中文版 | English
题名

面向连续纤维增强聚合物复合材料熔融沉积成型的熔体流动仿真

其他题名
SIMULATION FOR THE MELT FLOW OF CONTINUOUS FIBER REINFORCED POLYMER COMPOSITES IN FUSED DEPOSITION MODELING
姓名
姓名拼音
XU Xuguang
学号
12132683
学位类型
硕士
学位专业
0801Z1 智能制造与机器人
学科门类/专业学位类别
08 工学
导师
熊异
导师单位
系统设计与智能制造学院
论文答辩日期
2024-05-09
论文提交日期
2024-07-07
学位授予单位
南方科技大学
学位授予地点
深圳
摘要

连续纤维增强复合材料熔融沉积成型(CFRP-FDM)工艺因结合纤维复材轻质高强及增材制造设计高自由度优势而得到快速发展。为了增强CFRP-FDM打印机控形控性能力,以适应高速打印及频繁启停等需求,需要对其工艺过程机理与其结构设计有更深入的研究和理解。基于此背景,本课题面向聚合物及其预浸连续纤维增强复合材料FDM原位共挤出工艺的挤出过程,采用数值仿真方法,系统研究了聚合物熔体在挤出过程流动机理,并以此辅助热端流道几何尺寸优化设计,助力于打印性能和精度的提高。 首先,研究面向FDM挤出工艺,基于非等温粘弹性本构,构建了一个数值仿真模型。研究揭示了挤出过程中流道应力集中、弹性显著于粘性等基本粘弹性流动机理,并通实验验证了本模型在进给力预测的精确性,预测了进给力的超调滞后响应现象。此外,结合上述粘弹性研究基本结论,并基于非等温广义牛顿流体本构,对CFRP-FDM挤出工艺进行了仿真模拟。研究分析了压降分布、回流以及纤维受力等基本流动规律,得到了出口及相变界面应力集中、热端流道结构非对称性导致纤维丝偏移等粘弹流动推论。最后,本研究在数值仿真模型基础上,建立了基于代理模型的CFRP-FDM热端流道几何优化框架,最小化纤维受力、丝材进给力、停留时间等挤出头性能评价指标,获得了一系列最优的流道几何尺寸,并归纳了未来CFRP-FDM共挤出热端流道几何尺寸设计规律。 本研究对聚合物及其预浸连续纤维增强复合材料FDM工艺挤出过程进行了数值仿真建模,明晰了其工艺过程机理,优化了工艺参数控制及热端流道几何尺寸,为CFRP-FDM工艺的进步提供了基础。
 

关键词
语种
中文
培养类别
独立培养
入学年份
2021
学位授予年份
2024-06
参考文献列表

[1] Al Rashid A, Khan S A, G. Al-Ghamdi S, et al. Additive manufacturing: Technology, applications, markets, and opportunities for the built environment[M/OL]//Automation in Construction. Elsevier B.V., 2020. DOI:10.1016/j.autcon.2020.103268.
[2] Crump S S. Apparatus and method for creating three-dimensional objects[P/OL]. 1986.
[3] ISO/ASTM. INTERNATIONAL STANDARD ISO / ASTM 52900 Additive manufacturing — General principles — Terminology[J/OL]. International Organization for Standardization, 2021, 5(II): 1-26.
[4] Cano-Vicent A, Tambuwala M M, Hassan S S, et al. Fused deposition modelling: Current status, methodology, applications and future prospects[J/OL]. Additive Manufacturing, 2021, 47: 102378. DOI:10.1016/J.ADDMA.2021.102378.
[5] Wang P, Zou B, Xiao H, et al. Effects of printing parameters of fused deposition modeling on mechanical properties, surface quality, and microstructure of PEEK[J/OL]. Journal of Materials Processing Technology, 2019, 271(March): 62-74. DOI:10.1016/j.jmatprotec.2019.03.016.
[6] Liu G, Xiong Y, Zhou L. Additive manufacturing of continuous fiber reinforced polymer composites: Design opportunities and novel applications[J/OL]. Composites Communications, 2021, 27(August): 100907. DOI:10.1016/j.coco.2021.100907.
[7] Parandoush P, Lin D. A review on additive manufacturing of polymer-fiber composites[J/OL]. Composite Structures, 2017, 182: 36-53. DOI:10.1016/J.COMPSTRUCT.2017.08.088.
