[1] WEIJIAN Z, CHUNCHAO Y, ZHIXIONG Y, et al. Remote sense for environment pollution gases in wide infrared spectral range[J/OL]. Infrared and Laser Engineering, 2019, 48: 1104002.https://api.semanticscholar.org/CorpusID:212909120.
[2] COLLINS D C, LEE M L. Developments in ion mobility spectrometry–mass spectrometry[J/OL]. Analytical and Bioanalytical Chemistry, 2002, 372: 66-73. https://api.semanticscholar.org/CorpusID:29195651.
[3] DESHMUKH K, KOVÁřÍK T, PASHA S K K. State of the art recent progress in two dimensional MXenes based gas sensors and biosensors: A comprehensive review[J/OL]. Coordination Chemistry Reviews, 2020, 424: 213514. https://api.semanticscholar.org/CorpusID:225022147.
[4] 聂小溪. 基于宽波段红外光谱成像技术的多种气体检测识别方法研究[D]. 电子科技大学,2023.
[5] ZENG Y, MORRIS J M. Detection limits of optical gas imagers as a function of temperature differential and distance[J/OL]. Journal of the Air & Waste Management Association, 2018,69: 351 - 361. https://api.semanticscholar.org/CorpusID:53093101.
[6] FOX T A, BARCHYN T E, RISK D, et al. A review of close-range and screening technologies for mitigating fugitive methane emissions in upstream oil and gas[J/OL]. Environmental Research Letters, 2019, 14. https://api.semanticscholar.org/CorpusID:159280839.
[7] MERIBOUT M. Gas Leak-Detection and Measurement Systems: Prospects and Future Trends[J/OL]. IEEE Transactions on Instrumentation and Measurement, 2021, 70: 1-13. DOI: 10.1109/TIM.2021.3096596.
[8] KASTEK M, PIATKOWSKI T, LAGUEUX P, et al. Passive Optoelectronics Systems ForStandoff Gas Detection: Results Of Tests[J/OL]. Artificial Intelligence Review, 2015, 198:89-104. https://api.semanticscholar.org/CorpusID:62579093.
[9] GAGNON M A, JAHJAH K A, MARCOTTE F, et al. Time-resolved thermal infrared multispectral imaging of gases and minerals[C/OL]//ANDRESEN B F, FULOP G F, HANSONC M, et al. Infrared Technology and Applications XL: Vol. 9070. SPIE, 2014: 90700J.https://doi.org/10.1117/12.2050569.
[10] KASTEK M, SOSNOWSKI T, OR T, et al. Multispectral Gas Detection Method[J/OL]. Artificial Intelligence Review, 2009, 123: 227-236. https://api.semanticscholar.org/CorpusID:60764657.
[11] BERNASCOLLE P, ELICHABE A, FERVEL F, et al. Stand-off CWA imaging system: second sight MS[C/OL]//Defense + Commercial Sensing. 2012. https://api.semanticscholar.org/CorpusID:120191421.
[12] WANG J, TCHAPMI L P, RAVIKUMAR A P, et al. Machine vision for natural gas methane emissions detection using an infrared camera[J/OL]. Applied Energy, 2020, 257: 113998. https://www.sciencedirect.com/science/article/pii/S030626191931685X. DOI: https://doi.org/10.1016/j.apenergy.2019.113998.
[13] BIN J, RAHMAN C A, ROGERS S, et al. Tensor-Based Approach for Liquefied Natural Gas Leakage Detection From Surveillance Thermal Cameras: A Feasibility Study in Rural Areas[J/OL]. IEEE Transactions on Industrial Informatics, 2021, 17(12): 8122-8130. DOI: 10.1109/TII.2021.3064845.
[14] WANG J, JI J, RAVIKUMAR A P, et al. VideoGasNet: Deep learning for natural gas methane leak classification using an infrared camera[J/OL]. Energy, 2022, 238: 121516. https://www.sciencedirect.com/science/article/pii/S0360544221017643. DOI: https://doi.org/10.1016/j.energy.2021.121516.
