[1] Al Rashid A, Khan S A, G. Al-Ghamdi S, et al. Additive manufacturing: Technology, applications, markets, and opportunities for the built environment[M/OL]//Automation in Construction. Elsevier B.V., 2020. DOI:10.1016/j.autcon.2020.103268.
[2] Crump S S. Apparatus and method for creating three-dimensional objects[P/OL]. 1986.
[3] ISO/ASTM. INTERNATIONAL STANDARD ISO / ASTM 52900 Additive manufacturing — General principles — Terminology[J/OL]. International Organization for Standardization, 2021, 5(II): 1-26.
[4] Cano-Vicent A, Tambuwala M M, Hassan S S, et al. Fused deposition modelling: Current status, methodology, applications and future prospects[J/OL]. Additive Manufacturing, 2021, 47: 102378. DOI:10.1016/J.ADDMA.2021.102378.
[5] Wang P, Zou B, Xiao H, et al. Effects of printing parameters of fused deposition modeling on mechanical properties, surface quality, and microstructure of PEEK[J/OL]. Journal of Materials Processing Technology, 2019, 271(March): 62-74. DOI:10.1016/j.jmatprotec.2019.03.016.
[6] Liu G, Xiong Y, Zhou L. Additive manufacturing of continuous fiber reinforced polymer composites: Design opportunities and novel applications[J/OL]. Composites Communications, 2021, 27(August): 100907. DOI:10.1016/j.coco.2021.100907.
[7] Parandoush P, Lin D. A review on additive manufacturing of polymer-fiber composites[J/OL]. Composite Structures, 2017, 182: 36-53. DOI:10.1016/J.COMPSTRUCT.2017.08.088.
[8] Zhang H, Zhang L, Zhang H, et al. Fibre bridging and nozzle clogging in 3D printing of discontinuous carbon fibre-reinforced polymer composites: coupled CFD-DEM modelling[J/OL]. International Journal of Advanced Manufacturing Technology, 2021, 117(11-12): 3549-3562. DOI:10.1007/s00170-021-07913-7.
[9] Nzebuka G C, Ufodike C O, Rahman A M, et al. Numerical modeling of the effect of nozzle diameter and heat flux on the polymer flow in fused filament fabrication[J/OL]. Journal of Manufacturing Processes, 2022, 82: 585-600. DOI:10.1016/j.jmapro.2022.08.029.
[10] Pigeonneau F, Xu D, Vincent M, et al. Heating and flow computations of an amorphous polymer in the liquefier of a material extrusion 3D printer[J/OL]. Additive Manufacturing, 2020, 32(August 2019). DOI:10.1016/j.addma.2019.101001.
[11] Ufodike C O, Nzebuka G C. Investigation of thermal evolution and fluid flow in the hot-end of a material extrusion 3D Printer using melting model[J/OL]. Additive Manufacturing, 2022, 49. DOI:10.1016/j.addma.2021.102502.
[12] Serdeczny M P, Comminal R, Mollah M T, et al. Numerical modeling of the polymer flow through the hot-end in filament-based material extrusion additive manufacturing[J/OL]. Additive Manufacturing, 2020, 36. DOI:10.1016/j.addma.2020.101454.
[13] Kattinger J, Ebinger T, Kurz R, et al. Numerical simulation of the complex flow during material extrusion in fused filament fabrication[J/OL]. Additive Manufacturing, 2022, 49. DOI:10.1016/j.addma.2021.102476.
[14] Phan D D, Horner J S, Swain Z R, et al. Computational fluid dynamics simulation of the melting process in the fused filament fabrication additive manufacturing technique[J/OL]. Additive Manufacturing, 2020, 33. DOI:10.1016/j.addma.2020.101161.
[15] Xu X, Ren H, Chen S, et al. Review on melt flow simulations for thermoplastics and their fiber reinforced composites in fused deposition modeling[J/OL]. Journal of Manufacturing Processes, 2023, 92: 272-286. DOI:10.1016/J.JMAPRO.2023.02.039.