[8] Zhang H, Zhang L, Zhang H, et al. Fibre bridging and nozzle clogging in 3D printing of discontinuous carbon fibre-reinforced polymer composites: coupled CFD-DEM modelling[J/OL]. International Journal of Advanced Manufacturing Technology, 2021, 117(11-12): 3549-3562. DOI:10.1007/s00170-021-07913-7.
[9] Nzebuka G C, Ufodike C O, Rahman A M, et al. Numerical modeling of the effect of nozzle diameter and heat flux on the polymer flow in fused filament fabrication[J/OL]. Journal of Manufacturing Processes, 2022, 82: 585-600. DOI:10.1016/j.jmapro.2022.08.029.
[10] Pigeonneau F, Xu D, Vincent M, et al. Heating and flow computations of an amorphous polymer in the liquefier of a material extrusion 3D printer[J/OL]. Additive Manufacturing, 2020, 32(August 2019). DOI:10.1016/j.addma.2019.101001.
[11] Ufodike C O, Nzebuka G C. Investigation of thermal evolution and fluid flow in the hot-end of a material extrusion 3D Printer using melting model[J/OL]. Additive Manufacturing, 2022, 49. DOI:10.1016/j.addma.2021.102502.
[12] Serdeczny M P, Comminal R, Mollah M T, et al. Numerical modeling of the polymer flow through the hot-end in filament-based material extrusion additive manufacturing[J/OL]. Additive Manufacturing, 2020, 36. DOI:10.1016/j.addma.2020.101454.
[13] Kattinger J, Ebinger T, Kurz R, et al. Numerical simulation of the complex flow during material extrusion in fused filament fabrication[J/OL]. Additive Manufacturing, 2022, 49. DOI:10.1016/j.addma.2021.102476.
[14] Phan D D, Horner J S, Swain Z R, et al. Computational fluid dynamics simulation of the melting process in the fused filament fabrication additive manufacturing technique[J/OL]. Additive Manufacturing, 2020, 33. DOI:10.1016/j.addma.2020.101161.
[15] Xu X, Ren H, Chen S, et al. Review on melt flow simulations for thermoplastics and their fiber reinforced composites in fused deposition modeling[J/OL]. Journal of Manufacturing Processes, 2023, 92: 272-286. DOI:10.1016/J.JMAPRO.2023.02.039.
[16] Ren H, Yang X, Wang Z, et al. Smart structures with embedded flexible sensors fabricated by fused deposition modeling-based multimaterial 3D printing[J/OL]. International Journal of Smart and Nano Materials, 2022, 13(3): 447-464. DOI:10.1080/19475411.2022.2095454.
[17] Go J, Schiffres S N, Stevens A G, et al. Rate limits of additive manufacturing by fused filament fabrication and guidelines for high-throughput system design[J/OL]. Additive Manufacturing, 2017, 16: 1-11. DOI:10.1016/j.addma.2017.03.007.
[18] Peng F, Vogt B D, Cakmak M. Complex flow and temperature history during melt extrusion in material extrusion additive manufacturing[J/OL]. Additive Manufacturing, 2018, 22(May): 197-206. DOI:10.1016/j.addma.2018.05.015.
[19] Shaqour B, Abuabiah M, Abdel-Fattah S, et al. Gaining a better understanding of the extrusion process in fused filament fabrication 3D printing: a review[J/OL]. International Journal of Advanced Manufacturing Technology, 2021, 114(5-6): 1279-1291. DOI:10.1007/s00170-021-06918-6.
[20] Pricci A, Al Islam Ovy S M, Stano G, et al. Semi-analytical and numerical models to predict the extrusion force for silicone additive manufacturing, as a function of the process parameters[J/OL]. Additive Manufacturing Letters, 2023, 6(May). DOI:10.1016/j.addlet.2023.100147.
[21] Zhang J, Vasiliauskaite E, De Kuyper A, et al. Temperature analyses in fused filament fabrication: from filament entering the hot-end to the printed part[J/OL]. 3D Printing and Additive Manufacturing, 2021. DOI:10.1089/3dp.2020.0339.
[22] Shadvar N, Foroozmehr E, Badrossamay M, et al. Computational analysis of the extrusion process of fused deposition modeling of acrylonitrile-butadiene-styrene[J/OL]. DOI:10.1007/s12289-019-01523-1/Published.
[23] Idris M, Ismail S. Analysis on temperature setting for extruding polylactic acid using open-source3D printer[J]. ARPN Journal of Engineering and Applied Sciences, 2017, 12(4): 1348-1353.