[15] SPATAFORA M A N, ALLEGRA D, GIUDICE O, et al. Natural Gas Leakage Detection: a Deep Learning Framework on IR Video Data[C/OL]//2022 26th International Conference on Pattern Recognition (ICPR). 2022: 636-642. DOI: 10.1109/ICPR56361.2022.9956523.
[16] RAVIKUMAR A P, WANG J, BRANDT A R. Are Optical Gas Imaging Technologies Effective For Methane Leak Detection?[J/OL]. Environmental Science & Technology, 2017, 51(1): 718-724. https://doi.org/10.1021/acs.est.6b03906.
[17] BIN J, BAHRAMI Z, RAHMAN C A, et al. Foreground Fusion-Based Liquefied Natural Gas Leak Detection Framework From Surveillance Thermal Imaging[J/OL]. IEEE Transactions on Emerging Topics in Computational Intelligence, 2023, 7(4): 1151-1162. DOI: 10.1109/TETCI.2022.3214826.
[18] BIN J, ROGERS S, LIU Z. Vision Fourier transformer empowered multi-modal imaging system for ethane leakage detection[J/OL]. Information Fusion, 2024, 106: 102266. https://www.sciencedirect.com/science/article/pii/S1566253524000447. DOI: https://doi.org/10.1016/j.inffus.2024.102266.
[19] LI J, WANG L, ZHANG C S, et al. Gas cloud infrared image enhancement based on anisotropic diffusion[C/OL]//Defense + Commercial Sensing. 2011. https://api.semanticscholar.org/CorpusID:121865474.
[20] LUO X, MA J, CHEN D, et al. Archimedean spiral push-broom differential thermal imaging for gas leakage detection[J/OL]. Opt. Express, 2019, 27(6): 9099-9114. https://opg.optica.org/oe/abstract.cfm?URI=oe-27-6-9099. DOI: 10.1364/OE.27.009099.
[21] PENG X, QIN H, HU Z, et al. Gas plume detection in infrared image using mask R-CNN with attention mechanism[C/OL]//GREIVENKAMP J, TANIDA J, JIANG Y, et al. AOPC 2019: AI in Optics and Photonics: Vol. 11342. SPIE, 2019: 113420U. https://doi.org/10.1117/12.2548179.
[22] LU Q, LI Q, HU L, et al. An Effective Low-Contrast SF₆ Gas Leakage Detection Method for Infrared Imaging[J/OL]. IEEE Transactions on Instrumentation and Measurement, 2021, 70:1-9. DOI: 10.1109/TIM.2021.3073443.
[23] WANG X, MIAO Y, CHEN Y. Deep Temporal Network for VOC Gas Recognition in the Middle Infrared Spectrum[C/OL]//2022 4th International Academic Exchange Conference on Science and Technology Innovation (IAECST). 2022: 1143-1146. DOI: 10.1109/IAECST57965.2022.10062280.
[24] SHI J, XIE W, HUANG X, et al. Real-time natural gas release forecasting by using physics guided deep learning probability model[J/OL]. Journal of Cleaner Production, 2022, 368:133201. https://www.sciencedirect.com/science/article/pii/S0959652622027895. DOI: https://doi.org/10.1016/j.jclepro.2022.133201.
[25] HUANG E, CHEN L, LV T, et al. GLRNet: Gas Leak Recognition via Temporal Difference in Infrared Video[C]//FANG L, POVEY D, ZHAI G, et al. Artificial Intelligence. Cham:Springer Nature Switzerland, 2022: 515-520.
[26] ZUO J, HU X, XU L, et al. CH4 gas leakage detection method for low contrast infrared images[J/OL]. Infrared Physics & Technology, 2022, 127: 104473. https://www.sciencedirect.com/science/article/pii/S1350449522004546. DOI: https://doi.org/10.1016/j.infrared.2022.104473.
[27] MA D, LIU A, FAN Z, et al. Gas Leakage Recognition Based on Wide-Band Infrared Imaging with the Auxiliary Excitation Method and Machine Learning Model[J/OL]. ACS Chemical Health & Safety, 2022, 29(5): 455-466. https://doi.org/10.1021/acs.chas.2c00045.
