中文版 | English
题名

硫属化合物热电材料制备与器件仿真设计

其他题名
SYNTHESIS OF CHALCOGENIDE THERMOELECTRIC MATERIALS AND SIMULATION DESIGN OF DEVICES
姓名
姓名拼音
LI Shangyang
学号
12232934
学位类型
硕士
学位专业
0856 材料与化工
学科门类/专业学位类别
08 工学
导师
何佳清
导师单位
物理系
论文答辩日期
2024-05-08
论文提交日期
2024-07-07
学位授予单位
南方科技大学
学位授予地点
深圳
摘要

利用热电效应进行能量转换是应对能源危机和促进碳减排的重要手段。开发 具有高性能的热电材料,装配设计有高效率、高输出功率的热电器件是促进热电 技术应用的重中之重。在中温区,p 型碲化铅有着超高的热电性能,因此合成与 高性能的 p型材料相匹配的n型材料是提升中温区器件效率的核心。在低温区, 银基硫属化合物以出色的近室温热电性能和可加工性成为低温热电材料的新星, 是制备柔性热电器件的良好载体。本课题利用有限元仿真进行器件结构设计,开 发高效率可大规模应用的中温区热电器件与高功率的近室温银基柔性器件。一方 面,合成高性能的n型PbSe基热电材料,以p型PbTe基热电材料和n型PbSe基 热电材料为载体进行铅基平板型器件的设计,并依此对热电发电器件进行结构优 化,大幅提高转换效率;另一方面,对高性能银基热电材料进行柔性器件仿真设 计,利用仿真结果指导制成有超高归一化功率密度的器件。主要的研究成果如下: 本课题利用中熵策略改善 n型铅基热电材料的性能,该方法显著降低了材料 的晶格热导率,实现材料热电性能大幅优化。中熵工程构造的晶格畸变显著降低 了材料的晶格热导率,此基础上选择 I作为掺杂剂,通过不同的尝试发现其在低 浓度掺杂下的高迁移率有助于电性能的提升。进一步进行Ga的共掺杂,大幅提升 了中熵材料的电性能,其功率因子在450-800 K温度区间均超过20 μW cm-1 K-2。 最终将材料Pb0.97Ga0.03Se0.699I0.001(TeS)0.15在 850 K 时的最大 ZT值提升至 1.82。 本课题通过有限元仿真技术,利用变截面积的高度比仿真方法,实现了对铅 基热电发电机转换效率的大幅提升。以本文所合成PbSe基材料组成的铅基发电器 件为载体进行仿真,调整高度与横截面积的仿真方法可将单级热电器件的能量转 换效率在470 K温差下的仿真理论值从11.0%,提升至12.6%。进一步地,通过分 段器件设计,变截面积高度比仿真方法可提升器件的热电转换效率至14.0%。 本课题利用有限元仿真手段,探究提升柔性器件输出功率办法并指导设计, 实现近室温柔性热电发电机的最大归一化功率密度。利用仿真确定器件各部分尺 寸规格,选取薄基板与厚电极,进行6对面外型银基柔性器件制作。实现在2.2 K 温差时,开路电压达4.4 V,最大电流超过400 mA,最大输出功率高达438 μW, 归一化功率密度的最高达33.6 μW cm-1 K-2,达到当前柔性发电器件的先进水平。

关键词
语种
中文
培养类别
独立培养
入学年份
2022
学位授予年份
2024-06
参考文献列表

[1] 马征. 可持续发展模式下的资源产业制度变迁[J]. 商场现代化, 2006(6): 292.
[2] 连红奎, 李艳, 束光阳子, 等. 我国工业余热回收利用技术综述[J]. 节能技术, 2011, 29(2): 123-128+133.
[3] 王维兴. 钢铁工业的节能潜力分析[J]. 冶金能源, 2002(3): 5-6+23.
[4] 李洪福, 温燕明, 孙德民. 钢铁企业用电自给可行性探讨[J]. 钢铁, 2010, 45(1): 99-103.
[5] 中国政府网. 以能效约束推动低碳转型—— 重点工业领域节能“有章可循”[EB/OL].
[202404-06]. https://www.gov.cn/zhengce/2021-11/26/content_5653504.htm.
[6] 高敏, 张景韶. 温差电转换及其应用[M]. 天津: 兵器工业出版社, 1996: 326.