[24] Pigeonneau F, Xu D, Vincent M, et al. Heating and flow computations of an amorphous polymer in the liquefier of a material extrusion 3D printer[J/OL]. Additive Manufacturing, 2020, 32. DOI:10.1016/j.addma.2019.101001.
[25] Hart K R, Dunn R M, Sietins J M, et al. Increased fracture toughness of additively manufactured amorphous thermoplastics via thermal annealing[J/OL]. Polymer, 2018, 144: 192-204. DOI:10.1016/j.polymer.2018.04.024.
[26] Yang F, Pitchumani R. Healing of thermoplastic polymers at an interface under nonisothermal conditions[J/OL]. Macromolecules, 2002, 35(8): 3213-3224. DOI:10.1021/ma010858o.
[27] McIlroy C, Olmsted P D. Disentanglement effects on welding behaviour of polymer melts during the fused-filament-fabrication method for additive manufacturing[J/OL]. Polymer, 2017, 123: 376-391. DOI:10.1016/j.polymer.2017.06.051.
[28] Marion S, Sardo L, Joffre T, et al. First steps of the melting of an amorphous polymer through a hot-end of a material extrusion additive manufacturing[J/OL]. Additive Manufacturing, 2023, 65: 103435. DOI:10.1016/J.ADDMA.2023.103435.
[29] Serdeczny M P, Comminal R, Mollah M T, et al. Viscoelastic simulation and optimisation of the polymer flow through the hot-end during filament-based material extrusion additive manufacturing[J/OL]. Virtual and Physical Prototyping, 2022, 17(2): 205-219. DOI:10.1080/17452759.2022.2028522.
[30] Schuller T, Fanzio P, Galindo-Rosales F J. Analysis of the importance of shear-induced elastic stresses in material extrusion[J/OL]. Additive Manufacturing, 2022: 102952
[2022-06-17]. DOI:10.1016/J.ADDMA.2022.102952.
[31] Papon M E A, Haque A, Sharif M A R. Effect of nozzle geometry on Melt flow simulation and structural property of thermoplastic nanocomposites in Fused deposition modeling[C/OL]//32nd Technical Conference of the American Society for Composites 2017: Vol. 3. DEStech Publications Inc., 2017: 2167-2182. DOI:10.12783/asc2017/15339.
[32] Christensen R. Theory of Viscoelasticity[M/OL]. New York: Elsevier, 1982. DOI:10.1016/B978-0-12-174252-2.X5001-7.
[33] Comminal R, Pimenta F, Hattel J H, et al. Numerical simulation of the planar extrudate swell of pseudoplastic and viscoelastic fluids with the streamfunction and the VOF methods[J/OL]. Journal of Non-Newtonian Fluid Mechanics, 2018, 252(December 2017): 1-18. DOI:10.1016/j.jnnfm.2017.12.005.
[34] Tang D, Marchesini F H, Cardon L, et al. Three-dimensional flow simulations for polymer extrudate swell out of slit dies from low to high aspect ratios[J/OL]. Physics of Fluids, 2019, 31(9). DOI:10.1063/1.5116850.
[35] Cao W, Shen Y, Wang P, et al. Viscoelastic modeling and simulation for polymer melt flow in injection/compression molding[J/OL]. Journal of Non-Newtonian Fluid Mechanics, 2019, 274: 104186. DOI:10.1016/J.JNNFM.2019.104186.
[36] Rothstein J P, McKinley G H. Extensional flow of a polystyrene Boger fluid through a 4 : 1 : 4 axisymmetric contraction/expansion[J/OL]. Journal of Non-Newtonian Fluid Mechanics, 1999, 86(1-2): 61-88. DOI:10.1016/S0377-0257(98)00202-X.
[37] Kwon I, Chun M S, Jung H W, et al. Determination of draw resonance onsets in tension-controlled viscoelastic spinning process using transient frequency response method[J/OL]. Journal of Non-Newtonian Fluid Mechanics, 2016, 228: 31-37. DOI:10.1016/J.JNNFM.2015.12.006.
[38] Lee J S, Shin D M, Song H S, et al. Existence of optimal cooling conditions in the film blowing process[J/OL]. Journal of Non-Newtonian Fluid Mechanics, 2006, 137(1-3): 24-30. DOI:10.1016/J.JNNFM.2005.12.011.