[16] Ren H, Yang X, Wang Z, et al. Smart structures with embedded flexible sensors fabricated by fused deposition modeling-based multimaterial 3D printing[J/OL]. International Journal of Smart and Nano Materials, 2022, 13(3): 447-464. DOI:10.1080/19475411.2022.2095454.
[17] Go J, Schiffres S N, Stevens A G, et al. Rate limits of additive manufacturing by fused filament fabrication and guidelines for high-throughput system design[J/OL]. Additive Manufacturing, 2017, 16: 1-11. DOI:10.1016/j.addma.2017.03.007.
[18] Peng F, Vogt B D, Cakmak M. Complex flow and temperature history during melt extrusion in material extrusion additive manufacturing[J/OL]. Additive Manufacturing, 2018, 22(May): 197-206. DOI:10.1016/j.addma.2018.05.015.
[19] Shaqour B, Abuabiah M, Abdel-Fattah S, et al. Gaining a better understanding of the extrusion process in fused filament fabrication 3D printing: a review[J/OL]. International Journal of Advanced Manufacturing Technology, 2021, 114(5-6): 1279-1291. DOI:10.1007/s00170-021-06918-6.
[20] Pricci A, Al Islam Ovy S M, Stano G, et al. Semi-analytical and numerical models to predict the extrusion force for silicone additive manufacturing, as a function of the process parameters[J/OL]. Additive Manufacturing Letters, 2023, 6(May). DOI:10.1016/j.addlet.2023.100147.
[21] Zhang J, Vasiliauskaite E, De Kuyper A, et al. Temperature analyses in fused filament fabrication: from filament entering the hot-end to the printed part[J/OL]. 3D Printing and Additive Manufacturing, 2021. DOI:10.1089/3dp.2020.0339.
[22] Shadvar N, Foroozmehr E, Badrossamay M, et al. Computational analysis of the extrusion process of fused deposition modeling of acrylonitrile-butadiene-styrene[J/OL]. DOI:10.1007/s12289-019-01523-1/Published.
[23] Idris M, Ismail S. Analysis on temperature setting for extruding polylactic acid using open-source3D printer[J]. ARPN Journal of Engineering and Applied Sciences, 2017, 12(4): 1348-1353.
[24] Pigeonneau F, Xu D, Vincent M, et al. Heating and flow computations of an amorphous polymer in the liquefier of a material extrusion 3D printer[J/OL]. Additive Manufacturing, 2020, 32. DOI:10.1016/j.addma.2019.101001.
[25] Hart K R, Dunn R M, Sietins J M, et al. Increased fracture toughness of additively manufactured amorphous thermoplastics via thermal annealing[J/OL]. Polymer, 2018, 144: 192-204. DOI:10.1016/j.polymer.2018.04.024.
[26] Yang F, Pitchumani R. Healing of thermoplastic polymers at an interface under nonisothermal conditions[J/OL]. Macromolecules, 2002, 35(8): 3213-3224. DOI:10.1021/ma010858o.
[27] McIlroy C, Olmsted P D. Disentanglement effects on welding behaviour of polymer melts during the fused-filament-fabrication method for additive manufacturing[J/OL]. Polymer, 2017, 123: 376-391. DOI:10.1016/j.polymer.2017.06.051.
[28] Marion S, Sardo L, Joffre T, et al. First steps of the melting of an amorphous polymer through a hot-end of a material extrusion additive manufacturing[J/OL]. Additive Manufacturing, 2023, 65: 103435. DOI:10.1016/J.ADDMA.2023.103435.
[29] Serdeczny M P, Comminal R, Mollah M T, et al. Viscoelastic simulation and optimisation of the polymer flow through the hot-end during filament-based material extrusion additive manufacturing[J/OL]. Virtual and Physical Prototyping, 2022, 17(2): 205-219. DOI:10.1080/17452759.2022.2028522.
[30] Schuller T, Fanzio P, Galindo-Rosales F J. Analysis of the importance of shear-induced elastic stresses in material extrusion[J/OL]. Additive Manufacturing, 2022: 102952
[2022-06-17]. DOI:10.1016/J.ADDMA.2022.102952.
