[1] PENDRY J B, HOLDEN A J, STEWART W J, et al. Extremely Low Frequency Plasmons in Metallic Mesostructures[J]. Physical Review Letters, 1996, 76(25): 4773-4776.
[2] SHELBY R A, SMITH D R, SCHULTZ S. Experimental Verification of a Negative Index of Refraction[J]. Science, 2001, 292(5514): 77-79.
[3] XUE L M, WANG Y J, LIU X J, et al. Propagation characteristics of adjustable abnormal hollow beams in gradient negative refractive index material[J]. Results in Physics, 2022, 43: 106085.
[4] MA J, LUO Z, TAN S, et al. Achieving the low emissivity of graphene oxide based film for micron-level electromagnetic waves stealth application[J]. Carbon, 2024, 218: 118771.
[5] PRATAP V, SONI A K, BASKEY H B, et al. Electromagnetic and radar absorbing properties of γ Fe2O3/Ba4Co2Fe36O60-epoxy polymeric composites for stealth applications[J]. Solid State Sciences, 2021, 113: 106553.
[6] C. GOKCE E, CALISIR M D, SELCUK S, et al. Electromagnetic interference shielding using biomass-derived carbon materials[J]. Materials Chemistry and Physics, 2024, 317: 129165.
[7] LIAO D, GUAN Y, HE Y, et al. Pickering emulsion strategy for high compressive carbon aerogel as lightweight electromagnetic interference shielding material and flexible pressure sensor[J]. Ceramics International, 2021, 47(16): 23433-23443.
[8] PENG Y G, SHEN Y X, GENG Z G, et al. Super-resolution acoustic image montage via a biaxial metamaterial lens[J]. Science Bulletin, 2020, 65(12): 1022-1029.
[9] WANG W, YADAV N P, SHEN Z, et al. Two-stage magnifying hyperlens structure based on metamaterials for super-resolution imaging[J]. Optik, 2018, 174: 199-206.
[10] DU L, SHI T, ZHOU Q, et al. A multi-layer square frustum metamaterial for ultra-broadband electromagnetic absorption based on carbonyl iron powder/carbon fiber composites[J]. Journal of Alloys and Compounds, 2023, 950: 169917.
[11] ZHAO S, MA H, SHAO T, et al. High temperature metamaterial enhanced electromagnetic absorbing coating prepared with alumina ceramic[J]. Journal of Alloys and Compounds, 2021, 874: 159822.
[12] LUO B, WU L, LI D, et al. Novel atomic-scale graphene metamaterials with broadband electromagnetic wave absorption and ultra-high elastic modulus[J]. Carbon, 2022, 196: 146-153.
[13] NAPOLSKII K S, NOYAN A A, KUSHNIR S E. Control of high-order photonic band gaps in one-dimensional anodic alumina photonic crystals[J]. Optical Materials, 2020, 109: 110317.
[14] JIA H, CHEN Z, LIU Z, et al. Photo-induced multi-color fluorescent hydrogels for optical information coding and encryption[J]. European Polymer Journal, 2023, 198: 112406.
[15] LIANG D, CHEN T. Optical modulated graphene metamaterial based on plasmon-induced transparency in the terahertz band: Application for sensing[J]. Diamond and Related Materials, 2023, 131: 109613.
[16] ZHENG D, WEN Y, XU X, et al. Metamaterial grating for colorimetric chemical sensing applications[J]. Materials Today Physics, 2023, 33: 101056.
[17] AMEMIYA T, KANAZAWA T, YAMASAKI S, et al. Metamaterial Waveguide Devices for Integrated Optics[J]. Materials, 2017, 10(9): 1037.
[18] STEIN A, NOUH M, SINGH T. Widening, transition and coalescence of local resonance band gaps in multi-resonator acoustic metamaterials: From unit cells to finite chains[J]. Journal of Sound and Vibration, 2022, 523: 116716.
[19] NEMAT-NASSER S. Inherent negative refraction on acoustic branch of two dimensional phononic crystals[J]. Mechanics of Materials, 2019, 132: 1-8.
[20] AREPOLAGE T, VERDY C, SYLVESTRE T, et al. Controlling heat capacity in a thermal concentrator using metamaterials: Numerical and experimental studies[J]. International Journal of Heat and Mass Transfer, 2024, 220: 124909.
[21] DU W, YANG J, ZHANG S, et al. Super-Planckian near-field heat transfer between hyperbolic metamaterials[J]. Nano Energy, 2020, 78: 105264.
[22] LI Z, WU L, ZHANG H, et al. Dual-functional metamaterial with vibration isolation and heat flux guiding[J]. Journal of Sound and Vibration, 2020, 469: 115122.
[23] HU R, XI W, LIU Y, et al. Thermal camouflaging metamaterials[J]. Materials Today, 2021, 45: 120-141.
[24] YU H, WANG H, GUO X, et al. Building block design for composite metamaterial with an ultra-low thermal expansion and high-level specific modulus[J]. Composite Structures, 2022, 300: 116131.