[28] HU Y, XU L, XU H, et al. Three-dimensional reconstruction of a leaking gas cloud based on two scanning FTIR remote-sensing imaging systems[J/OL]. Opt. Express, 2022, 30(14): 25581-25596. https://opg.optica.org/oe/abstract.cfm?URI=oe-30-14-25581. DOI: 10.1364/OE.460640.
[29] LI K, DUAN S, PANG L, et al. Chemical Gas Telemetry System Based on Multispectral Infrared Imaging[J/OL]. Toxics, 2023, 11(1). https://www.mdpi.com/2305-6304/11/1/83. DOI: 10.3390/toxics11010083.
[30] WANG Y, HUANG L, CHENG Z, et al. Flow Faster RCNN : Deep Learning Approach for Infrared Gas Leak Detection in Complex Chemical Plant Surroundings[C/OL]//2023 42nd Chinese Control Conference (CCC). 2023: 7823-7830. DOI: 10.23919/CCC58697.2023.10241164.
[31] HONG S Z, HU Y, YU H W. A VOCs Gas Detection Algorithm Based On Infrared Thermal Imaging[C/OL]//2019 Chinese Control And Decision Conference (CCDC). 2019: 329-334.DOI: 10.1109/CCDC.2019.8833058.
[32] WU S, ZHONG X, QU Z, et al. Infrared Gas Detection and Concentration Inversion Based on Dual-Temperature Background Points[J/OL]. Photonics, 2023, 10(5). https://www.mdpi.com/2304-6732/10/5/490. DOI: 10.3390/photonics10050490.
[33] ZIFEN H, HUIZHU C, YINHUI Z. Spatial information adaptive regulation and feature alignment for infrared methane instance segmentation[J/OL]. Optics and Precision Engineering,2023, 31(20): 3034-3049. DOI: 10.37188/OPE.20233120.3034.
[34] YU H, WANG J, WANG Z, et al. A lightweight network based on local–global feature fusion for real-time industrial invisible gas detection with infrared thermography[J/OL]. Applied Soft Computing, 2024, 152: 111138. https://www.sciencedirect.com/science/article/pii/S1568494623011560. DOI: https://doi.org/10.1016/j.asoc.2023.111138.
[35] WANG Q, XING M, SUN Y, et al. Optical gas imaging for leak detection based on improved deeplabv3+ model[J/OL]. Optics and Lasers in Engineering, 2024, 175: 108058. https://www.sciencedirect.com/science/article/pii/S0143816624000381. DOI: https://doi.org/10.1016/j.optlaseng.2024.108058.
[36] YAO J, XIONG Z, LI S, et al. TSFF-Net: A novel lightweight network for video real-time detection of SF6 gas leaks[J/OL]. Expert Systems with Applications, 2024, 247: 123219. https://www.sciencedirect.com/science/article/pii/S0957417424000848. DOI: https://doi.org/10.1016/j.eswa.2024.123219.
[37] 李家琨, 金伟其, 王霞, 等. 气体泄漏红外成像检测技术发展综述[J]. 红外技术, 2014, 36:513-520.
[38] FLANIGAN D F. Limits of passive remote detection of hazardous vapors by computer simulation[C/OL]//Defense, Security, and Sensing. 1996. https://api.semanticscholar.org/CorpusID:120080682.
[39] 郭安祥, 叶日新, 董明, 等. 基于红外吸收光谱法检测 SF_6 分解气体的仿真与实验研究[J].绝缘材料, 2017, 50(12): 72-77.
[40] ABITAN H, BOHR H, BUCHHAVE P. Correction to the Beer-Lambert-Bouguer law for optical absorption[J/OL]. Appl. Opt., 2008, 47(29): 5354-5357. https://opg.optica.org/ao/abstract.cfm?URI=ao-47-29-5354. DOI: 10.1364/AO.47.005354.
[41] 沈英, 邵昆明, 吴靖, 等. 气体光学检测技术及其应用研究进展[J]. 光电工程, 2020, 47:3-18.
