[1] 涂传诒, 宗秋刚, 周煦之. 日地空间物理学(第二版)上册·日球层物理: 第1 卷[M]. 第二版. 北京: 科学出版社, 2020.
[2] ALFVÉN H. On the Theory of Comet Tails[J/OL]. Tellus, 1957, 9(1): 92-96. https://doi.org/10.1111/j.2153-3490.1957.tb01855.x.
[3] LUHMANN J G. The solar wind interaction with Venus[J/OL]. Space Science Reviews, 1986,44: 241–30. https://doi.org/10.1007/BF00200818.
[4] ESPOSITO L, et al. Chemistry of lower atmosphere and clouds. Venus II[M]. The Universityof Arizona Press, 1997.
[5] DE BERGH C, MOROZ V, TAYLOR F W, et al. The composition of the atmosphere of Venusbelow 100 km altitude: An overview[J]. Planetary and space Science, 2006, 54(13-14): 1389-1397.
[6] RUSSEL C T. Does Venus have an intrinsic magnetic field?[J/OL]. Nature, 1978, 275: 692-692.https://api.semanticscholar.org/CorpusID:4158706.
[7] LUHMANN J, LEDVINA S, LYON J, et al. Venus O+ pickup ions: Collected PVO results andexpectations for Venus Express[J]. Planetary and Space Science, 2006, 54(13-14): 1457-1471.
[8] BARABASH S, FEDOROV A, SAUVAUD J, et al. The loss of ions from Venus through theplasma wake[J]. Nature, 2007, 450(7170): 650-653.
[9] 肖苏东. 太阳风与金星感应磁层相互作用[D]. 中国科学技术大学, 2018.
[10] KALLIO E. An empirical model of the solar wind flow around Mars[J/OL]. Journal of GeophysicalResearch: Space Physics, 1996, 101(A5): 11133-11147. https://doi.org/10.1029/96JA00164.
[11] Solar wind flow past nonmagnetic planets—Venus and Mars[J/OL]. Planetary and Space Science,1970, 18(9): 1281-1299. https://doi.org/10.1016/0032-0633(70)90139-X.
[12] LUHMANN J G, TATRALLYAY M, PEPIN R O. Venus and Mars: atmospheres, ionospheres,and solar wind interactions[J]. Geophysical Monograph Series, 1992, 66.
[13] CRAVENS T E, KOZYRA J U, NAGY A F, et al. Electron impact ionization in the vicinityof comets[J/OL]. Journal of Geophysical Research: Space Physics, 1987, 92(A7): 7341-7353.https://doi.org/10.1029/JA092iA07p07341.
[14] LUHMANN J, ELPHIC R, RUSSELL C, et al. Observations of large scale steady magneticfields in the nightside Venus ionosphere and near wake[J]. Geophysical Research Letters, 1981,8(5): 517-520.
[15] ZHANG T, BAUMJOHANN W, DU J, et al. Hemispheric asymmetry of the magnetic fieldwrapping pattern in the Venusian magnetotail[J/OL]. Geophysical Research Letters, 2010, 37(14). https://doi.org/10.1029/2010GL044020.
[16] VIGNES D, MAZELLE C, RME H, et al. The solar wind interaction with Mars: Locationsand shapes of the bow shock and the magnetic pile-up boundary from the observations of theMAG/ER Experiment onboard Mars Global Surveyor[J/OL]. Geophysical Research Letters,2000, 27(1): 49-52. https://doi.org/10.1029/1999GL010703.
[17] SLAVIN J A, ELPHIC R, RUSSELL C T. A comparison of Pioneer Venus and Venera bowshock observations: Evidence for a solar cycle variation[J/OL]. Geophysical Research Letters,1979, 6: 905-908. https://api.semanticscholar.org/CorpusID:122555314.
[18] VERIGIN M I, KOTOVA G A, SHUTTE N M, et al. Quantitative model of the Martian magnetopauseshape and its variation with the solar wind ram pressure based on Phobos 2 observations[J/OL]. Journal of Geophysical Research, 1997, 102: 2147-2155. https://api.semanticscholar.org/CorpusID:119801215.