[25] ZHANG K, WANG K, CHEN J, et al. Design and additive manufacturing of 3D-architected ceramic metamaterials with programmable thermal expansion[J]. Additive Manufacturing, 2021, 47: 102338.
[26] YU R, LUO W, YUAN H, et al. Experimental and numerical research on foam filled re-entrant cellular structure with negative Poisson’s ratio[J]. Thin-Walled Structures, 2020, 153: 106679.
[27] DONG Z, LI Y, ZHAO T, et al. Experimental and numerical studies on the compressive mechanical properties of the metallic auxetic reentrant honeycomb[J]. Materials & Design, 2019, 182: 108036.
[28] HA N S, PHAM T M, TRAN T T, et al. Mechanical properties and energy absorption of bio-inspired hierarchical circular honeycomb[J]. Composites Part B: Engineering, 2022, 236: 109818.
[29] JIANG Y, LI Y. 3D Printed Chiral Cellular Solids with Amplified Auxetic Effects Due to Elevated Internal Rotation[J]. Advanced Engineering Materials, 2017, 19(2): 1600609.
[30] HAMZEHEI R, REZAEI S, KADKHODAPOUR J, et al. 2D triangular anti-trichiral structures and auxetic stents with symmetric shrinkage behavior and high energy absorption[J]. Mechanics of Materials, 2020, 142: 103291.
[31] COULAIS C, TEOMY E, DE REUS K, et al. Combinatorial design of textured mechanical metamaterials[J]. Nature, 2016, 535(7613): 529-532.
[32] FLORIJN B, COULAIS C, VAN HECKE M. Programmable Mechanical Metamaterials[J]. Physical Review Letters, 2014, 113(17): 175503.
[33] BERTOLDI K, VITELLI V, CHRISTENSEN J, et al. Flexible mechanical metamaterials[J]. Nature Reviews Materials, 2017, 2(11): 17066.
[34] ZHOU X, TAO C, LIANG X, et al. Design and Mechanical Properties of Maximum Bulk Modulus Microstructures Based on a Smooth Topology with Grid Point Density[J]. Aerospace, 2024, 11(2): 145.
[35] JIAO P, MUELLER J, RANEY J R, et al. Mechanical metamaterials and beyond[J]. Nature Communications, 2023, 14(1): 6004.
[36] BARCHIESI E, SPAGNUOLO M, PLACIDI L. Mechanical metamaterials: a state of the art[J]. Mathematics and Mechanics of Solids, 2019, 24(1): 212-234.
[37] NOVAK N, STARČEVIČ L, VESENJAK M, et al. Blast response study of the sandwich composite panels with 3D chiral auxetic core[J]. Composite Structures, 2019, 210: 167-178.
[38] ZHANG X G, REN X, JIANG W, et al. A novel auxetic chiral lattice composite: Experimental and numerical study[J]. Composite Structures, 2022, 282: 115043.
[39] MOHSENIZADEH S, ALIPOUR R, SHOKRI RAD M, et al. Crashworthiness assessment of auxetic foam-filled tube under quasi-static axial loading[J]. Materials & Design, 2015, 88: 258-268.
[40] DUDEK K K, GATT R, GRIMA J N. 3D composite metamaterial with magnetic inclusions exhibiting negative stiffness and auxetic behaviour[J]. Materials & Design, 2020, 187: 108403.
[41] CHENG X, ZHANG Y, REN X, et al. Design and mechanical characteristics of auxetic metamaterial with tunable stiffness[J]. International Journal of Mechanical Sciences, 2022, 223: 107286.
[42] DA D, CHAN Y C, WANG L, et al. Data-driven and topological design of structural metamaterials for fracture resistance[J]. Extreme Mechanics Letters, 2022, 50: 101528.
[43] MO S, HUANG X, HUANG Z, et al. Continuously tunable mechanical metamaterials based on gear cells[J]. Extreme Mechanics Letters, 2024, 67: 102133.
[44] FLEISCH M, THALHAMER A, MEIER G, et al. Chiral-based mechanical metamaterial with tunable normal-strain shear coupling effect[J]. Engineering Structures, 2023, 284: 115952.
[45] ZADPOOR A A, MIRZAALI M J, VALDEVIT L, et al. Design, material, function, and fabrication of metamaterials[J]. APL Materials, 2023, 11(2): 020401.
[46] XU R J, LIN Y S. Actively MEMS-Based Tunable Metamaterials for Advanced and Emerging Applications[J]. Electronics, 2022, 11(2): 243.
[47] ZHANG X, WANG J, SUN Q, et al. Mechanical design and analysis of bio-inspired reentrant negative Poisson’s ratio metamaterials with rigid-flexible distinction[J]. International Journal of Smart and Nano Materials, 2024, 15(1): 1-20.
[48] LIU J Y, LIU H T. Energy absorption characteristics and stability of novel bionic negative Poisson’s ratio honeycomb under oblique compression[J]. Engineering Structures, 2022, 267: 114682.
[49] ZHANG Z, TIAN R, ZHANG X, et al. A novel butterfly-shaped auxetic structure with negative Poisson’s ratio and enhanced stiffness[J]. Journal of Materials Science, 2021, 56(25): 14139-14156.