[31] Papon M E A, Haque A, Sharif M A R. Effect of nozzle geometry on Melt flow simulation and structural property of thermoplastic nanocomposites in Fused deposition modeling[C/OL]//32nd Technical Conference of the American Society for Composites 2017: Vol. 3. DEStech Publications Inc., 2017: 2167-2182. DOI:10.12783/asc2017/15339.
[32] Christensen R. Theory of Viscoelasticity[M/OL]. New York: Elsevier, 1982. DOI:10.1016/B978-0-12-174252-2.X5001-7.
[33] Comminal R, Pimenta F, Hattel J H, et al. Numerical simulation of the planar extrudate swell of pseudoplastic and viscoelastic fluids with the streamfunction and the VOF methods[J/OL]. Journal of Non-Newtonian Fluid Mechanics, 2018, 252(December 2017): 1-18. DOI:10.1016/j.jnnfm.2017.12.005.
[34] Tang D, Marchesini F H, Cardon L, et al. Three-dimensional flow simulations for polymer extrudate swell out of slit dies from low to high aspect ratios[J/OL]. Physics of Fluids, 2019, 31(9). DOI:10.1063/1.5116850.
[35] Cao W, Shen Y, Wang P, et al. Viscoelastic modeling and simulation for polymer melt flow in injection/compression molding[J/OL]. Journal of Non-Newtonian Fluid Mechanics, 2019, 274: 104186. DOI:10.1016/J.JNNFM.2019.104186.
[36] Rothstein J P, McKinley G H. Extensional flow of a polystyrene Boger fluid through a 4 : 1 : 4 axisymmetric contraction/expansion[J/OL]. Journal of Non-Newtonian Fluid Mechanics, 1999, 86(1-2): 61-88. DOI:10.1016/S0377-0257(98)00202-X.
[37] Kwon I, Chun M S, Jung H W, et al. Determination of draw resonance onsets in tension-controlled viscoelastic spinning process using transient frequency response method[J/OL]. Journal of Non-Newtonian Fluid Mechanics, 2016, 228: 31-37. DOI:10.1016/J.JNNFM.2015.12.006.
[38] Lee J S, Shin D M, Song H S, et al. Existence of optimal cooling conditions in the film blowing process[J/OL]. Journal of Non-Newtonian Fluid Mechanics, 2006, 137(1-3): 24-30. DOI:10.1016/J.JNNFM.2005.12.011.
[39] Yang Z, Yang Z, Chen H, et al. 3D printing of short fiber reinforced composites via material extrusion: Fiber breakage[J/OL]. Additive Manufacturing, 2022, 58(April): 103067. DOI:10.1016/j.addma.2022.103067.
[40] Wang Z, Smith D E. Numerical analysis of screw swirling effects on fiber orientation in large area additive manufacturing polymer composite deposition[J/OL]. Composites Part B: Engineering, 2019, 177(August): 107284. DOI:10.1016/j.compositesb.2019.107284.
[41] Russell T, Heller B, Jack D A, et al. Prediction of the fiber orientation state and the resulting structural and thermal properties of fiber reinforced additive manufactured composites fabricated using the big area additive manufacturing process[J/OL]. Journal of Composites Science, 2018, 2(2). DOI:10.3390/jcs2020026.
[42] Wang Z, Smith D E. Finite element modelling of fully-coupled flow/fiber-orientation effects in polymer composite deposition additive manufacturing nozzle-extrudate flow[J/OL]. Composites Part B: Engineering, 2021, 219(March): 108811. DOI:10.1016/j.compositesb.2021.108811.
[43] Heller B P, Smith D E, Jack D A. Planar deposition flow modeling of fiber filled composites in large area additive manufacturing[J/OL]. Additive Manufacturing, 2019, 25(September 2018): 227-238. DOI:10.1016/j.addma.2018.10.031.