[19] ZHANG T, SCHWINGENSCHUH K, LICHTENEGGER H I M, et al. Interplanetary magneticfield control of the Mars bow shock - Evidence for Venuslike interaction[J/OL]. Journal ofGeophysical Research, 1991, 96: 11265-11269. https://api.semanticscholar.org/CorpusID:120940400.
[20] ACUÑA M, CONNERNEY J, WASILEWSKI P A, et al. Magnetic field and plasma observationsat Mars: Initial results of the Mars Global Surveyor mission[J]. Science, 1998, 279(5357):1676-1680.
[21] CONNERNEY J, ESPLEY J, LAWTON P, et al. The MAVEN magnetic field investigation[J/OL]. Space Science Reviews, 2015, 195(1-4): 257-291. https://doi.org/10.1007/s11214-015-0169-4.
[22] CRIDER D H, VIGNES D, KRYMSKII A M, et al. A proxy for determining solar wind dynamicpressure at Mars using Mars Global Surveyor data[J/OL]. Journal of Geophysical Research:Space Physics, 2003, 108(A12). https://doi.org/10.1029/2003JA009875.
[23] BERTAUX J L, LEBLANC F, WITASSE O, et al. Discovery of an aurora on Mars[J]. Nature,2005, 435(7043): 790-794.
[24] BRAIN D A, BARABASH S, BOUGHER S W, et al. Solar wind interaction and atmosphericescape[J]. The atmosphere and climate of Mars, 2017: 464-496.
[25] CRIDER D H, BRAIN D A, ACUÑA M H, et al. Mars Global Surveyor observations of solarwind magnetic field draping around Mars[J]. Mars’magnetism and its interaction with the solarwind, 2004: 203-221.
[26] GRUESBECK J R, ESPLEY J R, CONNERNEY J E P, et al. The Three-Dimensional BowShock of Mars as Observed by MAVEN[J/OL]. Journal of Geophysical Research: SpacePhysics, 2018, 123(6): 4542-4555. https://doi.org/10.1029/2018JA025366.
[27] SZEGÖ K, GLASSMEIER K H, BINGHAM R, et al. Physics of mass loaded plasmas[J]. SpaceScience Reviews, 2000, 94: 429-671.
[28] CHAUFRAY J Y, GONZALEZ-GALINDO F, FORGET F, et al. Variability of the hydrogen inthe Martian upper atmosphere as simulated by a 3D atmosphere–exosphere coupling[J]. Icarus,2015, 245: 282-294.
[29] GRUCHOLA S, GALLI A, VORBURGER A, et al. The upper atmosphere of Venus: Modelpredictions for mass spectrometry measurements[J]. Planetary and space science, 2019, 170:29-41.
[30] RUSSELL C T, LUHMANN J G, STRANGEWAY R J. The solar wind interaction with Venusthrough the eyes of the Pioneer Venus Orbiter[J/OL]. Planetary and Space Science, 2006, 54(13): 1482-1495. DOI: https://doi.org/10.1016/j.pss.2006.04.025.
[31] FUTAANA Y, STENBERG WIESER G, BARABASH S, et al. Solar wind interaction andimpact on the Venus atmosphere[J]. Space Science Reviews, 2017, 212: 1453-1509.
[32] DONG Y, FANG X, BRAIN D, et al. Strong plume fluxes at Mars observed by MAVEN: Animportant planetary ion escape channel[J]. Geophysical Research Letters, 2015, 42(21): 8942-8950.
[33] DUBININ E, FRAENZ M, PäTZOLD M, et al. Solar Wind Deflection by Mass Loading in theMartian Magnetosheath Based on MAVEN Observations[J/OL]. Geophysical Research Letters,2018, 45(6): 2574-2579. DOI: 10.1002/2017gl076813.
[34] ROMANELLI N, DIBRACCIO G, HALEKAS J, et al. Variability of the Solar Wind FlowAsymmetry in the Martian Magnetosheath Observed by MAVEN[J/OL]. Geophysical ResearchLetters, 2020, 47(22). DOI: 10.1029/2020gl090793.
[35] ROMEO O, ROMANELLI N, ESPLEY J, et al. Variability of upstream proton cyclotron waveproperties and occurrence at Mars observed by MAVEN[J]. Journal of Geophysical Research:Space Physics, 2021, 126(2): e2020JA028616.