[7] LIU D, SHI P, REN W, et al. A new kind of thermocouple made of p-type and n-type semiconductive oxides with giant thermoelectric voltage for high temperature sensing[J]. Journal of Materials Chemistry C, 2018, 6(13): 3206-3211.
[8] TARONI P J, HOCES I, STINGELIN N, et al. Thermoelectric materials: A brief historical survey from metal junctions and inorganic semiconductors to organic polymers[J]. Israel Journal of Chemistry, 2014, 54(5-6): 534-552.
[9] CHEN K X, LI M S, MO D C, et al. Nanostructural thermoelectric materials and their performance[J]. Frontiers in Energy, 2018, 12(1): 97-108.
[10] GELBSTEIN Y, DASHEVSKY Z, DARIEL M P. High performance n-type PbTe-based materials for thermoelectric applications[J]. Physica B: Condensed Matter, 2005, 363(1): 196205.
[11] BATHULA S, MULA J, SINGH N, et al. Enhanced thermoelectric figure-of-merit in spark plasma sintered nanostructured n-type SiGe alloys[J]. Applied Physics Letters, 2012, 101: 213902.
[12] 荣翔, 邓林龙, 张美林. 薄膜太阳能电池的进展和展望[J]. 材料导报, 2018, 32(S2): 13-16.
[13] TAN G, HAO S, CAI S, et al. All-Scale hierarchically structured p-Type PbSe alloys with high thermoelectric performance enabled by improved band degeneracy[J]. Journal of the American Chemical Society, 2019, 141(10): 4480-4486.
[14] ZHANG Q, LAN Y, YANG S, et al. Increased thermoelectric performance by Cl doping in nanostructured AgPb18SbSe20−xClx[J]. Nano Energy, 2013, 2(6): 1121-1127.
[15] GAYNER C, SHARMA R, MALLIK I, et al. Exploring the doping effects of copper on thermoelectric properties of lead selenide[J]. Journal of Physics D: Applied Physics, 2016, 49(28): 285104.
[16] AMATYA R, RAM R J. Trend for thermoelectric materials and their earth abundance[J]. Journal of Electronic Materials, 2012, 41(6): 1011-1019.
[17] BREITENBACH E A. Solution of the immiscible fluid flow simulation equations[J]. 2021.
[18] SEEBECK T J, OETTINGEN A v. Magnetische polarisation der metalle und erze durch temperatur-differenz[M]. 1895: 289-346.
[19] PELTIER A. Nouvelles expériences sur la caloricité des courants électriques[M]. 1834: 371-386.
[20] THOMSON W. On a mechanical theory of thermo-electric currents[M]//Proceedings of the Royal Society of Edinburgh: Vol. 3. 1857: 91-98.
[21] PUTATUNDA A, SINGH D J. Lorenz number in relation to estimates based on the Seebeck coefficient[J]. Materials Today Physics, 2019, 8: 49-55.
[22] LIU Y, KANG Z, SHENG G, et al. Phase equilibria and thermodynamic basis for the Cd-Seand Pb-Se binary systems[J]. Journal of Electronic Materials, 2012, 41(7): 1915-1923.
[23] GAYNER C, KAR K K, KIM W. Recent progress and futuristic development of PbSe thermoelectric materials and devices[J]. Materials Today Energy, 2018, 9: 359-376.
[24] LIN J C, SHARMA R C, CHANG Y A. The Pb-Se (lead-selenium) system[J]. Journal of Phase Equilibria, 1996, 17(3): 253-260.
[25] REISINGER G R, RICHTER K W. Phase equilibria and new misfit layer compound in the ternary system of Pb–Se–V[J]. Journal of Alloys and Compounds, 2020, 831: 154730.
[26] WEI S H, ZUNGER A. Electronic and structural anomalies in lead chalcogenides[J]. Physical Review B, 1997, 55(20): 13605-13610.
[27] PENG H, SONG J H, KANATZIDIS M G, et al. Electronic structure and transport properties of doped PbSe[J]. Physical Review B, 2011, 84(12): 125207.
[28] JIA B, WU D, XIE L, et al. Pseudo-nanostructure and trapped-hole release induce high thermoelectric performance in PbTe[J]. Science, 2024, 384(6691): 81-86.
[29] ANDROULAKIS J, LEE Y, TODOROV I, et al. High-temperature thermoelectric properties of n-type PbSe doped with Ga, In, and Pb[J]. Physical Review B, 2011, 83(19): 195209.