[44] Wang Z, Smith D E. Rheology effects on predicted fiber orientation and elastic properties in large scale polymer composite additive manufacturing[J/OL]. Journal of Composites Science, 2018, 2(1): 1-18. DOI:10.3390/jcs2010010.
[45] Heller B P, Smith D E, Jack D A. Effects of extrudate swell and nozzle geometry on fiber orientation in Fused Filament Fabrication nozzle flow[J/OL]. Additive Manufacturing, 2016, 12: 252-264. DOI:10.1016/j.addma.2016.06.005.
[46] Wang Z, Smith D E. A fully coupled simulation of planar deposition flow and fiber orientation in polymer composites additive manufacturing[J/OL]. Materials, 2021, 14(10). DOI:10.3390/ma14102596.
[47] Wang Z, Smith D E, Jack D A. A statistical homogenization approach for incorporating fiber aspect ratio distribution in large area polymer composite deposition additive manufacturing property predictions[J/OL]. Additive Manufacturing, 2021, 43(November 2020): 102006. DOI:10.1016/j.addma.2021.102006.
[48] Wang Z. A numerical study on the predicted fiber orientation of large area extrusion deposition additive manufactured composites[J/OL]. Polymer Composites, 2022(April): 1-15. DOI:10.1002/pc.26731.
[49] Ouyang Z, Bertevas E, Wang D, et al. A smoothed particle hydrodynamics study of a non-isothermal and thermally anisotropic fused deposition modeling process for a fiber-filled composite[J/OL]. Physics of Fluids, 2020, 32(5). DOI:10.1063/5.0004527.
[50] Ouyang Z, Bertevas E, Parc L, et al. A smoothed particle hydrodynamics simulation of fiber-filled composites in a non-isothermal three-dimensional printing process[J/OL]. Physics of Fluids, 2019, 31(12). DOI:10.1063/1.5130711.
[51] Bertevas E, Férec J, Khoo B C, et al. Smoothed particle hydrodynamics (SPH) modeling of fiber orientation in a 3D printing process[J/OL]. Physics of Fluids, 2018, 30(10). DOI:10.1063/1.5047088.
[52] Yang D, Wu K, Wan L, et al. A particle element approach for modelling the 3d printing process of fibre reinforced polymer composites[J/OL]. Journal of Manufacturing and Materials Processing, 2017, 1(1). DOI:10.3390/jmmp1010010.
[53] Imaeda Y, Todoroki A, Matsuzaki R, et al. Modified moving particle semi-implicit method for 3D print process simulations of short carbon fiber/polyamide-6 composites[J/OL]. Composites Part C: Open Access, 2021, 6(October): 100195. DOI:10.1016/j.jcomc.2021.100195.
[54] Folgar F, Tucker III C L. Orientation behavior of fibers in concentrated suspensions[J/OL]. Journal of Reinforced Plastics and Composites, 1984, 3(2): 98-119. DOI:10.1177/073168448400300201.
[55] Struzziero G, Barbezat M, Skordos A A. Consolidation of continuous fibre reinforced composites in additive processes: A review[M/OL]//Additive Manufacturing. Elsevier B.V., 2021. DOI:10.1016/j.addma.2021.102458.
[56] Han N, Cheng J, Yang J, et al. Design and implementation of 3D printing system for continuous CFRP composites[C/OL]//MATEC Web of Conferences: Vol. 213. EDP Sciences, 2018. DOI:10.1051/matecconf/201821301011.
[57] Albrecht H, Savandaiah C, Löw-Baselli B, et al. Parametric study in co-extrusion-based additive manufacturing of continuous fiber-reinforced plastic[C/OL]//II International Conference on Simulation for Additive Manufacturing -Sim-AM 201. 2019. DOI:10.5281/zenodo.4314900.
[58] Mackay M E, Swain Z R, Banbury C R, et al. The performance of the hot end in a plasticating 3D printer[J/OL]. Journal of Rheology, 2017, 61(2): 229-236. DOI:10.1122/1.4973852.