[36] CHENG K, LIU K, MOUSAVI A, et al. Hybrid Simulation of Proton Cyclotron Waves Upstreamof Mars Generated by Pickup Ion Beam Distribution[J/OL]. Geophysical Research Letters,2023, 50(11). https://doi.org/10.1029/2023gl103180.
[37] COWEE M, GARY S, WEI H. Pickup ions and ion cyclotron wave amplitudes upstream ofMars: First results from the 1D hybrid simulation[J/OL]. Geophysical research letters, 2012,39(8). https://doi.org/10.1029/2012GL051313.
[38] COWEE M, GARY S. Electromagnetic ion cyclotron wave generation by planetary pickupions: One‐dimensional hybrid simulations at sub‐Alfvénic pickup velocities[J/OL]. Journal ofGeophysical Research: Space Physics, 2012, 117(A6). https://doi.org/10.1029/2012JA017568.
[39] GARY S P. Electromagnetic ion/ion instabilities and their consequences in space plasmas: Areview[J]. Space Science Reviews, 1991, 56(3): 373-415.
[40] DELVA M, MAZELLE C, BERTUCCI C, et al. Proton cyclotron wave generation mechanismsupstream of Venus[J/OL]. Journal of Geophysical Research: Space Physics, 2011, 116(A2).https://doi.org/10.1029/2010JA015826.
[41] BRAIN D A, BAGENAL F, ACUÑA M H, et al. Observations of low-frequency electromagneticplasma waves upstream from the Martian shock[J]. Journal of Geophysical Research:Space Physics, 2002, 107(A6): SMP 9-1-SMP 9-11.
[42] WU P, WINSKE D, GARY S, et al. Energy dissipation and ion heating at the heliospherictermination shock[J/OL]. Journal of Geophysical Research: Space Physics, 2009, 114(A8).https://doi.org/10.1029/2009JA014240.
[43] COATES A, LIN R, WILKEN B, et al. Giotto measurements of cometary and solar wind plasmaat the comet Halley bow shock[J]. Nature, 1987, 327(6122): 489-492.
[44] COATES A, WILKEN B, JOHNSTONE A, et al. Bulk properties and velocity distributions ofwater group ions at comet Halley: Giotto measurements[J]. Journal of Geophysical Research:Space Physics, 1990, 95(A7): 10249-10260.
[45] COATES A, JOHNSTONE A, KESSEL R, et al. Plasma parameters near the comet Halley bowshock[J]. Journal of Geophysical Research: Space Physics, 1990, 95(A12): 20701-20716.
[46] COATES A. Observations of the velocity distribution of pickup ions[J]. Cometary PlasmaProcesses, 1991, 61: 301-310.
[47] FORMISANO V, AMATA E. Solar wind interaction with the Earth’magnetic field, 4. Preshockperturbation of the solar wind[J/OL]. Journal of Geophysical Research, 1976, 81(22): 3907-3912. https://doi.org/10.1029/JA081i022p03907.
[48] BAME S, ASBRIDGE J, FELDMAN W, et al. Deceleration of the solar wind upstream fromthe earth’s bow shock and the origin of diffuse upstream ions[J/OL]. Journal of GeophysicalResearch: Space Physics, 1980, 85(A6): 2981-2990. https://doi.org/10.1029/JA085iA06p02981.
[49] BONIFAZI C, MORENO G, LAZARUS A, et al. Deceleration of the solar wind in the Earth’sforeshock region: ISEE 2 and IMP 8 observations[J/OL]. Journal of Geophysical Research:Space Physics, 1980, 85(A11): 6031-6038. https://doi.org/10.1029/JA085iA11p06031.
[50] BONIFAZI C, MORENO G, RUSSELL C, et al. Solar wind deceleration and MHD turbulencein the Earth’s foreshock region: ISEE 1 and 2 and IMP 8 observations[J/OL]. Journal of GeophysicalResearch: Space Physics, 1983, 88(A3): 2029-2037. https://doi.org/10.1029/JA088iA03p02029.