[39] Yang Z, Yang Z, Chen H, et al. 3D printing of short fiber reinforced composites via material extrusion: Fiber breakage[J/OL]. Additive Manufacturing, 2022, 58(April): 103067. DOI:10.1016/j.addma.2022.103067.
[40] Wang Z, Smith D E. Numerical analysis of screw swirling effects on fiber orientation in large area additive manufacturing polymer composite deposition[J/OL]. Composites Part B: Engineering, 2019, 177(August): 107284. DOI:10.1016/j.compositesb.2019.107284.
[41] Russell T, Heller B, Jack D A, et al. Prediction of the fiber orientation state and the resulting structural and thermal properties of fiber reinforced additive manufactured composites fabricated using the big area additive manufacturing process[J/OL]. Journal of Composites Science, 2018, 2(2). DOI:10.3390/jcs2020026.
[42] Wang Z, Smith D E. Finite element modelling of fully-coupled flow/fiber-orientation effects in polymer composite deposition additive manufacturing nozzle-extrudate flow[J/OL]. Composites Part B: Engineering, 2021, 219(March): 108811. DOI:10.1016/j.compositesb.2021.108811.
[43] Heller B P, Smith D E, Jack D A. Planar deposition flow modeling of fiber filled composites in large area additive manufacturing[J/OL]. Additive Manufacturing, 2019, 25(September 2018): 227-238. DOI:10.1016/j.addma.2018.10.031.
[44] Wang Z, Smith D E. Rheology effects on predicted fiber orientation and elastic properties in large scale polymer composite additive manufacturing[J/OL]. Journal of Composites Science, 2018, 2(1): 1-18. DOI:10.3390/jcs2010010.
[45] Heller B P, Smith D E, Jack D A. Effects of extrudate swell and nozzle geometry on fiber orientation in Fused Filament Fabrication nozzle flow[J/OL]. Additive Manufacturing, 2016, 12: 252-264. DOI:10.1016/j.addma.2016.06.005.
[46] Wang Z, Smith D E. A fully coupled simulation of planar deposition flow and fiber orientation in polymer composites additive manufacturing[J/OL]. Materials, 2021, 14(10). DOI:10.3390/ma14102596.
[47] Wang Z, Smith D E, Jack D A. A statistical homogenization approach for incorporating fiber aspect ratio distribution in large area polymer composite deposition additive manufacturing property predictions[J/OL]. Additive Manufacturing, 2021, 43(November 2020): 102006. DOI:10.1016/j.addma.2021.102006.
[48] Wang Z. A numerical study on the predicted fiber orientation of large area extrusion deposition additive manufactured composites[J/OL]. Polymer Composites, 2022(April): 1-15. DOI:10.1002/pc.26731.
[49] Ouyang Z, Bertevas E, Wang D, et al. A smoothed particle hydrodynamics study of a non-isothermal and thermally anisotropic fused deposition modeling process for a fiber-filled composite[J/OL]. Physics of Fluids, 2020, 32(5). DOI:10.1063/5.0004527.
[50] Ouyang Z, Bertevas E, Parc L, et al. A smoothed particle hydrodynamics simulation of fiber-filled composites in a non-isothermal three-dimensional printing process[J/OL]. Physics of Fluids, 2019, 31(12). DOI:10.1063/1.5130711.
[51] Bertevas E, Férec J, Khoo B C, et al. Smoothed particle hydrodynamics (SPH) modeling of fiber orientation in a 3D printing process[J/OL]. Physics of Fluids, 2018, 30(10). DOI:10.1063/1.5047088.
[52] Yang D, Wu K, Wan L, et al. A particle element approach for modelling the 3d printing process of fibre reinforced polymer composites[J/OL]. Journal of Manufacturing and Materials Processing, 2017, 1(1). DOI:10.3390/jmmp1010010.
[53] Imaeda Y, Todoroki A, Matsuzaki R, et al. Modified moving particle semi-implicit method for 3D print process simulations of short carbon fiber/polyamide-6 composites[J/OL]. Composites Part C: Open Access, 2021, 6(October): 100195. DOI:10.1016/j.jcomc.2021.100195.
[54] Folgar F, Tucker III C L. Orientation behavior of fibers in concentrated suspensions[J/OL]. Journal of Reinforced Plastics and Composites, 1984, 3(2): 98-119. DOI:10.1177/073168448400300201.