[59] Liang J Z. Influence of die angles on pressure drop during extrusion of rubber compound[J/OL]. Journal of Applied Polymer Science, 2001, 80(8): 1150-1154. DOI:10.1002/app.1198.
[60] Fischer D, Eßbach C, Schönherr R, et al. Improving inner structure and properties of additive manufactured amorphous plastic parts: The effects of extrusion nozzle diameter and layer height[J/OL]. Additive Manufacturing, 2022, 51. DOI:10.1016/j.addma.2022.102596.
[61] Marion S, Joffre T, Jaxel J, et al. Improved printability and electrical conductivity of carbon black polymer composite with a customized nozzle of material extrusion process[J/OL]. Additive Manufacturing, 2024, 79(December 2023): 103939. DOI:10.1016/j.addma.2023.103939.
[62] Nienhaus V, Smith K, Spiehl D, et al. Investigations on nozzle geometry in fused filament fabrication[J/OL]. Additive Manufacturing, 2019, 28(January): 711-718. DOI:10.1016/j.addma.2019.06.019.
[63] Ramanath H S, Chandrasekaran M, Chua C K, et al. Modelling of extrusion behaviour of biopolymer and composites in fused deposition modelling[J/OL]. Key Engineering Materials, 2007, 334-335: 1241-1244. DOI:10.4028/www.scientific.net/kem.334-335.1241.
[64] Shaqour B, Górecka Ż, Chmielewska A, et al. Novel design for an additively manufactured nozzle to produce tubular scaffolds via fused filament fabrication[J/OL]. Additive Manufacturing, 2022, 49. DOI:10.1016/j.addma.2021.102467.
[65] Sun R, Duan Q, Mao X. A multi-objective adaptive surrogate modelling-based optimization algorithm for constrained hybrid problems[J/OL]. Environmental Modelling and Software, 2022, 148(August 2021): 105272. DOI:10.1016/j.envsoft.2021.105272.
[66] Raul V, Leifsson L. Surrogate-based aerodynamic shape optimization for delaying airfoil dynamic stall using Kriging regression and infill criteria[J/OL]. Aerospace Science and Technology, 2021, 111: 106555. DOI:10.1016/j.ast.2021.106555.
[67] Morelli A, Ghidoni A, Lezzi A M, et al. Integrated approach based on surrogate optimization and CFD for the design of helical turbulators[J/OL]. Thermal Science and Engineering Progress, 2023, 39(February 2022): 101741. DOI:10.1016/j.tsep.2023.101741.
[68] Wu M C H, Kamensky D, Wang C, et al. Optimizing fluid–structure interaction systems with immersogeometric analysis and surrogate modeling: Application to a hydraulic arresting gear[J/OL]. Computer Methods in Applied Mechanics and Engineering, 2017, 316: 668-693. DOI:10.1016/j.cma.2016.09.032.
[69] Wang Z, Tu Y, Zhang K, et al. An optimization framework for wind farm layout design using CFD-based Kriging model[J/OL]. 2023(December 2023). DOI:10.1016/j.oceaneng.2023.116644.
[70] Forrester A I J, Keane A J. Recent advances in surrogate-based optimization[J/OL]. Progress in Aerospace Sciences, 2009, 45(1-3): 50-79. DOI:10.1016/j.paerosci.2008.11.001.
[71] Hong Y, Mrinal M, Phan H S, et al. In-situ observation of the extrusion processes of Acrylonitrile Butadiene Styrene and Polylactic Acid for material extrusion additive manufacturing[J/OL]. Additive Manufacturing, 2022, 49. DOI:10.1016/j.addma.2021.102507.
[72] Bird R B, Curtiss C F, Armstrong R C, et al. Dynamics of Polymer Liquids[M/OL]//Journal of Polymer Science Part C: Polymer Letters. New York: John Wiley & Sons, 1987
[2023-05-19]. DOI:10.1002/pol.1987.140251211.
[73] Bennon W D, Incropera F P. A continuum model for momentum, heat and species transport in binary solid-liquid phase change systems—I. Model formulation[J/OL]. International Journal of Heat and Mass Transfer, 1987, 30(10): 2161-2170. DOI:10.1016/0017-9310(87)90094-9.