[50] LIM T C. An Auxetic System Based on Interconnected Y-Elements Inspired by Islamic Geometric Patterns[J]. Symmetry, 2021, 13(5): 865.
[51] TIAN R, GUAN H, LU X, et al. Dynamic crushing behavior and energy absorption of hybrid auxetic metamaterial inspired by Islamic motif art[J]. Applied Mathematics and Mechanics, 2023, 44(3): 345-362.
[52] WANG M, SUN S, ZHANG T Y. Machine learning accelerated design of auxetic structures[J]. Materials & Design, 2023, 234: 112334.
[53] CHALLAPALLI A, PATEL D, LI G. Inverse machine learning framework for optimizing lightweight metamaterials[J]. Materials & Design, 2021, 208: 109937.
[54] GAO J, CAO X, XIAO M, et al. Rational designs of mechanical metamaterials: Formulations, architectures, tessellations and prospects[J]. Materials Science and Engineering: R: Reports, 2023, 156: 100755.
[55] CHANG Y, WANG H, DONG Q. Machine learning-based inverse design of auxetic metamaterial with zero Poisson’s ratio[J]. Materials Today Communications, 2022, 30: 103186.
[56] HOU R, DONG P, LIU Y. Novel lozenge-chiral auxetic metamaterials (LCAMs): Design and numerical studies[J]. Materials Letters, 2023, 331: 133440.
[57] HOU R, DONG P, HU J, et al. An optimized lozenge-chiral auxetic metamaterial with tunable auxeticity and stiffness[J]. Materials & Design, 2024, 237: 112530.
[58] NIAN Y, WAN S, LI M, et al. Crashworthiness design of self-similar graded honeycomb-filled composite circular structures[J]. Construction and Building Materials, 2020, 233: 117344.
[59] LUO Y M, HUANG T T, ZHANG Y, et al. Novel meter-scale seismic metamaterial with low-frequency wide bandgap for Lamb waves[J]. Engineering Structures, 2023, 275: 115321.
[60] TAO Z, REN X, ZHAO A G, et al. A novel auxetic acoustic metamaterial plate with tunable bandgap[J]. International Journal of Mechanical Sciences, 2022, 226: 107414.
[61] HU J, DONG P, HOU R, et al. Functionally graded IWP reinforced cementitious composites: Design, fabrication, and the enhanced ductility[J]. Thin-Walled Structures, 2023, 192: 111199.
[62] HAN D, ZHANG Y, ZHANG X Y, et al. Mechanical characterization of a novel thickness gradient auxetic tubular structure under inclined load[J]. Engineering Structures, 2022, 273: 115079.
[63] JIN S, KORKOLIS Y P, LI Y. Shear resistance of an auxetic chiral mechanical metamaterial[J]. International Journal of Solids and Structures, 2019, 174-175: 28-37.
[64] ZHANG X, HAO H, TIAN R, et al. Quasi-static compression and dynamic crushing behaviors of novel hybrid re-entrant auxetic metamaterials with enhanced energy-absorption[J]. Composite Structures, 2022, 288: 115399.
[65] JIANG X, LIU F, WANG L. Machine learning-based stiffness optimization of digital composite metamaterials with desired positive or negative Poisson’s ratio[J]. Theoretical and Applied Mechanics Letters, 2023, 13(6): 100485.
[66] QIU Y, YE H, ZHANG H, et al. Machine learning-driven optimization design of hydrogel-based negative hydration expansion metamaterials[J]. Computer-Aided Design, 2024, 166: 103631.
[67] XIAO L, CAO Z, LU H, et al. Optimal design of one-dimensional elastic metamaterials through deep convolutional neural network and genetic algorithm[J]. Structures, 2023, 57: 105349.
[68] WANG L, CHAN Y C, AHMED F, et al. Deep generative modeling for mechanistic-based learning and design of metamaterial systems[J]. Computer Methods in Applied Mechanics and Engineering, 2020, 372: 113377.
[69] SIGMUND O. Materials with prescribed constitutive parameters: An inverse homogenization problem[J]. International Journal of Solids and Structures, 1994, 31(17): 2313-2329.
[70] DONG H W, ZHAO S D, MIAO X B, et al. Customized broadband pentamode metamaterials by topology optimization[J]. Journal of the Mechanics and Physics of Solids, 2021, 152: 104407.
[71] LU F, LIN B, LING X, et al. Controllable design of bi-material metamaterials with programmable thermal expansion and Poisson’s ratio[J]. Composite Structures, 2023, 322: 117417.
[72] ZHANG X, ZHANG J, XU C, et al. Inverse-designed flexural wave metamaterial beams with thermally induced tunability[J]. International Journal of Mechanical Sciences, 2024, 267: 109007.
[73] ZENG Q, ZHAO Z, LEI H, et al. A deep learning approach for inverse design of gradient mechanical metamaterials[J]. International Journal of Mechanical Sciences, 2023, 240: 107920.