[55] Struzziero G, Barbezat M, Skordos A A. Consolidation of continuous fibre reinforced composites in additive processes: A review[M/OL]//Additive Manufacturing. Elsevier B.V., 2021. DOI:10.1016/j.addma.2021.102458.
[56] Han N, Cheng J, Yang J, et al. Design and implementation of 3D printing system for continuous CFRP composites[C/OL]//MATEC Web of Conferences: Vol. 213. EDP Sciences, 2018. DOI:10.1051/matecconf/201821301011.
[57] Albrecht H, Savandaiah C, Löw-Baselli B, et al. Parametric study in co-extrusion-based additive manufacturing of continuous fiber-reinforced plastic[C/OL]//II International Conference on Simulation for Additive Manufacturing -Sim-AM 201. 2019. DOI:10.5281/zenodo.4314900.
[58] Mackay M E, Swain Z R, Banbury C R, et al. The performance of the hot end in a plasticating 3D printer[J/OL]. Journal of Rheology, 2017, 61(2): 229-236. DOI:10.1122/1.4973852.
[59] Liang J Z. Influence of die angles on pressure drop during extrusion of rubber compound[J/OL]. Journal of Applied Polymer Science, 2001, 80(8): 1150-1154. DOI:10.1002/app.1198.
[60] Fischer D, Eßbach C, Schönherr R, et al. Improving inner structure and properties of additive manufactured amorphous plastic parts: The effects of extrusion nozzle diameter and layer height[J/OL]. Additive Manufacturing, 2022, 51. DOI:10.1016/j.addma.2022.102596.
[61] Marion S, Joffre T, Jaxel J, et al. Improved printability and electrical conductivity of carbon black polymer composite with a customized nozzle of material extrusion process[J/OL]. Additive Manufacturing, 2024, 79(December 2023): 103939. DOI:10.1016/j.addma.2023.103939.
[62] Nienhaus V, Smith K, Spiehl D, et al. Investigations on nozzle geometry in fused filament fabrication[J/OL]. Additive Manufacturing, 2019, 28(January): 711-718. DOI:10.1016/j.addma.2019.06.019.
[63] Ramanath H S, Chandrasekaran M, Chua C K, et al. Modelling of extrusion behaviour of biopolymer and composites in fused deposition modelling[J/OL]. Key Engineering Materials, 2007, 334-335: 1241-1244. DOI:10.4028/www.scientific.net/kem.334-335.1241.
[64] Shaqour B, Górecka Ż, Chmielewska A, et al. Novel design for an additively manufactured nozzle to produce tubular scaffolds via fused filament fabrication[J/OL]. Additive Manufacturing, 2022, 49. DOI:10.1016/j.addma.2021.102467.
[65] Sun R, Duan Q, Mao X. A multi-objective adaptive surrogate modelling-based optimization algorithm for constrained hybrid problems[J/OL]. Environmental Modelling and Software, 2022, 148(August 2021): 105272. DOI:10.1016/j.envsoft.2021.105272.
[66] Raul V, Leifsson L. Surrogate-based aerodynamic shape optimization for delaying airfoil dynamic stall using Kriging regression and infill criteria[J/OL]. Aerospace Science and Technology, 2021, 111: 106555. DOI:10.1016/j.ast.2021.106555.
[67] Morelli A, Ghidoni A, Lezzi A M, et al. Integrated approach based on surrogate optimization and CFD for the design of helical turbulators[J/OL]. Thermal Science and Engineering Progress, 2023, 39(February 2022): 101741. DOI:10.1016/j.tsep.2023.101741.
[68] Wu M C H, Kamensky D, Wang C, et al. Optimizing fluid–structure interaction systems with immersogeometric analysis and surrogate modeling: Application to a hydraulic arresting gear[J/OL]. Computer Methods in Applied Mechanics and Engineering, 2017, 316: 668-693. DOI:10.1016/j.cma.2016.09.032.
[69] Wang Z, Tu Y, Zhang K, et al. An optimization framework for wind farm layout design using CFD-based Kriging model[J/OL]. 2023(December 2023). DOI:10.1016/j.oceaneng.2023.116644.
[70] Forrester A I J, Keane A J. Recent advances in surrogate-based optimization[J/OL]. Progress in Aerospace Sciences, 2009, 45(1-3): 50-79. DOI:10.1016/j.paerosci.2008.11.001.