[74] Voller V R, Prakash C. A fixed grid numerical modelling methodology for convection-diffusion mushy region phase-change problems[J/OL]. International Journal of Heat and Mass Transfer, 1987, 30(8): 1709-1719. DOI:10.1016/0017-9310(87)90317-6.
[75] 卢杨. 粘弹性流体流固耦合的数值模拟研究[D]. 中国科学技术大学, 2017.
[76] 陈静波. 粘弹性聚合物熔体注射成型模型化理论与数值模拟研究[D]. 郑州大学, 2003.
[77] 李勇. 粘弹性聚合物熔体流动和挤出胀大的数值模拟研究[D]. 华东理工大学, 2012.
[78] Giesekus H. A simple constitutive equation for polymer fluids based on the concept of deformation-dependent tensorial mobility[J/OL]. Journal of Non-Newtonian Fluid Mechanics, 1982, 11(1-2): 69-109. DOI:10.1016/0377-0257(82)85016-7.
[79] Arrhenius S. Über die Reaktionsgeschwindigkeit bei der Inversion von Rohrzucker durch Säuren[J/OL]. Zeitschrift für Physikalische Chemie, 1889, 4U(1): 226-248
[2023-06-27]. DOI:10.1515/ZPCH-1889-0416.
[80] Kazmer D O, Colon A R, Peterson A M, et al. Concurrent characterization of compressibility and viscosity in extrusion-based additive manufacturing of acrylonitrile butadiene styrene with fault diagnoses[J/OL]. Additive Manufacturing, 2021, 46: 102106. DOI:10.1016/j.addma.2021.102106.
[81] Marri G K, Balaji C. Liquid crystal thermography based study on melting dynamics and the effect of mushy zone constant in numerical modeling of melting of a phase change material[J/OL]. International Journal of Thermal Sciences, 2022, 171(June 2021): 107176. DOI:10.1016/j.ijthermalsci.2021.107176.
[82] Parry A J, Eames P C, Agyenim F B, et al. Modeling of Thermal Energy Storage Shell-and- Tube Heat Exchanger Modeling of Thermal Energy Storage Shell-and-Tube Heat Exchanger[J/OL]. 2014, 7632. DOI:10.1080/01457632.2013.810057.
[83] Tutar M, Karakus A. 3-D computational modelling of process condition effects on polymer injection molding[J/OL]. International Polymer Processing, 2009, 24(5): 384-398. DOI:10.3139/217.2249.
[84] Jung U hee, Kim J hyung, Kim J hyuk, et al. Numerical investigation on the melting of circular finned PCM system using CFD & full factorial design †[J/OL]. 2016, 30(6): 2813-2826. DOI:10.1007/s12206-016-0541-7.
[85] Fadl M, Eames P C. Numerical investigation of the influence of mushy zone parameter Amush on heat transfer characteristics in vertically and horizontally oriented thermal energy storage systems[J/OL]. Applied Thermal Engineering, 2019, 151(June 2018): 90-99. DOI:10.1016/j.applthermaleng.2019.01.102.
[86] Nzebuka G C, Waheed M A. Thermal evolution in the direct chill casting of an Al-4 pct Cu alloy using the low-Reynolds number turbulence model[J/OL]. International Journal of Thermal Sciences, 2020, 147: 106152. DOI:10.1016/J.IJTHERMALSCI.2019.106152.
[87] Kaviany M. Principles of Heat Transfer in Porous Media[J/OL]. 1991
[2023-06-26]. DOI:10.1007/978-1-4684-0412-8.
[88] Xu P, Yu B. Developing a new form of permeability and Kozeny–Carman constant for homogeneous porous media by means of fractal geometry[J/OL]. Advances in Water Resources, 2008, 31(1): 74-81. DOI:10.1016/J.ADVWATRES.2007.06.003.