[74] ZHANG Y, HUANG J, GU L, et al. Inverse design of slow light devices at telecommunication band based on metamaterials using a deep learning attempt[J]. Optics Communications, 2023, 537: 129456.
[75] JIANG W, ZHU Y, YIN G, et al. Dispersion relation prediction and structure inverse design of elastic metamaterials via deep learning[J]. Materials Today Physics, 2022, 22: 100616.
[76] JORDAN M I, MITCHELL T M. Machine learning: Trends, perspectives, and prospects[J]. Science, 2015, 349(6245): 255-260.
[77] MAHESH B. Machine Learning Algorithms - A Review[J]. 2018, 9(1).
[78] LECUN Y, BENGIO Y, HINTON G. Deep learning[J]. Nature, 2015, 521(7553): 436-444.
[79] RUSK N. Deep learning[J]. Nature Methods, 2016, 13(1): 35-35.
[80] ZHOU M, DUAN N, LIU S, et al. Progress in Neural NLP: Modeling, Learning, and Reasoning[J]. Engineering, 2020, 6(3): 275-290.
[81] KANG Y, CAI Z, TAN C W, et al. Natural language processing (NLP) in management research: A literature review[J]. Journal of Management Analytics, 2020, 7(2): 139-172.
[82] KEYSERS D, DESELAERS T, GOLLAN C, et al. Deformation Models for Image Recognition[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2007, 29(8): 1422-1435.
[83] HE K, ZHANG X, REN S, et al. Deep Residual Learning for Image Recognition[C]//2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Las Vegas, NV, USA: IEEE, 2016: 770-778.
[84] CHANG Y, WANG H, DONG Q. Machine learning-based inverse design of auxetic metamaterial with zero Poisson’s ratio[J]. Materials Today Communications, 2022, 30: 103186.
[85] ZHANG C, XIE J, SHANIAN A, et al. A hybrid deep learning approach for the design of 2D low porosity auxetic metamaterials[J]. Engineering Applications of Artificial Intelligence, 2023, 123: 106413.
[86] BRONDER S, HERTER F, BÄHRE D, et al. Optimized design for modified auxetic structures based on a neural network approach[J]. Materials Today Communications, 2022, 32: 103931.
[87] YU J, SHI X, FENG Y, et al. Machine learning-based design and optimization of double curved beams for multi-stable honeycomb structures[J]. Extreme Mechanics Letters, 2023, 65: 102109.
[88] XIAO L, CAO Z, LU H, et al. Optimal design of one-dimensional elastic metamaterials through deep convolutional neural network and genetic algorithm[J]. Structures, 2023, 57: 105349.
[89] WANG M, SUN S, ZHANG T Y. Machine learning accelerated design of auxetic structures[J]. Materials & Design, 2023, 234: 112334.
[90] VYAVAHARE S, TERAIYA S, KUMAR S. FDM manufactured auxetic structures: An investigation of mechanical properties using machine learning techniques[J]. International Journal of Solids and Structures, 2023, 265-266: 112126.
[91] CHALLAPALLI A, PATEL D, LI G. Inverse machine learning framework for optimizing lightweight metamaterials[J]. Materials & Design, 2021, 208: 109937.
[92] FENG Q, MAIER W, MÖHRING H C. Application of machine learning to optimize process parameters in fused deposition modeling of PEEK material[J]. Procedia CIRP, 2022, 107: 1-8.
[93] SUZUKI A, SHIBA Y, IBE H, et al. Machine-learning assisted optimization of process parameters for controlling the microstructure in a laser powder bed fused WC/Co cemented carbide[J]. Additive Manufacturing, 2022, 59: 103089.
[94] VEEMAN D, SUDHARSAN S, SURENDHAR G J, et al. Machine learning model for predicting the hardness of additively manufactured acrylonitrile butadiene styrene[J]. Materials Today Communications, 2023, 35: 106147.
[95] FARHAN KHAN M, ALAM A, ATEEB SIDDIQUI M, et al. Real-time defect detection in 3D printing using machine learning[J]. Materials Today: Proceedings, 2021, 42: 521-528.
[96] ROSSI A, MORETTI M, SENIN N. Layer inspection via digital imaging and machine learning for in-process monitoring of fused filament fabrication[J]. Journal of Manufacturing Processes, 2021, 70: 438-451.
[97] XIAO R, LI X, JIA H, et al. 3D printing of dual phase-strengthened microlattices for lightweight micro aerial vehicles[J]. Materials & Design, 2021, 206: 109767.
[98] CAO X, HUANG Z, HE C, et al. In-situ synchrotron X-ray tomography investigation of the imperfect smooth-shell cylinder structure[J]. Composite Structures, 2021, 267: 113926.
[99] ZHENG X, SMITH W, JACKSON J, et al. Multiscale metallic metamaterials[J]. Nature Materials, 2016, 15(10): 1100-1106.
[100] MALONEY K J, ROPER C S, JACOBSEN A J, et al. Microlattices as architected thin films: Analysis of mechanical properties and high strain elastic recovery[J]. APL MATERIALS, 2013, 1(2): 022106.