[71] Hong Y, Mrinal M, Phan H S, et al. In-situ observation of the extrusion processes of Acrylonitrile Butadiene Styrene and Polylactic Acid for material extrusion additive manufacturing[J/OL]. Additive Manufacturing, 2022, 49. DOI:10.1016/j.addma.2021.102507.
[72] Bird R B, Curtiss C F, Armstrong R C, et al. Dynamics of Polymer Liquids[M/OL]//Journal of Polymer Science Part C: Polymer Letters. New York: John Wiley & Sons, 1987
[2023-05-19]. DOI:10.1002/pol.1987.140251211.
[73] Bennon W D, Incropera F P. A continuum model for momentum, heat and species transport in binary solid-liquid phase change systems—I. Model formulation[J/OL]. International Journal of Heat and Mass Transfer, 1987, 30(10): 2161-2170. DOI:10.1016/0017-9310(87)90094-9.
[74] Voller V R, Prakash C. A fixed grid numerical modelling methodology for convection-diffusion mushy region phase-change problems[J/OL]. International Journal of Heat and Mass Transfer, 1987, 30(8): 1709-1719. DOI:10.1016/0017-9310(87)90317-6.
[75] 卢杨. 粘弹性流体流固耦合的数值模拟研究[D]. 中国科学技术大学, 2017.
[76] 陈静波. 粘弹性聚合物熔体注射成型模型化理论与数值模拟研究[D]. 郑州大学, 2003.
[77] 李勇. 粘弹性聚合物熔体流动和挤出胀大的数值模拟研究[D]. 华东理工大学, 2012.
[78] Giesekus H. A simple constitutive equation for polymer fluids based on the concept of deformation-dependent tensorial mobility[J/OL]. Journal of Non-Newtonian Fluid Mechanics, 1982, 11(1-2): 69-109. DOI:10.1016/0377-0257(82)85016-7.
[79] Arrhenius S. Über die Reaktionsgeschwindigkeit bei der Inversion von Rohrzucker durch Säuren[J/OL]. Zeitschrift für Physikalische Chemie, 1889, 4U(1): 226-248
[2023-06-27]. DOI:10.1515/ZPCH-1889-0416.
[80] Kazmer D O, Colon A R, Peterson A M, et al. Concurrent characterization of compressibility and viscosity in extrusion-based additive manufacturing of acrylonitrile butadiene styrene with fault diagnoses[J/OL]. Additive Manufacturing, 2021, 46: 102106. DOI:10.1016/j.addma.2021.102106.
[81] Marri G K, Balaji C. Liquid crystal thermography based study on melting dynamics and the effect of mushy zone constant in numerical modeling of melting of a phase change material[J/OL]. International Journal of Thermal Sciences, 2022, 171(June 2021): 107176. DOI:10.1016/j.ijthermalsci.2021.107176.
[82] Parry A J, Eames P C, Agyenim F B, et al. Modeling of Thermal Energy Storage Shell-and- Tube Heat Exchanger Modeling of Thermal Energy Storage Shell-and-Tube Heat Exchanger[J/OL]. 2014, 7632. DOI:10.1080/01457632.2013.810057.
[83] Tutar M, Karakus A. 3-D computational modelling of process condition effects on polymer injection molding[J/OL]. International Polymer Processing, 2009, 24(5): 384-398. DOI:10.3139/217.2249.
[84] Jung U hee, Kim J hyung, Kim J hyuk, et al. Numerical investigation on the melting of circular finned PCM system using CFD & full factorial design †[J/OL]. 2016, 30(6): 2813-2826. DOI:10.1007/s12206-016-0541-7.
[85] Fadl M, Eames P C. Numerical investigation of the influence of mushy zone parameter Amush on heat transfer characteristics in vertically and horizontally oriented thermal energy storage systems[J/OL]. Applied Thermal Engineering, 2019, 151(June 2018): 90-99. DOI:10.1016/j.applthermaleng.2019.01.102.
[86] Nzebuka G C, Waheed M A. Thermal evolution in the direct chill casting of an Al-4 pct Cu alloy using the low-Reynolds number turbulence model[J/OL]. International Journal of Thermal Sciences, 2020, 147: 106152. DOI:10.1016/J.IJTHERMALSCI.2019.106152.
[87] Kaviany M. Principles of Heat Transfer in Porous Media[J/OL]. 1991
[2023-06-26]. DOI:10.1007/978-1-4684-0412-8.