[51] FU H, CAO J, ZHANG T, et al. Statistical study of the solar wind deceleration in the Earth’sforeshock region[J/OL]. Chinese Journal of Geophysics, 2009, 52(2): 361-368. https://doi.org/10.1002/cjg2.1356.
[52] 符慧山, 等. 太阳风在地球激波前兆区的减速以及地球内磁层的结构研究[D]. 北京: 中国科学院研究生院, 2010.
[53] VERIGIN M, GRINGAUZ K, KOTOVA G, et al. On the problem of the Martian atmospheredissipation: Phobos: 2 TAUS Spectrometer results[J/OL]. Journal of Geophysical Research:Space Physics, 1991, 96(A11): 19315-19320. https://doi.org/10.1029/90JA02561.
[54] BARABASH S, LUNDIN R. Reflected ions near Mars: PHOBOS‐2 observations[J/OL]. Geophysicalresearch letters, 1993, 20(9): 787-790. https://doi.org/10.1029/93GL00834.
[55] DUBININ E, OBOD D, PEDERSEN A, et al. Mass‐loading asymmetry in upstream regionnear Mars[J/OL]. Geophysical research letters, 1994, 21(24): 2769-2772. https://doi.org/10.1029/94GL02666.
[56] KOTOVA G, VERIGIN M, REMIZOV A, et al. Study of the solar wind deceleration upstreamof the Martian terminator bow shock[J/OL]. Journal of Geophysical Research: Space Physics,1997, 102(A2): 2165-2173. https://doi.org/10.1029/96JA01533.
[57] ZHANG T, SCHWINGENSCHUH K, RUSSELL C. A study of the solar wind decelerationin the Earth’s foreshock region[J/OL]. Advances in Space Research, 1995, 15(8-9): 137-140.https://doi.org/10.1016/0273-1177(94)00095-I.
[58] ZHANG T, SCHWINGENSCHUN K, RIEDLER W, et al. Solar wind deceleration at Marsand Earth: A comparison[J/OL]. Advances in Space Research, 1997, 20(2): 133-136. https://doi.org/10.1016/S0273-1177(97)00522-X.
[59] BIERMANN L, BROSOWSKI B, SCHMIDT H. The interaction of the solar wind with a comet[J/OL]. Solar Physics, 1967, 1: 254-284. https://doi.org/10.1007/BF00150860.
[60] DUBININ E, SAUER K, DELVA M, et al. Deceleration of the solar wind upstream of themartian bow shock. Mass-loading or foreshock features?[J/OL]. Advances in Space Research,2000, 26(10): 1627-1631. https://doi.org/10.1016/S0273-1177(00)00104-6.
[61] DUBININ E, SAUER K, DELVA M, et al. Multi‐instrument study of the upstream region nearMars: The Phobos 2 observations[J/OL]. Journal of Geophysical Research: Space Physics,2000, 105(A4): 7557-7571. https://doi.org/10.1029/1999JA900400.
[62] ZHANG T, LICHTENEGGER H, SHI J, et al. Hot oxygen corona at Mars and its effect onsolar wind deceleration[J/OL]. Chinese Physics Letters, 2006, 23(8): 2338-2340. https://doi.org/10.1088/0256-307X/23/8/102.
[63] HALEKAS J, RUHUNUSIRI S, HARADA Y, et al. Structure, dynamics, and seasonal variabilityof the Mars‐solar wind interaction: MAVEN Solar Wind Ion Analyzer in‐flight performanceand science results[J/OL]. Journal of Geophysical Research: Space Physics, 2017, 122(1):547-578. https://doi.org/10.1002/2016JA023167.
[64] JAKOSKY B M, LIN R P, GREBOWSKY J M, et al. The Mars atmosphere and volatile evolution(MAVEN) mission[J/OL]. Space Science Reviews, 2015, 195: 3-48. https://doi.org/10.1007/s11214-015-0139-x.
[65] HUANG H, GUO J, MAZELLE C, et al. Properties of Interplanetary Fast Shocks Close to theMartian Environment[J]. The Astrophysical Journal, 2021, 914(1): 14 (15pp).
[66] HALEKAS J, TAYLOR E, DALTON G, et al. The solar wind ion analyzer for MAVEN[J/OL].Space Science Reviews, 2015, 195: 125-151. https://doi.org/10.1007/s11214-013-0029-z.