[42] LAI R, TANG YANG Y, JIAN WANG B, et al. A quantitative measure based infrared image enhancement algorithm using plateau histogram[J/OL]. Optics Communications, 2010,283(21): 4283-4288. https://www.sciencedirect.com/science/article/pii/S003040181000684X.DOI: https://doi.org/10.1016/j.optcom.2010.06.072.
[43] WAN M, GU G, QIAN W, et al. Infrared Image Enhancement Using Adaptive Histogram Partition and Brightness Correction[J/OL]. Remote Sensing, 2018, 10(5). https://www.mdpi.com/2072-4292/10/5/682. DOI: 10.3390/rs10050682.
[44] SILVA E A, PANETTA K, AGAIAN S S. Quantifying image similarity using measure of enhancement by entropy[C/OL]//SPIE Defense + Commercial Sensing. 2007. https://api.semanticscholar.org/CorpusID:891075.
[45] KIM S. Sea-Based Infrared Scene Interpretation by Background Type Classification and Coastal Region Detection for Small Target Detection[J/OL]. Sensors, 2015, 15(9): 24487-24513. https://www.mdpi.com/1424-8220/15/9/24487. DOI: 10.3390/s150924487.
[46] BRANCHITTA F, DIANI M, CORSINI G, et al. New technique for the visualization of highdynamic range infrared images[J/OL]. Optical Engineering, 2009, 48: 096401. https://api.semanticscholar.org/CorpusID:62543772.
[47] LIU N, ZHAO D. Detail enhancement for high-dynamic-range infrared images based on guided image filter[J/OL]. Infrared Physics & Technology, 2014, 67: 138-147. https://api.semanticscholar.org/CorpusID:122293802.
[48] PITAS I. Digital Image Processing Algorithms and Applications[M]. 1st ed. USA: John Wiley& Sons, Inc., 2000.
[49] LAI R, YANG Y, WANG B, et al. A quantitative measure based infrared image enhancement algorithm using plateau histogram[J/OL]. Optics Communications, 2010, 283: 4283-4288.https://api.semanticscholar.org/CorpusID:123043458.
[50] PIZER S M, AMBURN E P, AUSTIN J D, et al. Adaptive histogram equalization and its variations[J/OL]. Graphical Models graphical Models and Image Processing computer Vision,Graphics, and Image Processing, 1987, 39: 355-368. https://api.semanticscholar.org/CorpusID:62771950.
[51] ZUIDERVELD K J. Contrast Limited Adaptive Histogram Equalization[C/OL]//Graphics gems. 1994. https://api.semanticscholar.org/CorpusID:62707267.
[52] TAREL J P, HAUTIÈRE N. Fast visibility restoration from a single color or gray level image[J/OL]. 2009 IEEE 12th International Conference on Computer Vision, 2009: 2201-2208. https://api.semanticscholar.org/CorpusID:6966375.
[53] HE K, SUN J, TANG X. Single image haze removal using dark channel prior[C/OL]//2009IEEE Conference on Computer Vision and Pattern Recognition. 2009: 1956-1963. DOI: 10.1109/CVPR.2009.5206515.
[54] ZHAO Q, LUO D, WANG J, et al. An Image Enhancement Method for Gas Leak Detection Based on Infrared Imaging *[C/OL]//2023 IEEE International Conference on Real-time Computing and Robotics (RCAR). 2023: 245-250. DOI: 10.1109/RCAR58764.2023.10249481.
[55] HE K, SUN J, TANG X. Guided Image Filtering[J/OL]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2010, 35: 1397-1409. https://api.semanticscholar.org/CorpusID:1264129.
[56] GE Z, LIU S, WANG F, et al. YOLOX: Exceeding YOLO Series in 2021: abs/2107.08430[A/OL]. 2021. https://api.semanticscholar.org/CorpusID:236088010.
[57] ZHAO Q, NIE X, LUO D, et al. An Effective Method for Gas-Leak Area Detection and Gas Identification with Mid-Infrared Image[J/OL]. Photonics, 2022, 9(12). https://www.mdpi.com/2304-6732/9/12/992. DOI: 10.3390/photonics9120992.
修改评论