[30] ZHANG Q, CAO F, LUKAS K, et al. Study of the thermoelectric properties of lead selenide doped with boron, gallium, indium, or thallium[J]. Journal of the American Chemical Society, 2012, 134(42): 17731-17738.
[31] LEE Y, LO S H, CHEN C, et al. Contrasting role of antimony and bismuth dopants on the thermoelectric performance of lead selenide[J]. Nature Communications, 2014, 5(1): 3640.
[32] ANDROULAKIS J, CHUNG D Y, SU X, et al. High-temperature charge and thermal transport properties of the n-type thermoelectric material PbSe[J]. Physical Review B, 2011, 84(15): 155207.
[33] WANG H, CAO X, TAKAGIWA Y, et al. Higher mobility in bulk semiconductors by separating the dopants from the charge-conducting band – a case study of thermoelectric PbSe[J]. Materials Horizons, 2015, 2(3): 323-329.
[34] ZHOU C, YU Y, LEE Y K, et al. High-Performance n-Type PbSe–Cu2Se Thermoelectrics through Conduction Band Engineering and Phonon Softening[J]. Journal of the American Chemical Society, 2018, 140(45): 15535-15545.
[35] ZHOU C, YU Y, LEE Y L, et al. Exceptionally high average power factor and thermoelectricfigure of merit in n-type PbSe by the dual incorporation of Cu and Te[J]. Journal of the American Chemical Society, 2020, 142(35): 15172-15186.
[36] GE B, LEE H, IM J, et al. Engineering an atomic-level crystal lattice and electronic band structure for an extraordinarily high average thermoelectric figure of merit in n-type PbSe[J]. Energy & Environmental Science, 2023, 16(9): 3994-4008.
[37] XIAO Y, XU L, HONG T, et al. Ultrahigh carrier mobility contributes to remarkably enhanced thermoelectric performance in n-type PbSe[J]. Energy & Environmental Science, 2022, 15(1): 346-355.
[38] CHEN Z, GE B, LI W, et al. Vacancy-induced dislocations within grains for high-performance PbSe thermoelectrics[J]. Nature Communications, 2017, 8(1): 13828.
[39] HONG M, CHEN Z G, MATSUMURA S, et al. Nano-scale dislocations induced by selfvacancy engineering yielding extraordinary n-type thermoelectric Pb0.96-yInySe[J]. Nano Energy, 2018, 50: 785-793.
[40] PAN Z, WANG H. A descriptive model of thermoelectric transport in a resonant system of PbSe doped with Tl[J]. Journal of Materials Chemistry A, 2019, 7(20): 12859-12868.
[41] ZHANG Q, WANG H, LIU W, et al. Enhancement of thermoelectric figure-of-merit by resonant states of aluminium doping in lead selenide[J]. Energy & Environmental Science, 2012, 5(1): 5246-5251.
[42] QIAN X, WU H, WANG D, et al. Synergistically optimizing interdependent thermoelectric parameters of n-type PbSe through alloying CdSe[J]. Energy & Environmental Science, 2019, 12(6): 1969-1978.
[43] SUN J, ZHANG Y, FAN Y, et al. Strategies for boosting thermoelectric performance of PbSe: A review[J]. Chemical Engineering Journal, 2022, 431: 133699.
[44] BISWAS K, HE J, ZHANG Q, et al. Strained endotaxial nanostructures with high thermoelectric figure of merit[J]. Nature Chemistry, 2011, 3(2): 160-166.
[45] HSU K F, LOO S, GUO F, et al. Cubic AgPbmSbTe2+m: Bulk thermoelectric materials with high figure of merit[J]. Science, 2004, 303(5659): 818-821.
[46] BISWAS K, HE J, BLUM I D, et al. Correction: Corrigendum: High-performance bulk thermoelectrics with all-scale hierarchical architectures[J]. Nature, 2012, 490(7421): 570-570.
[47] LI J, TAN Q, LI J F, et al. BiSbTe-based nanocomposites with high ZT: The effect of SiC nanodispersion on thermoelectric properties[J]. Advanced Functional Materials, 2013, 23(35): 4317-4323.
[48] CAI S, HAO S, LUO Z Z, et al. Discordant nature of Cd in PbSe: Off-centering and core–shell nanoscale CdSe precipitates lead to high thermoelectric performance[J]. Energy & Environmental Science, 2020, 13(1): 200-211.
[49] ZHANG Y H, XU G Y, HAN F, et al. Preparation and thermoelectric properties of nanoporous Bi2Te3-based alloys[J]. Journal of Electronic Materials, 2010, 39(9): 1741-1745.