[67] ROSENBAUER H, SCHUTTE N, APATHY I, et al. The study of three-dimensional distributionfunctions of the main solar wind ions—Protons and alpha particles in Phobos mission. TAUSexperiment[J]. The Instrumentation and Methods of Space Research, 1989: 30-43.
[68] AYDOGAR O. The PHOBOS fluxgate magnetometer (MAGMA): instrument description[M].Inst. für Weltraumforschung, 1989.
[69] WOODS L. On double-structured, perpendicular, magneto-plasma shock waves[J/OL]. PlasmaPhysics, 1971, 13(4): 289. https://doi.org/10.1088/0032-1028/13/4/302.
[70] BURNE S, BERTUCCI C, MAZELLE C, et al. The Structure of the Martian Quasi-Perpendicular Supercritical Shock as Seen by MAVEN[J/OL]. Journal of Geophysical Research:Space Physics, 2021, 126(9): e2020JA028938. https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2020JA028938. DOI: https://doi.org/10.1029/2020JA028938.
[71] MODOLO R, HESS S, MANCINI M, et al. Mars‐solar wind interaction: LatHyS, an improvedparallel 3‐D multispecies hybrid model[J/OL]. Journal of Geophysical Research: SpacePhysics, 2016, 121(7): 6378-6399. https://doi.org/10.1002/2015JA022324.
[72] RAHMATI A, LARSON D, CRAVENS T, et al. Seasonal variability of neutral escape fromMars as derived from MAVEN pickup ion observations[J]. Journal of Geophysical Research:Planets, 2018, 123(5): 1192-1202.
[73] RAHMATI A. Oxygen exosphere of Mars: Evidence from pickup ions measured by MAVEN[D]. University of Kansas, 2016.
[74] RAHMATI A, LARSON D, CRAVENS T, et al. MAVEN measured oxygen and hydrogenpickup ions: Probing the Martian exosphere and neutral escape[J]. Journal of GeophysicalResearch: Space Physics, 2017, 122(3): 3689-3706.
[75] MODOLO R, CHANTEUR G M, DUBININ E, et al. Influence of the solar EUV flux on theMartian plasma environment[C/OL]//Annales Geophysicae: Vol. 23. Copernicus PublicationsGöttingen, Germany: 433-444. https://doi.org/10.5194/angeo-23-433-2005.
[76] MOTT N F, MASSEY H S W. The theory of atomic collisions: Vol. 35[M]. Clarendon PressOxford, 1965.
[77] STEBBINGS R, SMITH A, EHRHARDT H. Charge transfer between oxygen atoms and O+and H+ ions[J/OL]. Journal of Geophysical Research, 1964, 69(11): 2349-2355. https://doi.org/10.1029/JZ069i011p02349.
[78] LIU D, RONG Z, GAO J, et al. Statistical properties of solar wind upstream of Mars: MAVENobservations[J]. The Astrophysical Journal, 2021, 911(2): 113.
[79] PETROVAY K. Solar cycle prediction[J/OL]. Living Reviews in Solar Physics, 2020, 17(1):2. https://doi.org/10.1007/s41116-020-0022-z.
[80] ZOU H, LILLIS R J, WANG J S, et al. Determination of seasonal variations in the Martianneutral atmosphere from observations of ionospheric peak height[J/OL]. Journal of GeophysicalResearch: Planets, 2011, 116(E9). https://doi.org/10.1029/2011JE003833.
[81] YAMAUCHI M, HARA T, LUNDIN R, et al. Seasonal variation of Martian pick-up ions:Evidence of breathing exosphere[J/OL]. Planetary and Space Science, 2015, 119: 54-61. https://doi.org/10.1016/j.pss.2015.09.013.
[82] DONG C, BOUGHER S W, MA Y, et al. Solar wind interaction with the Martian upper atmosphere:Crustal field orientation, solar cycle, and seasonal variations[J/OL]. Journal of GeophysicalResearch: Space Physics, 2015, 120(9): 7857-7872. https://doi.org/10.1002/2015JA020990.