[101] MIZZI L, SALVATI E, SPAGGIARI A, et al. 2D auxetic metamaterials with tuneable micro-/nanoscale apertures[J]. Applied Materials Today, 2020, 20: 100780.
[102] SCHAEDLER T A, JACOBSEN A J, TORRENTS A, et al. Ultralight Metallic Microlattices[J]. Science, 2011, 334(6058): 962-965.
[103] PERERA A T K, WU K, WAN W Y, et al. Modified polymer 3D printing enables the formation of functionalized micro-metallic architectures[J]. Additive Manufacturing, 2023, 61: 103317.
[104] WANG Z, CHENG J, XIE Y, et al. Lead‐Free Piezoelectric Composite Based on a Metamaterial for Electromechanical Energy Conversion[J]. Advanced Materials Technologies, 2022, 7(12): 2200650.
[105] TAO R, SHI J, GRANIER F, et al. Multi-material fused filament fabrication of flexible 3D piezoelectric nanocomposite lattices for pressure sensing and energy harvesting applications[J]. Applied Materials Today, 2022, 29: 101596.
[106] HE Y, ZHOU Z, HUANG Y, et al. An antibacterial ε-poly- L -lysine-derived bioink for 3D bioprinting applications[J]. Journal of Materials Chemistry B, 2022, 10(40): 8274-8281.
[107] CORNOCK R, BEIRNE S, THOMPSON B, et al. Coaxial additive manufacture of biomaterial composite scaffolds for tissue engineering[J]. Biofabrication, 2014, 6(2): 025002.
[108] CAO E, JIA B, GUO D, et al. Bionic design and numerical studies of spider web-inspired membrane-type acoustic metamaterials[J]. Composite Structures, 2023, 315: 117010.
[109] ZHANG Z, ZHANG L, SONG B, et al. Bamboo-inspired, simulation-guided design and 3D printing of light-weight and high-strength mechanical metamaterials[J]. Applied Materials Today, 2022, 26: 101268.
[110] SILVA B, GOVAN J, CRISTÓBAL ZAGAL J, et al. A biomimetic smart kirigami soft metamaterial with multimodal remote locomotion mechanisms[J]. Materials & Design, 2023, 233: 112262.
[111] ZHANG S, JIANG P, QI J, et al. Adjustable indentation and vibration isolation performances of nacre-like metamaterial[J]. International Journal of Smart and Nano Materials, 2023, 14(3): 303-320.
[112] PRANNO A, GRECO F, LEONETTI L, et al. Band gap tuning through microscopic instabilities of compressively loaded lightened nacre-like composite metamaterials[J]. Composite Structures, 2022, 282: 115032.
[113] WANG P, YANG F, ZHENG B, et al. Breaking the Tradeoffs between Different Mechanical Properties in Bioinspired Hierarchical Lattice Metamaterials[J]. Advanced Functional Materials, 2023, 33(45): 2305978.
[114] YANG H, ZHANG Y, WANG Z, et al. Bioinspired dual-phase composite metamaterial for customized deformation behavior and performance characteristic[J]. Materials Today Communications, 2024, 38: 107655.
[115] ALOMARAH A, YUAN Y, RUAN D. A bio-inspired auxetic metamaterial with two plateau regimes: Compressive properties and energy absorption[J]. Thin-Walled Structures, 2023, 192: 111175.
[116] SADEGHI F, BANIASSADI M, SHAHIDI A, et al. TPMS metamaterial structures based on shape memory polymers: Mechanical, thermal and thermomechanical assessment[J]. Journal of Materials Research and Technology, 2023, 23: 3726-3743.
[117] ZHAN Z, CHEN L, DUAN H, et al. 3D printed ultra-fast photothermal responsive shape memory hydrogel for microrobots[J]. International Journal of Extreme Manufacturing, 2022, 4(1): 015302.
[118] WAN M, YU K, SUN H. 4D printed programmable auxetic metamaterials with shape memory effects[J]. Composite Structures, 2022, 279: 114791.
[119] XU P, LAN X, ZENG C, et al. Compression behavior of 4D printed metamaterials with various Poisson’s ratios[J]. International Journal of Mechanical Sciences, 2024, 264: 108819.
[120] YAO H, YU M, FU J, et al. Shape memory polymers enable versatile magneto-active structure with 4D printability, variable stiffness, shape-morphing and effective grasping[J]. Smart Materials and Structures, 2023, 32(9): 095005.
[121] XIAO L, CAO Z, LU H, et al. Controllable and scalable gradient-driven optimization design for two-dimensional metamaterials based on deep learning[J]. Composite Structures, 2024, 337: 118072.
[122] BROWN N K, DESHPANDE A, GARLAND A, et al. Deep reinforcement learning for the design of mechanical metamaterials with tunable deformation and hysteretic characteristics[J]. Materials & Design, 2023, 235: 112428.
[123] BROWN N K, GARLAND A P, FADEL G M, et al. Deep reinforcement learning for the rapid on-demand design of mechanical metamaterials with targeted nonlinear deformation responses[J]. Engineering Applications of Artificial Intelligence, 2023, 126: 106998.