[50] HAO Q, XU D, LU N, et al. High-throughput ZT predictions of nanoporous bulk materials as next-generation thermoelectric materials: A material genome approach[J]. Physical Review B, 2016, 93(20): 205206.
[51] ZHAO K, DUAN H, RAGHAVENDRA N, et al. Solid-state explosive reaction for nanoporous bulk thermoelectric materials[J]. Advanced Materials, 2017, 29(42).
[52] WU C F, WEI T R, SUN F H, et al. Nanoporous PbSe–SiO2 thermoelectric composites[J]. Advanced Science, 2017, 4(11): 1700199.
[53] JIANG B, YU Y, CUI J, et al. High-entropy-stabilized chalcogenides with high thermoelectric performance[J]. Science, 2021, 371(6531): 830-834.
[54] ZHANG Q H, HUANG X Y, BAI S Q, et al. Thermoelectric devices for power generation: Recent progress and future challenges[J]. Advanced Engineering Materials, 2016, 18(2): 194213.
[55] CRANE D T, BELL L E. Progress towards maximizing the performance of a thermoelectric power generator[C]//2006 25th International Conference on Thermoelectrics. 2006: 11-16.
[56] XUAN X C, NG K C, YAP C, et al. Optimization of two-stage thermoelectric coolers with two design configurations[J]. Energy Conversion and Management, 2002, 43(15): 2041-2052.
[57] EL-GENK M S, SABER H H, CAILLAT T, et al. Tests results and performance comparisons of coated and un-coated skutterudite based segmented unicouples[J]. Energy Conversion and Management, 2006, 47(2): 174-200.
[58] ZHANG Q, LIAO J, TANG Y, et al. Realizing a thermoelectric conversion efficiency of 12% in bismuth telluride/skutterudite segmented modules through full-parameter optimization and energy-loss minimized integration[J]. Energy & Environmental Science, 2017, 10(4): 956-963.
[59] TARASCON J M, ARMAND M. Issues and challenges facing rechargeable lithium batteries[J]. Nature, 2001, 414(6861): 359-367.
[60] DUBAL D P, CHODANKAR N R, KIM D H, et al. Towards flexible solid-state supercapacitors for smart and wearable electronics[J]. Chemical Society Reviews, 2018, 47(6): 2065-2129.
[61] PARK S, HEO S W, LEE W, et al. Self-powered ultra-flexible electronics via nano-gratingpatterned organic photovoltaics[J]. Nature, 2018, 561(7724): 516-521.
[62] GAO W, EMAMINEJAD S, NYEIN H Y Y, et al. Fully integrated wearable sensor arrays for multiplexed in situ perspiration analysis[J]. Nature, 2016, 529(7587): 509-514.
[63] NAN K, KANG S D, LI K, et al. Compliant and stretchable thermoelectric coils for energy harvesting in miniature flexible devices[J]. Science Advances, 2018, 4(11): eaau5849.
[64] WAN C, GU X, DANG F, et al. Flexible n-type thermoelectric materials by organic intercalation of layered transition metal dichalcogenide TiS2[J]. Nature Materials, 2015, 14(6): 622-627.
[65] WANG Y, YANG L, SHI X L, et al. Flexible thermoelectric materials and generators: challenges and innovations[J]. Advanced Materials, 2019, 31(29): e1807916.
[66] SHI X, HE J. Thermopower and harvesting heat[J]. Science, 2021, 371(6527): 343-344.
[67] JIN Q, JIANG S, ZHAO Y, et al. Flexible layer-structured Bi2Te3 thermoelectric on a carbon nanotube scaffold[J]. Nature Materials, 2019, 18(1): 62-68.
[68] KIM S J, LEE H E, CHOI H, et al. High-performance flexible thermoelectric power generatorusing laser multiscanning lift-off process[J]. ACS nano, 2016, 10(12): 10851-10857.
[69] KIM S J, WE J H, CHO B J. A wearable thermoelectric generator fabricated on a glass fabric[J]. Energy & Environmental Science, 2014, 7(6): 1959-1965.
[70] KIM G H, SHAO L, ZHANG K, et al. Engineered doping of organic semiconductors for enhanced thermoelectric efficiency[J]. Nature Materials, 2013, 12(8): 719-723.
[71] YANG C Y, DING Y F, HUANG D, et al. A thermally activated and highly miscible dopant for n-type organic thermoelectrics[J]. Nature Communications, 2020, 11(1): 3292.