[83] HALEKAS J. Seasonal variability of the hydrogen exosphere of Mars[J/OL]. Journal of GeophysicalResearch: Planets, 2017, 122(5): 901-911. https://doi.org/10.1002/2017JE005306.
[84] ZOU Y, ZHU Y, BAI Y, et al. Scientific objectives and payloads of Tianwen-1, China’sfirst Mars exploration mission[J/OL]. Advances in Space Research, 2021, 67(2): 812-823.https://doi.org/10.1016/j.asr.2020.11.005.
[85] HALEKAS J S, BRAIN D A, LUHMANN J G, et al. Flows, fields, and forces in the Marssolarwind interaction[J]. Journal of Geophysical Research: Space Physics, 2017, 122(11):11320-11341.SAUER K, BOGDANOV A, BAUMGÄRTEL K. Evidence of an ion composition boundary(protonopause) in bi-ion fluid simulations of solar wind mass loading[J]. Geophysical ResearchLetters, 1994, 21(20): 2255-2258.
[87] MARCHAND R. Test-particle simulation of space plasmas[J]. Communications in ComputationalPhysics, 2010, 8(3): 471.
[88] FANG X, LIEMOHN M W, NAGY A F, et al. Pickup oxygen ion velocity space and spatialdistribution around Mars[J/OL]. Journal of Geophysical Research: Space Physics, 2008, 113(A2). https://doi.org/10.1029/2007JA012736.
[89] SLAVIN J, ELPHIC R, RUSSELL C, et al. The solar wind interaction with Venus: PioneerVenus observations of bow shock location and structure[J]. Journal of Geophysical Research:Space Physics, 1980, 85(A13): 7625-7641.
[90] TATRALLYAY M, RUSSELL C, LUHMANN J, et al. On the proper Mach number and ratio ofspecific heats for modeling the Venus bow shock[J]. Journal of Geophysical Research: SpacePhysics, 1984, 89(A9): 7381-7392.
[91] RUSSELL C, LUHMANN J, PHILLIPS J. The location of the subsolar bow shock of Venus:Implications for the obstacle shape[J]. Geophysical research letters, 1985, 12(10): 627-630.
[92] ZHANG T L, LUHMANN J, RUSSELL C. The solar cycle dependence of the location andshape of the Venus bow shock[J]. Journal of Geophysical Research: Space Physics, 1990, 95(A9): 14961-14967.
[93] SHAN L, LU Q, MAZELLE C, et al. The shape of the Venusian bow shock at solar minimumand maximum: Revisit based on VEX observations[J]. Planetary and Space Science, 2015, 109:32-37.
[94] KALLIO E, JARVINEN R, JANHUNEN P. Venus–solar wind interaction: Asymmetries andthe escape of O+ ions[J]. Planetary and Space Science, 2006, 54(13-14): 1472-1481.
[95] EASTWOOD J, LUCEK E, MAZELLE C, et al. The foreshock[J]. Space Science Reviews,2005, 118: 41-94.
[96] BONIFAZI C, MORENO G. Reflected and diffuse ions backstreaming from the Earth’s bowshock 2. Origin[J]. Journal of Geophysical Research: Space Physics, 1981, 86(A6): 4405-4413.
[97] GEDALIN M, POGORELOV N V, ROYTERSHTEYN V. Backstreaming pickup ions[J]. TheAstrophysical Journal, 2021, 910(2): 107.
[98] SHAN L, MAZELLE C, MEZIANE K, et al. Characteristics of quasi-monochromatic ULFwaves in the Venusian foreshock[J]. Journal of Geophysical Research: Space Physics, 2016,121(8): 7385-7397.
[99] ORLOWSKI D, RUSSELL C. Ulf waves upstream of the Venus bow shock: Properties of onehertzwaves[J]. Journal of Geophysical Research: Space Physics, 1991, 96(A7): 11271-11282.
[100] SHAN L, MAZELLE C, MEZIANE K, et al. The Quasi-monochromatic ULF Wave Boundaryin the Venusian Foreshock: Venus Express Observations[J]. Journal of Geophysical Research:Space Physics, 2018, 123(1): 374-384.