[124] SONG C, WANG X, XU S, et al. Inverse design of laminated plate-type acoustic metamaterials for sound insulation based on deep learning[J]. Applied Acoustics, 2024, 218: 109906.
[125] LIU W, WANG N, LUO T, et al. In-plane dynamic crushing of re-entrant auxetic cellular structure[J]. Materials & Design, 2016, 100: 84-91.
[126] JIANG H, REN Y, JIN Q, et al. Crashworthiness of novel concentric auxetic reentrant honeycomb with negative Poisson’s ratio biologically inspired by coconut palm[J]. Thin-Walled Structures, 2020, 154: 106911.
[127] SHIM J, SHAN S, KOŠMRLJ A, et al. Harnessing instabilities for design of soft reconfigurable auxetic/chiral materials[J]. Soft Matter, 2013, 9(34): 8198.
[128] PRAWOTO Y. Seeing auxetic materials from the mechanics point of view: A structural review on the negative Poisson’s ratio[J]. Computational Materials Science, 2012, 58: 140-153.
[129] BRONDER S, ADORNA M, FÍLA T, et al. Hybrid Auxetic Structures: Structural Optimization and Mechanical Characterization[J]. Advanced Engineering Materials, 2021, 23(5): 2001393.
[130] FU M H, CHEN Y, HU L L. A novel auxetic honeycomb with enhanced in-plane stiffness and buckling strength[J]. Composite Structures, 2017, 160: 574-585.
[131] CHEN Y, FU M H. A novel three-dimensional auxetic lattice meta-material with enhanced stiffness[J]. Smart Materials and Structures, 2017, 26(10): 105029.
[132] XUE Y, GAO P, ZHOU L, et al. An Enhanced Three-Dimensional Auxetic Lattice Structure with Improved Property[J]. Materials, 2020, 13(4): 1008.
[133] JAFARI NEDOUSHAN R, YU W R. A new auxetic structure with enhanced stiffness via stiffened elliptical perforations[J]. Functional Composites and Structures, 2020, 2(4): 045006.
[134] BUDARAPU P R, Y B S S, NATARAJAN R. Design concepts of an aircraft wing: composite and morphing airfoil with auxetic structures[J]. Frontiers of Structural and Civil Engineering, 2016, 10(4): 394-408.
[135] HONG W, KUMAR N A, PATRICK S, et al. Empirical Validation of an Auxetic Structured Foot With the Powered Transfemoral Prosthesis[J]. IEEE Robotics and Automation Letters, 2022, 7(4): 11228-11235.
[136] ZHANG X Y, REN X, ZHANG Y, et al. A novel auxetic metamaterial with enhanced mechanical properties and tunable auxeticity[J]. Thin-Walled Structures, 2022, 174: 109162.
[137] QI C, JIANG F, REMENNIKOV A, et al. Quasi-static crushing behavior of novel re-entrant circular auxetic honeycombs[J]. Composites Part B: Engineering, 2020, 197: 108117.
[138] GAO D, WANG S, ZHANG M, et al. Experimental and numerical investigation on in-plane impact behaviour of chiral auxetic structure[J]. Composite Structures, 2021, 267: 113922.
[139] TAN H, HE Z, LI E, et al. Crashworthiness design and multi-objective optimization of a novel auxetic hierarchical honeycomb crash box[J]. Structural and Multidisciplinary Optimization, 2021, 64(4): 2009-2024.
[140] GAO Q, ZHAO X, WANG C, et al. Multi-objective crashworthiness optimization for an auxetic cylindrical structure under axial impact loading[J]. Materials & Design, 2018, 143: 120-130.
[141] NAJAFI M, AHMADI H, LIAGHAT G. Experimental investigation on energy absorption of auxetic structures[J]. Materials Today: Proceedings, 2021, 34: 350-355.
[142] CHOUDHRY N K, PANDA B, KUMAR S. In-plane energy absorption characteristics of a modified re-entrant auxetic structure fabricated via 3D printing[J]. Composites Part B: Engineering, 2022, 228: 109437.
[143] TAO J, WANG Y, ZHENG X, et al. A review: Polyacrylonitrile as high-performance piezoelectric materials[J]. Nano Energy, 2023, 118: 108987.
[144] FADHLINA H, ATIQAH A, ZAINUDDIN Z. A review on lithium doped lead-free piezoelectric materials[J]. Materials Today Communications, 2022, 33: 104835.
[145] KAUR S, KUMAR R, KAUR R, et al. Piezoelectric materials in sensors: Bibliometric and visualization analysis[J]. Materials Today: Proceedings, 2022, 65: 3780-3786.
[146] GUO H, WANG Y S, YANG C, et al. Vehicle interior noise active control based on piezoelectric ceramic materials and improved fuzzy control algorithm[J]. Applied Acoustics, 2019, 150: 216-226.
[147] YING H, DING G, ZHAO J, et al. Properties of PSN-PZT piezoelectric ceramic powder prepared by fast solid-phase reaction method[J]. Materials Today Communications, 2023, 35: 106086.