[72] SUN Y, SHENG P, DI C, et al. Organic thermoelectric materials and devices based on p- and ntype poly(metal 1,1,2,2-ethenetetrathiolate)s[J]. Advanced Materials, 2012, 24(7): 932-937.
[73] BUBNOVA O, KHAN Z U, MALTI A, et al. Optimization of the thermoelectric figure of merit in the conducting polymer poly(3,4-ethylenedioxythiophene)[J]. Nature Materials, 2011, 10(6): 429-433.
[74] SHI X, CHEN H, HAO F, et al. Room-temperature ductile inorganic semiconductor[J]. Nature Materials, 2018, 17(5): 421-426.
[75] WEI T R, JIN M, WANG Y, et al. Exceptional plasticity in the bulk single-crystalline van der Waals semiconductor InSe[J]. Science, 2020, 369(6503): 542-545.
[76] GAO Z, YANG Q, QIU P, et al. p-Type Plastic Inorganic Thermoelectric Materials[J]. Advanced Energy Materials, 2021, 11(23): 2100883.
[77] YANG Q, YANG S, QIU P, et al. Flexible thermoelectrics based on ductile semiconductors[J]. Science, 2022, 377(6608): 854-858.
[78] KIM C S, YANG H M, LEE J, et al. Self-Powered wearable electrocardiography using a wearable thermoelectric power generator[J]. ACS Energy Letters, 2018, 3(3): 501-507.
[79] DENG R, SU X, HAO S, et al. High thermoelectric performance in Bi0.46Sb1.54Te3 nanostructured with ZnTe[J]. Energy & Environmental Science, 2018, 11(6): 1520-1535.
[80] SUAREZ F, PAREKH D P, LADD C, et al. Flexible thermoelectric generator using bulk legs and liquid metal interconnects for wearable electronics[J]. Applied Energy, 2017, 202: 736-745.
[81] HAN C G, QIAN X, LI Q, et al. Giant thermopower of ionic gelatin near room temperature[J]. Science, 2020, 368(6495): 1091-+.
[82] YU B, DUAN J, CONG H, et al. Thermosensitive crystallization-boosted liquid thermocells for low-grade heat harvesting[J]. Science, 2020, 370(6514): 342-+.
[83] KUMAR S, HEISTER S D, XU X, et al. Thermoelectric generators for automotive waste heat recovery systems Part I: Numerical modeling and baseline model analysis[J]. Journal of Electronic Materials, 2013, 42(4): 665-674.
[84] KUMAR S, HEISTER S D, XU X, et al. Thermoelectric generators for automotive waste heat recovery systems Part II: Parametric evaluation and topological studies[J]. Journal of Electronic Materials, 2013, 42(6): 944-955.
[85] TURENNE S, CLIN Th, VASILEVSKIY D, et al. Finite element thermomechanical modeling of large area thermoelectric generators based on bismuth telluride alloys[J]. Journal of ElectronicMaterials, 2010, 39(9): 1926-1933.
[86] 王军, 张超震. 温差发电模型的热电性能数值计算和分析[J]. 太阳能学报, 2019, 40(1): 44.
[87] RJAFALLAH A, COTFAS D T, COTFAS P A. Legs geometry influence on the performance of the thermoelectric module[J]. Sustainability, 2022, 14(23): 15823.
[88] XING Y, LIU R, LIAO J, et al. A device-to-material strategy guiding the “double-high” thermoelectric module[J]. Joule, 2020, 4(11): 2475-2483.
[89] 杨青雨, 仇鹏飞, 史迅, 等. 熵工程在热电材料中的应用[J]. Journal of Inorganic Materials, 2021, 36(4): 347-354.
[90] 聂尔冰, 徐琛, 高名扬. 航空活塞发动机尾气热电温差发电仿真分析[J]. 中国民航大学学报, 2019, 37(5): 11-15.

所在学位评定分委会
材料与化工
国内图书分类号
TB3
来源库
人工提交
成果类型学位论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/779075
专题理学院_物理系
推荐引用方式
GB/T 7714
李尚阳. 硫属化合物热电材料制备与器件仿真设计[D]. 深圳. 南方科技大学,2024.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
12232934-李尚阳-物理系.pdf(10151KB)----限制开放--请求全文
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[李尚阳]的文章
百度学术
百度学术中相似的文章
[李尚阳]的文章
必应学术
必应学术中相似的文章
[李尚阳]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。