[88] Xu P, Yu B. Developing a new form of permeability and Kozeny–Carman constant for homogeneous porous media by means of fractal geometry[J/OL]. Advances in Water Resources, 2008, 31(1): 74-81. DOI:10.1016/J.ADVWATRES.2007.06.003.
[89] Nzebuka G C, Ufodike C O, Egole C P. Influence of various aspects of low-Reynolds number turbulence models on predicting flow characteristics and transport variables in a horizontal direct-chill casting[J/OL]. International Journal of Heat and Mass Transfer, 2021, 179: 121648. DOI:10.1016/J.IJHEATMASSTRANSFER.2021.121648.
[90] Waheed M A, Nzebuka G C. Analysis of thermally driven flow pattern formation in aluminium DC casting for different Rayleigh numbers and billet diameters[J/OL]. Thermal Science and Engineering Progress, 2020, 18: 100536. DOI:10.1016/J.TSEP.2020.100536.
[91] Polymaker. PolyLiteTM PLA[J/OL]. 2019.
[92] Xia H, Lu J, Tryggvason G. A numerical study of the effect of viscoelastic stresses in fused filament fabrication[J/OL]. Computer Methods in Applied Mechanics and Engineering, 2019, 346: 242-259. DOI:10.1016/j.cma.2018.11.031.
[93] Mieras H J M A, Van Rijn C F H. Elastic Behaviour of some Polymer Melts[J/OL]. Nature 1968 218:5144, 1968, 218(5144): 865-866
[2023-05-19]. DOI:10.1038/218865b0.
[94] James D F. N1 stresses in extensional flows[J/OL]. Journal of Non-Newtonian Fluid Mechanics, 2016, 232: 33-42. DOI:10.1016/j.jnnfm.2016.01.012.
[95] Zalba B, Marı́n J M, Cabeza L F, et al. Review on thermal energy storage with phase change: materials, heat transfer analysis and applications[J/OL]. Applied Thermal Engineering, 2003, 23(3): 251-283. DOI:10.1016/S1359-4311(02)00192-8.
[96] Ziskind G. Modeling of heat transfer in phase change materials for thermal energy storage systems[M/OL]//CABEZA L F. Advances in Thermal Energy Storage Systems. Duxford: Woodhead Publishing, 2021: 359-379. DOI:10.1016/B978-0-12-819885-8.00012-7.
[97] Serdeczny M P, Comminal R, Pedersen D B, et al. Experimental and analytical study of the polymer melt flow through the hot-end in material extrusion additive manufacturing[J/OL]. Additive Manufacturing, 2020, 32(December 2019): 100997. DOI:10.1016/j.addma.2019.100997.
[98] Varchanis S, Tsamopoulos J, Shen A Q, et al. Reduced and increased flow resistance in shear-dominated flows of Oldroyd-B fluids[J/OL]. Journal of Non-Newtonian Fluid Mechanics, 2022, 300: 104698. DOI:10.1016/J.JNNFM.2021.104698.
[99] Ghigo A R, Lagrée P Y, Fullana J M. A time-dependent non-Newtonian extension of a 1D blood flow model[J/OL]. Journal of Non-Newtonian Fluid Mechanics, 2018, 253: 36-49. DOI:10.1016/J.JNNFM.2018.01.004.
[100]Keshtiban I J, Puangkird B, Tamaddon-Jahromi H, et al. Generalised approach for transient computation of start-up pressure-driven viscoelastic flow[J/OL]. Journal of Non-Newtonian Fluid Mechanics, 2008, 151(1-3): 2-20. DOI:10.1016/J.JNNFM.2008.03.004.
[101]Ellero M, Tanner R I. SPH simulations of transient viscoelastic flows at low Reynolds number[J/OL]. Journal of Non-Newtonian Fluid Mechanics, 2005, 132(1-3): 61-72. DOI:10.1016/J.JNNFM.2005.08.012.
[102]Oliveira P J. Reduced-stress method for efficient computation of time-dependent viscoelastic flow with stress equations of FENE-P type[J/OL]. Journal of Non-Newtonian Fluid Mechanics, 2017, 248: 74-91. DOI:10.1016/J.JNNFM.2017.09.001.
[103]Moore J D, Cui S T, Cochran H D, et al. A molecular dynamics study of a short-chain polyethylene melt.: II. Transient response upon onset of shear[J/OL]. Journal of Non-Newtonian Fluid Mechanics, 2000, 93(1): 101-116. DOI:10.1016/S0377-0257(00)00104-X.
