of single MEMS vector hydrophone based on pulse signal[J]. Sensors and Actuators A: Physical, 2022, 346: 113859.
[62] 王建平,张国军,薛晨阳,等. 基于MEMS矢量水听器微弱信号提取电路的设计与测试_王建平[J]. 仪表技术与传感器, 2010, (07): 74-77.
[63] 陈桂英,张国军,刘林仙,等. 基于MEMS仿生矢量水听器的水声定向研究_陈桂英[J]. 传感器与微系统, 2013, 32(06): 15-17.
[64] 许姣,张国军,石归雄,等. 纤毛式矢量水听器新型封装结构的研究_许姣[J]. 传感技术学报, 2011, 24(04): 517-521.
[65] YANG D F, YANG L, CHEN X Y, et al. A piezoelectric AlN MEMS hydrophone with high sensitivity and low noise density[J]. Sensors and Actuators A: Physical, 2021, 318: 112493.
[66] 刘源,王丽娟,赵鹏,等. MEMS仿生矢量水听器二次集成的误差分析测试[J]. 微纳电子技术, 2015, 52(01): 42-48.
[67] LIU M R, ZHANG G J, SONG X P, et al. Design of the Monolithic Integrated Array MEMS Hydrophone[J]. IEEE Sensors Journal, 2016, 16: 989-995.
[68] 李俊红,魏建辉,马军,等. ZnO薄膜硅微压电矢量水听器[J]. 声学学报, 2016, 41(03): 273-280.
[69] 黄湘俊,邸啸,刘娅,等. 基于Al_(0.8)Sc_(0.2)N压电薄膜MEMS声波器件的研制[J]. 压电与声光, 2022.
[70] XU J H, ZHANG X L, SANCHITHA N F, et al. AlN-on-SOI platform-based micro-machined hydrophone[J]. Applied Physics Letters, 2016, 109.
[71] JEONG S H, PARK B N, LEE S B, et al. Study on the doping effect of Li-doped ZnO film[J]. Thin Solid Films, 2008, 516: 5586-5589.
[72] MARCO F, CHANDRAIAHGARI C R, BELLIS G D, et al. Piezoelectric Thin Films of ZnO-Nanorods/Nanowalls Grown by Chemical Bath Deposition[J]. IEEE Transactions on Nanotechnology, 2018, 17: 311-319.
[73] LIM T, ICO G, JUNG K, et al. Crystal growth and piezoelectric characterization of mechanically stable ZnO nanostructure arrays[J]. Crystengcomm, 2018, 20: 5688-5694.
[74] YUAN Y H, CHOW K S, DU H J, et al. A ZnO thin-film driven microcantilever for nanoscale actuation and sensing[J]. International Journal of Smart and Nano Materials, 2013, 4: 128-141.
[75] JOHNY T A, KUMAR V, IMAI H, et al. Influence of lithium doping on the structural and electrical characteristics of ZnO thin films[J]. Thin Solid Films, 2012, 520: 5797-5800.
[76] MARCO L, DENIS P, ALESSIO V, et al. Development of a Flexible Lead-Free Piezoelectric Transducer for Health Monitoring in the Space Environment[J]. Micromachines, 2015, 6: 1729-1744.
[77] WANG P H, SHI S W, DU H J. fabrication and performance of zno piezoelectric cantilever for vibration energy harvesting[C]//2015全国压电和声波理论及器件技术研讨会论文集, 2015: 166-170.
[78] 莫国伟. 基于ZnO压电薄膜的智能螺栓研制与连接状态监 测方法研究[D]. 大连交通大学, 2022
[79] 陈毅强. 低频压电加速度传感器的噪声特性及信号处理方法研究_陈毅强[D]. 燕山大学, 2016
[80] 鲍善惠. 压电换能器的动态匹配[J]. 应用声学, 1998, (02): 16-20.
[81] JAMAIN U M, IBRAHIM N H, RAHIM R A. Performance analysis of zinc oxide piezoelectric MEMS energy harvester[C]//2014 IEEE International Conference on Semiconductor Electronics (ICSE2014): IEEE, 2014.
[82] 蔡宗岐. 过渡金属掺杂ZnO、SnO2的微观结构和发光性能研究[D]. 沈阳理工大学, 2013
[83] 王华. 透明导电氧化物薄膜及其制备方法[J]. 材料工程, 2005, (09): 59-63.
[84] 吴耀政. GaN基材料的分子束外延及其发光器件的制备与表征_吴耀政[D]. 南京大学, 2020
[85] 赵文燕. Cu2O、ZnO纳微结构薄膜的制备及其光电性能研究[D]. 吉林大学, 2011
[86] 郭一明. 金属氧化物-催化燃烧-固体电解质微型混合阵列气体传感器的研发[D]. 华中科技大学, 2021
[87] 敖一程. 深硅槽刻蚀应用于微机电系统中的工艺研究[D]. 南昌大学, 2023
[88] 王玲,任大翠,张宝顺. 反应离子刻蚀实验研究[J]. 长春光学精密机械学院学报, 1996, (04): 40-42.
[89] 陈少军. 高深宽比微结构加工技术研究[D]. 上海交通大学, 2011
[90] 刘园园. 压电式MEMS压力传感器的设计与工艺研究_刘园园[D]. 北方工业大学, 2017
[91] 周浩强. 光纤光栅振动加速度传感器的优化设计及振动体的振动模态分析[D]. 西安石油大学, 2013
[92] 许卫平,徐爱进,王创祎,等. 基于悬臂梁模型的管道矫直理论及有限元分析_许卫平[J]. 海洋工程: 1-15.
[93] 张永超. 纳米多孔金属材料和超材料力学性能的有限元分析_张永超[D]. 东南大学, 2022
[94] 李德举,黄河. 天线座扭转振动固有频率分析_李德举[J]. 电子机械工程, 2023, 39(06): 9-12.
[95] 陈蕾蕾,陶永鑫,胡欣,等. 先进嵌段共聚物光刻胶设计_陈蕾蕾[J]. 化学进展, 2023, 35(11): 1613-1624.
[96] 孙晓峰. 基于叉指式共面波导的RFMEMS开关线型移相器研究_孙晓峰[D]. 上海交通大学, 2008
[97] 李森. 基于MEMS技术ZnO压电薄膜能量收集器研究[D]. 黑龙江大学, 2019
[98] HU Y T, YAN J S, YANG W L. Transient Extensional Vibration in a ZnO Piezoelectric Semiconductor Nanofiber Under a Suddenly Applied End Force[Z], 2018: 1-14.
[99] LI J H, WANG C H, REN W, et al. ZnO thin film piezoelectric micromachined microphone with symmetric composite vibrating diaphragm[J]. Smart Materials and Structures, 2017, 26: 055033.
[100] 许恒星,王金良,唐宁,等. ZnO压电薄膜的制备与性能表征[J]. 人工晶体学报, 2009, 38(04): 880-883.
[101] Gao W, Li Z. ZnO thin films produced by magnetron sputtering[J]. Ceramics International, 2004, 30(7): 1155-1159.
[102] CULIOLO M. Functionalization of carbon fibers with piezoelectric ZnO nanostructures for the realization of a deformation sensor embedded within carbon fiber composite[J]. 2018.
修改评论