[148] GUERIN S, TOFAIL S A M, THOMPSON D. Organic piezoelectric materials: milestones and potential[J]. NPG Asia Materials, 2019, 11(1): 10.
[149] YU S, TAI Y, MILAM-GUERRERO J, et al. Electrospun organic piezoelectric nanofibers and their energy and bio applications[J]. Nano Energy, 2022, 97: 107174.
[150] SHETTY D, CAMPANA C, NAZARYAN N. Modeling and Experimental Evaluation of Monocrystalline Piezoelectric Materials for Electromechanical Actuation[C]//Volume 3: Design, Materials and Manufacturing, Parts A, B, and C. Houston, Texas, USA: American Society of Mechanical Engineers, 2012: 1657-1663.
[151] VIJAYAKANTH T, LIPTROT D J, GAZIT E, et al. Recent Advances in Organic and Organic–Inorganic Hybrid Materials for Piezoelectric Mechanical Energy Harvesting[J]. Advanced Functional Materials, 2022, 32(17): 2109492.
[152] HABIB M, LANTGIOS I, HORNBOSTEL K. A review of ceramic, polymer and composite piezoelectric materials[J]. Journal of Physics D: Applied Physics, 2022, 55(42): 423002.
[153] LU L, DING W, LIU J, et al. Flexible PVDF based piezoelectric nanogenerators[J]. Nano Energy, 2020, 78: 105251.
[154] KALIMULDINA G, TURDAKYN N, ABAY I, et al. A Review of Piezoelectric PVDF Film by Electrospinning and Its Applications[J]. Sensors, 2020, 20(18): 5214.
[155] TAO R, SHI J, RAFIEE M, et al. Fused filament fabrication of PVDF films for piezoelectric sensing and energy harvesting applications[J]. Materials Advances, 2022, 3(12): 4851-4860.
[156] SIMUNEC D P, BREEDON M, MUHAMMAD F U R, et al. Electrical capability of 3D printed unpoled polyvinylidene fluoride (PVDF)/thermoplastic polyurethane (TPU) sensors combined with carbon black and barium titanate[J]. Additive Manufacturing, 2023, 73: 103679.
[157] ZHAO J, HU N, WU J, et al. A review of piezoelectric metamaterials for underwater equipment[J]. Frontiers in Physics, 2022, 10: 1068838.
[158] SHI J, AKBARZADEH A H. Architected cellular piezoelectric metamaterials: Thermo-electro-mechanical properties[J]. Acta Materialia, 2019, 163: 91-121.
[159] KHAN K A, AL-MANSOOR S, KHAN S Z, et al. Piezoelectric Metamaterial with Negative and Zero Poisson’s Ratios[J]. Journal of Engineering Mechanics, 2019, 145(12): 04019101.
[160] SUGINO C, RUZZENE M, ERTURK A. Nonreciprocal piezoelectric metamaterial framework and circuit strategies[J]. Physical Review B, 2020, 102(1): 014304.
[161] PEI H, JING J, CHEN Y, et al. 3D printing of PVDF-based piezoelectric nanogenerator from programmable metamaterial design: Promising strategy for flexible electronic skin[J]. Nano Energy, 2023, 109: 108303.
[162] CUI H, HENSLEIGH R, YAO D, et al. Three-dimensional printing of piezoelectric materials with designed anisotropy and directional response[J]. Nature Materials, 2019, 18(3): 234-241.
[163] CHEN S, FAN Y, FU Q, et al. A Review of Tunable Acoustic Metamaterials[J]. Applied Sciences, 2018, 8(9): 1480.
[164] HABERMAN M R, GUILD M D. Acoustic metamaterials[J]. Physics Today, 2016, 69(6): 42-48.
[165] LI J, WEN X, SHENG P. Acoustic metamaterials[J]. Journal of Applied Physics, 2021, 129(17): 171103.
[166] GAO N, ZHANG Z, DENG J, et al. Acoustic Metamaterials for Noise Reduction: A Review[J]. Advanced Materials Technologies, 2022, 7(6): 2100698.
[167] MA G, SHENG P. Acoustic metamaterials: From local resonances to broad horizons[J]. Science Advances, 2016, 2(2): e1501595.
[168] CUMMER S A, CHRISTENSEN J, ALÙ A. Controlling sound with acoustic metamaterials[J]. Nature Reviews Materials, 2016, 1(3): 16001.
[169] HUANG H H, SUN C T, HUANG G L. On the negative effective mass density in acoustic metamaterials[J]. International Journal of Engineering Science, 2009, 47(4): 610-617.
[170] MAN X, LUO Z, LIU J, et al. Hilbert fractal acoustic metamaterials with negative mass density and bulk modulus on subwavelength scale[J]. Materials & Design, 2019, 180: 107911.
[171] CHEN H, ZHAI S, DING C, et al. Acoustic metamaterial with negative mass density in water[J]. Journal of Applied Physics, 2015, 118(9): 094901.