[104]Tran E, Clarke A. The relaxation time of entangled HPAM solutions in flow[J/OL]. Journal of Non-Newtonian Fluid Mechanics, 2023, 311(August 2022): 104954. DOI:10.1016/j.jnnfm.2022.104954.
[105]Baumgaertel M, Winter H H. Interrelation between continuous and discrete relaxation time spectra[J/OL]. Journal of Non-Newtonian Fluid Mechanics, 1992, 44: 15-36. DOI:10.1016/0377-0257(92)80043-W.
[106]Swallowe G M. Relaxations in Polymers[J/OL]. 1999: 195-198. DOI:10.1007/978-94-015-9231-4_42.
[107]J. Hofmann, U. Maier, F.H. Prage J V. Determination of the composition and properties of polyurethanes[M]//OERTEL G, ABELE L (Lothar). Polyurethane handbook : chemistry, raw materials, processing, application, properties: Vol. 45. New York: Hanser, 1994: 398-398.
[108]Moretti M, Rossi A, Senin N. In-process simulation of the extrusion to support optimisation and real-time monitoring in fused filament fabrication[J/OL]. Additive Manufacturing, 2021, 38(October 2020): 101817. DOI:10.1016/j.addma.2020.101817.
[109]Moretti M, Rossi A, Senin N. In-process simulation of the extrusion to support optimisation and real-time monitoring in fused filament fabrication[J/OL]. Additive Manufacturing, 2021, 38: 101817. DOI:10.1016/J.ADDMA.2020.101817.
[110]McKay M D, Beckman R J, Conover W J. A comparison of three methods for selecting values of input variables in the analysis of output from a computer code[J/OL]. Technometrics, 2000, 42(1): 55-61. DOI:10.1080/00401706.2000.10485979.
[111]Krige D G. Journal of the Chemical Metallu , Rgical & Mining Society of South Africa[J/OL]. Journal of the Chemical Metallurgical & Society of South Mining Africa, 1951, 52(6): 119-139.
[112]Deb K, Pratap A, Agarwal S, et al. A fast and elitist multiobjective genetic algorithm: NSGA-II[J/OL]. IEEE Transactions on Evolutionary Computation, 2002, 6(2): 182-197. DOI:10.1109/4235.996017.
[113]Darby M I, Kanellopoulos V N. Theory of fibre buckling in carbon-fibre reinforced plastics[J/OL]. Journal of Physics D: Applied Physics, 1987, 20(3): 298-302. DOI:10.1088/0022-3727/20/3/009.
[114]Agassant J F, Pigeonneau F, Sardo L, et al. Flow analysis of the polymer spreading during extrusion additive manufacturing[J/OL]. Additive Manufacturing, 2019, 29. DOI:10.1016/j.addma.2019.100794.
[115]Nauman E B. Residence time theory[J/OL]. Industrial & Engineering Chemistry Research, 2008, 47(10): 3752-3766. DOI:10.1021/ie071635a.
[116]Demirel B. Optimisation of mould surface temperature and bottle residence time in mould for the carbonated soft drink PET containers[J/OL]. Polymer Testing, 2017, 60: 220-228. DOI:10.1016/j.polymertesting.2017.03.030.
[117]Han Z H, Zhang K S. Surrogate-based optimization[J/OL]. Real-World Applications of Genetic Algorithms, 2012(March 2012). DOI:10.5772/36125.
[118]Jiang P, Zhou Q, Shao X. Surrogate model-based engineering design and optimization[M/OL]. Singapore: Springer Singapore, 2020. DOI:10.1007/978-981-15-0731-1.
[119]Surrogate-based modeling and optimization[M/OL]//KOZIEL S, LEIFSSON L. Surrogate-Based Modeling and Optimization: Vol. 9781461475. New York, NY: Springer, 2013. DOI:10.1007/978-1-4614-7551-4_13.

所在学位评定分委会
力学
国内图书分类号
TH164
来源库
人工提交
成果类型学位论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/779081
专题工学院_系统设计与智能制造学院
推荐引用方式
GB/T 7714
许旭光. 面向连续纤维增强聚合物复合材料熔融沉积成型的熔体流动仿真[D]. 深圳. 南方科技大学,2024.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
12132683-许旭光-系统设计与智能(4081KB)----限制开放--请求全文
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[许旭光]的文章
百度学术
百度学术中相似的文章
[许旭光]的文章
必应学术
必应学术中相似的文章
[许旭光]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。