[89] Nzebuka G C, Ufodike C O, Egole C P. Influence of various aspects of low-Reynolds number turbulence models on predicting flow characteristics and transport variables in a horizontal direct-chill casting[J/OL]. International Journal of Heat and Mass Transfer, 2021, 179: 121648. DOI:10.1016/J.IJHEATMASSTRANSFER.2021.121648.
[90] Waheed M A, Nzebuka G C. Analysis of thermally driven flow pattern formation in aluminium DC casting for different Rayleigh numbers and billet diameters[J/OL]. Thermal Science and Engineering Progress, 2020, 18: 100536. DOI:10.1016/J.TSEP.2020.100536.
[91] Polymaker. PolyLiteTM PLA[J/OL]. 2019.
[92] Xia H, Lu J, Tryggvason G. A numerical study of the effect of viscoelastic stresses in fused filament fabrication[J/OL]. Computer Methods in Applied Mechanics and Engineering, 2019, 346: 242-259. DOI:10.1016/j.cma.2018.11.031.
[93] Mieras H J M A, Van Rijn C F H. Elastic Behaviour of some Polymer Melts[J/OL]. Nature 1968 218:5144, 1968, 218(5144): 865-866
[2023-05-19]. DOI:10.1038/218865b0.
[94] James D F. N1 stresses in extensional flows[J/OL]. Journal of Non-Newtonian Fluid Mechanics, 2016, 232: 33-42. DOI:10.1016/j.jnnfm.2016.01.012.
[95] Zalba B, Marı́n J M, Cabeza L F, et al. Review on thermal energy storage with phase change: materials, heat transfer analysis and applications[J/OL]. Applied Thermal Engineering, 2003, 23(3): 251-283. DOI:10.1016/S1359-4311(02)00192-8.
[96] Ziskind G. Modeling of heat transfer in phase change materials for thermal energy storage systems[M/OL]//CABEZA L F. Advances in Thermal Energy Storage Systems. Duxford: Woodhead Publishing, 2021: 359-379. DOI:10.1016/B978-0-12-819885-8.00012-7.
[97] Serdeczny M P, Comminal R, Pedersen D B, et al. Experimental and analytical study of the polymer melt flow through the hot-end in material extrusion additive manufacturing[J/OL]. Additive Manufacturing, 2020, 32(December 2019): 100997. DOI:10.1016/j.addma.2019.100997.
[98] Varchanis S, Tsamopoulos J, Shen A Q, et al. Reduced and increased flow resistance in shear-dominated flows of Oldroyd-B fluids[J/OL]. Journal of Non-Newtonian Fluid Mechanics, 2022, 300: 104698. DOI:10.1016/J.JNNFM.2021.104698.
[99] Ghigo A R, Lagrée P Y, Fullana J M. A time-dependent non-Newtonian extension of a 1D blood flow model[J/OL]. Journal of Non-Newtonian Fluid Mechanics, 2018, 253: 36-49. DOI:10.1016/J.JNNFM.2018.01.004.
[100]Keshtiban I J, Puangkird B, Tamaddon-Jahromi H, et al. Generalised approach for transient computation of start-up pressure-driven viscoelastic flow[J/OL]. Journal of Non-Newtonian Fluid Mechanics, 2008, 151(1-3): 2-20. DOI:10.1016/J.JNNFM.2008.03.004.
[101]Ellero M, Tanner R I. SPH simulations of transient viscoelastic flows at low Reynolds number[J/OL]. Journal of Non-Newtonian Fluid Mechanics, 2005, 132(1-3): 61-72. DOI:10.1016/J.JNNFM.2005.08.012.
[102]Oliveira P J. Reduced-stress method for efficient computation of time-dependent viscoelastic flow with stress equations of FENE-P type[J/OL]. Journal of Non-Newtonian Fluid Mechanics, 2017, 248: 74-91. DOI:10.1016/J.JNNFM.2017.09.001.
[103]Moore J D, Cui S T, Cochran H D, et al. A molecular dynamics study of a short-chain polyethylene melt.: II. Transient response upon onset of shear[J/OL]. Journal of Non-Newtonian Fluid Mechanics, 2000, 93(1): 101-116. DOI:10.1016/S0377-0257(00)00104-X.