[172] LEE S H, PARK C M, SEO Y M, et al. Acoustic metamaterial with negative density[J]. Physics Letters A, 2009, 373(48): 4464-4469.
[173] LEE S H, WRIGHT O B. Origin of negative density and modulus in acoustic metamaterials[J]. Physical Review B, 2016, 93(2): 024302.
[174] HOU Z, ASSOUAR B M. Tunable solid acoustic metamaterial with negative elastic modulus[J]. Applied Physics Letters, 2015, 106(25): 251901.
[175] DING C, HAO L, ZHAO X. Two-dimensional acoustic metamaterial with negative modulus[J]. Journal of Applied Physics, 2010, 108(7): 074911.
[176] FAN L, YU W wei, ZHANG S yi, et al. Zak phases and band properties in acoustic metamaterials with negative modulus or negative density[J]. Physical Review B, 2016, 94(17): 174307.
[177] GAO H, YAN Q, LIU X, et al. Low-Frequency Bandgaps of the Lightweight Single-Phase Acoustic Metamaterials with Locally Resonant Archimedean Spirals[J]. Materials, 2022, 15(1): 373.
[178] NING S, YANG F, LUO C, et al. Low-frequency tunable locally resonant band gaps in acoustic metamaterials through large deformation[J]. Extreme Mechanics Letters, 2020, 35: 100623.
[179] SONG G Y, CHENG Q, HUANG B, et al. Broadband fractal acoustic metamaterials for low-frequency sound attenuation[J]. Applied Physics Letters, 2016, 109(13): 131901.
[180] LI Y, SHEN H, ZHANG L, et al. Control of low-frequency noise for piping systems via the design of coupled band gap of acoustic metamaterials[J]. Physics Letters A, 2016, 380(29-30): 2322-2328.
[181] LIAO G, LUAN C, WANG Z, et al. Acoustic Metamaterials: A Review of Theories, Structures, Fabrication Approaches, and Applications[J]. Advanced Materials Technologies, 2021, 6(5): 2000787.
[182] WANG X, LUO X, ZHAO H, et al. Acoustic perfect absorption and broadband insulation achieved by double-zero metamaterials[J]. Applied Physics Letters, 2018, 112(2): 021901.
[183] ZHANG C, HU X. Three-Dimensional Single-Port Labyrinthine Acoustic Metamaterial: Perfect Absorption with Large Bandwidth and Tunability[J]. Physical Review Applied, 2016, 6(6): 064025.
[184] QU S, SHENG P. Microwave and Acoustic Absorption Metamaterials[J]. Physical Review Applied, 2022, 17(4): 047001.
[185] SONG H, DING X, CUI Z, et al. Research Progress and Development Trends of Acoustic Metamaterials[J]. 2021.
[186] DAI H, ZHANG X, ZHENG Y, et al. Review and prospects of metamaterials used to control elastic waves and vibrations[J]. Frontiers in Physics, 2022, 10: 1069454.
[187] KRUSHYNSKA A O, JANBAZ S, OH J H, et al. Fundamentals and applications of metamaterials: Breaking the limits[J]. Applied Physics Letters, 2023, 123(24): 240401.
[188] ZHENG Y, DAI H, WU J, et al. Research progress and development trend of smart metamaterials[J]. Frontiers in Physics, 2022, 10: 1069722.
[189] HUO J, WANG Y, WANG N, et al. Data-driven design and optimization of ultra-tunable acoustic metamaterials[J]. Smart Materials and Structures, 2023, 32(5): 05LT01.
[190] LEE D, CHEN W (Wayne), WANG L, et al. Data‐Driven Design for Metamaterials and Multiscale Systems: A Review[J]. Advanced Materials, 2024, 36(8): 2305254.
[191] BOSTANABAD R, CHAN Y C, WANG L, et al. Globally Approximate Gaussian Processes for Big Data With Application to Data-Driven Metamaterials Design[J]. Journal of Mechanical Design, 2019, 141(11): 111402.
[192] BAALI H, ADDOUCHE M, BOUZERDOUM A, et al. Design of acoustic absorbing metasurfaces using a data-driven approach[J]. Communications Materials, 2023, 4(1): 40.
[193] DONG P, LIU J, WANG H, et al. Sustainable municipal solid waste incineration fly ash (MSWIFA) alkali-activated materials in construction: Fabrication and performance[J]. Nanotechnologies in Construction A Scientific Internet-Journal, 2022, 14(1): 43-52.
[194] MÜLLER U, RÜBNER K. The microstructure of concrete made with municipal waste incinerator bottom ash as an aggregate component[J]. Cement and Concrete Research, 2006, 36(8): 1434-1443.
[195] WANG Y S, ALREFAEI Y, DAI J G. Roles of hybrid activators in improving the early-age properties of one-part geopolymer pastes[J]. Construction and Building Materials, 2021, 306: 124880.
[196] WANG P, CASADEI F, SHAN S, et al. Harnessing Buckling to Design Tunable Locally Resonant Acoustic Metamaterials[J]. Physical Review Letters, 2014, 113(1): 014301.
修改评论