[101] GREENSTADT E, BAUM L. Earth’s compressional foreshock boundary revisited: Observationsby the ISEE 1 magnetometer[J]. Journal of Geophysical Research: Space Physics, 1986,91(A8): 9001-9006.
[102] CRAWFORD G, STRANGEWAY R, RUSSELL C. Statistical imaging of the Venus foreshockusing VLF wave emissions[J]. Journal of Geophysical Research: Space Physics, 1998, 103(A6): 11985-12003.
[103] SUNDBERG T, HAYNES C T, BURGESS D, et al. Ion acceleration at the quasi-parallel bowshock: decoding the signature of injection[J]. The Astrophysical Journal, 2016, 820(1): 21.
[104] HUDSON P, KAHN F. Reflection of charged particles by plasma shocks[J]. Monthly Noticesof the Royal Astronomical Society, 1965, 131(1): 23-49.
[105] LEE M A, SHAPIRO V D, SAGDEEV R Z. Pickup ion energization by shock surfing[J].Journal of Geophysical Research: Space Physics, 1996, 101(A3): 4777-4789.
[106] LEVER E L, QUEST K B, SHAPIRO V D. Shock surfing vs. shock drift acceleration[J].Geophysical research letters, 2001, 28(7): 1367-1370.
[107] SHAPIRO V D, ÜÇER D. Shock surfing acceleration[J]. Planetary and Space Science, 2003,51(11): 665-680.
[108] WINSKE D, YIN L, OMIDI N, et al. Hybrid simulation codes: Past, present and future—Atutorial[J]. Space plasma simulation, 2003: 136-165.
[109] LIPATOV A S. The hybrid multiscale simulation technology: an introduction with applicationto astrophysical and laboratory plasmas[M]. Springer Science & Business Media, 2013.
[110] HELLINGER P, TRAVNICEK P, MATSUMOTO H. Reformation of perpendicular shocks:Hybrid simulations[J]. Geophysical research letters, 2002, 29(24): 87-1.
[111] LOBZIN V, KRASNOSELSKIKH V, BOSQUED J M, et al. Nonstationarity and reformationof high-Mach-number quasiperpendicular shocks: Cluster observations[J/OL]. GeophysicalResearch Letters, 2007, 34(5). https://doi.org/10.1029/2006GL029095.
[112] MAZELLE C, LEMBÈGE B, MORGENTHALER A, et al. Self-reformation of the quasiperpendicularshock: Cluster observations[C]//AIP Conference Proceedings: Vol. 1216. AmericanInstitute of Physics, 2010: 471-474.
[113] YANG Z, LU Q, WANG S. The evolution of the electric field at a nonstationary perpendicularshock[J/OL]. Physics of Plasmas, 2009, 16(12). https://doi.org/10.1063/1.3275788.
[114] YANG Z, LU Q, LEMBÈGE B, et al. Shock front nonstationarity and ion acceleration in supercriticalperpendicular shocks[J/OL]. Journal of Geophysical Research: Space Physics, 2009,114(A3). https://doi.org/10.1029/2008JA013785.
[115] WU P, LIU K, WINSKE D, et al. Hybrid simulations of the termination shock: Suprathermalion velocity distributions in the heliosheath[J/OL]. Journal of Geophysical Research: SpacePhysics, 2010, 115(A11). https://doi.org/10.1029/2010JA015384.
[116] MATSUKIYO S, SCHOLER M. Simulations of pickup ion mediated quasi-perpendicularshocks: Implications for the heliospheric termination shock[J]. Journal of Geophysical Research:Space Physics, 2014, 119(4): 2388-2399.
[117] GEDALIN M. Transmitted, reflected, quasi-reflected, and multiply reflected ions in low-Machnumber shocks[J]. Journal of Geophysical Research: Space Physics, 2016, 121(11): 10-754.
[118] 杨忠炜, 陆全明, 郭俊, 等. 垂直无碰撞激波的离子加速机制[J]. 地球物理学报, 2008, 51(4): 953-959.
[119] LIEWER P, GOLDSTEIN B, OMIDI N. Hybrid simulations of the effects of interstellar pickuphydrogen on the solar wind termination shock[J]. Journal of Geophysical Research: SpacePhysics, 1993, 98(A9): 15211-15220.
修改评论