[104]Tran E, Clarke A. The relaxation time of entangled HPAM solutions in flow[J/OL]. Journal of Non-Newtonian Fluid Mechanics, 2023, 311(August 2022): 104954. DOI:10.1016/j.jnnfm.2022.104954.
[105]Baumgaertel M, Winter H H. Interrelation between continuous and discrete relaxation time spectra[J/OL]. Journal of Non-Newtonian Fluid Mechanics, 1992, 44: 15-36. DOI:10.1016/0377-0257(92)80043-W.
[106]Swallowe G M. Relaxations in Polymers[J/OL]. 1999: 195-198. DOI:10.1007/978-94-015-9231-4_42.
[107]J. Hofmann, U. Maier, F.H. Prage J V. Determination of the composition and properties of polyurethanes[M]//OERTEL G, ABELE L (Lothar). Polyurethane handbook : chemistry, raw materials, processing, application, properties: Vol. 45. New York: Hanser, 1994: 398-398.
[108]Moretti M, Rossi A, Senin N. In-process simulation of the extrusion to support optimisation and real-time monitoring in fused filament fabrication[J/OL]. Additive Manufacturing, 2021, 38(October 2020): 101817. DOI:10.1016/j.addma.2020.101817.
[109]Moretti M, Rossi A, Senin N. In-process simulation of the extrusion to support optimisation and real-time monitoring in fused filament fabrication[J/OL]. Additive Manufacturing, 2021, 38: 101817. DOI:10.1016/J.ADDMA.2020.101817.
[110]McKay M D, Beckman R J, Conover W J. A comparison of three methods for selecting values of input variables in the analysis of output from a computer code[J/OL]. Technometrics, 2000, 42(1): 55-61. DOI:10.1080/00401706.2000.10485979.
[111]Krige D G. Journal of the Chemical Metallu , Rgical & Mining Society of South Africa[J/OL]. Journal of the Chemical Metallurgical & Society of South Mining Africa, 1951, 52(6): 119-139.
[112]Deb K, Pratap A, Agarwal S, et al. A fast and elitist multiobjective genetic algorithm: NSGA-II[J/OL]. IEEE Transactions on Evolutionary Computation, 2002, 6(2): 182-197. DOI:10.1109/4235.996017.
[113]Darby M I, Kanellopoulos V N. Theory of fibre buckling in carbon-fibre reinforced plastics[J/OL]. Journal of Physics D: Applied Physics, 1987, 20(3): 298-302. DOI:10.1088/0022-3727/20/3/009.
[114]Agassant J F, Pigeonneau F, Sardo L, et al. Flow analysis of the polymer spreading during extrusion additive manufacturing[J/OL]. Additive Manufacturing, 2019, 29. DOI:10.1016/j.addma.2019.100794.
[115]Nauman E B. Residence time theory[J/OL]. Industrial & Engineering Chemistry Research, 2008, 47(10): 3752-3766. DOI:10.1021/ie071635a.
[116]Demirel B. Optimisation of mould surface temperature and bottle residence time in mould for the carbonated soft drink PET containers[J/OL]. Polymer Testing, 2017, 60: 220-228. DOI:10.1016/j.polymertesting.2017.03.030.
[117]Han Z H, Zhang K S. Surrogate-based optimization[J/OL]. Real-World Applications of Genetic Algorithms, 2012(March 2012). DOI:10.5772/36125.
[118]Jiang P, Zhou Q, Shao X. Surrogate model-based engineering design and optimization[M/OL]. Singapore: Springer Singapore, 2020. DOI:10.1007/978-981-15-0731-1.
[119]Surrogate-based modeling and optimization[M/OL]//KOZIEL S, LEIFSSON L. Surrogate-Based Modeling and Optimization: Vol. 9781461475. New York, NY: Springer, 2013. DOI:10.1007/978-1-4614-7551-4_13.
修改评论