[1] BELLO A B, KIM D, KIM D, et al. Engineering and Functionalization of Gelatin Biomaterials: From Cell Culture to Medical Applications[J]. Tissue Engineering Part B: Reviews, 2020, 26(2): 164-180.
[2] ANNAMALAI R T, HONG X, SCHOTT N G, et al. Injectable osteogenic microtissues containing mesenchymal stromal cells conformally fill and repair critical-size defects[J]. Biomaterials, 2019, 208: 32-44.
[3] WANG S J, JIANG D, ZHANG Z Z, et al. Biomimetic Nanosilica–Collagen Scaffolds for In Situ Bone Regeneration: Toward a Cell-Free, One-Step Surgery[J]. Advanced Materials, 2019, 31(49): 1904341.
[4] EINHORN T A, GERSTENFELD L C. Fracture healing: mechanisms and interventions[J]. Nature Reviews Rheumatology, 2015, 11(1): 45-54.
[5] GERSTENFELD L C, CHO T J, KON T, et al. Impaired fracture healing in the absence of TNF‐α signaling: The role of TNF‐α in endochondral cartilage resorption[J]. Journal of Bone and Mineral Research, 2003, 18(9), 1584-1592.
[6] HAUSMAN M R, SCHAFFLER M B, MAJESKA R J. Prevention of fracture healing in rats by an inhibitor of angiogenesis[J]. Bone, 2001, 29(6): 560-564.
[7] PHILLIPS A M. Overview of the fracture healing cascade[J]. Injury, 2005, 36(3): S5-S7.
[8] MORONI L, BURDICK J A, HIGHLEY C, et al. Biofabrication strategies for 3D in vitro models and regenerative medicine[J]. Nature Reviews Materials, 2018, 3(5): 21-37.
[9] WANG X, XU S, ZHOU S, et al. Topological design and additive manufacturing of porous metals for bone scaffolds and orthopaedic implants: A review[J]. Biomaterials, 2016, 83: 127-141.
[10] ZAMANI Y, AMOABEDINY G, MOHAMMADI J, et al. 3D-printed poly(Ɛcaprolactone) scaffold with gradient mechanical properties according to force distribution in the mandible for mandibular bone tissue engineering[J]. Journal of the Mechanical Behavior of Biomedical Materials, 2020, 104: 103638.
[11] KOONS G L, MIKOS A G. Progress in three-dimensional printing with growth factors[J]. Journal of Controlled Release, 2019, 295: 50-59.
[12] KANG M L, KIM J E, IM G I. Thermoresponsive nanospheres with independent dual drug release profiles for the treatment of osteoarthritis[J]. Acta Biomaterialia, 2016, 39: 65-78.
[13] WEN Y T, DAI N T, HSU S hui. Biodegradable water-based polyurethane scaffolds with a sequential release function for cell-free cartilage tissue engineering[J]. Acta Biomaterialia, 2019, 88: 301-313.
[14] ZHANG M, ZHAI X, MA T, et al. Sequential Therapy for Bone Regeneration by Cerium Oxide-Reinforced 3D-Printed Bioactive Glass Scaffolds[J]. ACS Nano, 2023, 17(5): 4433-4444.
[15] ZHOU Z X, CHEN Y R, ZHANG J Y, et al. Facile Strategy on Hydrophilic Modification of Poly(ε-caprolactone) Scaffolds for Assisting TissueEngineered Meniscus Constructs In Vitro[J]. Frontiers in Pharmacology, 2020, 11: 471.
[16] WANG Q, YANG X, WANG G, et al. Osteogenic growth peptide-loaded 3Dprinted PCL scaffolds for the promotion of osteogenesis through the ERK pathway[J]. Materials & Design, 2020, 193: 108811.
[17] ZHU Y, GAO C, SHEN J. Surface modification of polycaprolactone with poly(methacrylic acid) and gelatin covalent immobilization for promoting its cytocompatibility[J]. Biomaterials, 2002, 23(24): 4889-4895.
[18] DĄBROWSKI A. Adsorption — from theory to practice[J]. Advances in Colloid and Interface Science, 2001, 93(1): 135-224.
[19] STEWART C, AKHAVAN B, WISE S G, et al. A review of biomimetic surface functionalization for bone-integrating orthopedic implants: Mechanisms, current approaches, and future directions[J]. Progress in Materials Science, 2019, 106: 100588.
[20] WOODRUFF M A, HUTMACHER D W. The return of a forgotten polymer— Polycaprolactone in the 21st century[J]. Progress in Polymer Science, 2010, 35(10): 1217-1256.
[21] AMIN YAVARI S, CROES M, AKHAVAN B, et al. Layer by layer coating for bio-functionalization of additively manufactured meta-biomaterials[J]. Additive Manufacturing, 2020, 32: 100991.
[22] JI J, WANG C, XIONG Z, et al. 3D-printed scaffold with halloysite nanotubes laden as a sequential drug delivery system regulates vascularized bone tissue healing[J]. Materials Today Advances, 2022, 15: 100259. formation
[23] POH P S P, HUTMACHER D W, HOLZAPFEL B M, et al. In vitro and in vivo bone potential polycaprolactone and of surface calcium polycaprolactone/bioactive scaffolds[J]. Acta Biomaterialia, 2016, 30: 319-333.
[24] RASHAD A, MOHAMED-AHMED S, OJANSIVU M, et al. Coating 3D Printed Polycaprolactone Scaffolds with Nanocellulose Promotes Growth and Differentiation of Mesenchymal Stem Cells[J]. Biomacromolecules, 2018, 19(11): 4307-4319.
[25] GUPTA D, SINGH A K, KAR N, et al. Modelling and optimization of NaOHetched 3-D printed PCL for enhanced cellular attachment and growth with minimal loss of mechanical strength[J]. Materials Science and Engineering: C, 2019, 98: 602-611.
[26] JANMOHAMMADI M, NOURBAKHSH M S, BAHRAMINASAB M, et al. Effect of Pore Characteristics and Alkali Treatment on the Physicochemical and Biological Properties of a 3D-Printed Polycaprolactone Bone Scaffold[J]. ACS Omega, 2023, 8(8): 7378-7394.
[27] GORGIN KARAJI Z, SPEIRS M, DADBAKHSH S, et al. Additively Manufactured and Surface Biofunctionalized Porous Nitinol[J]. ACS Applied Materials & Interfaces, 2017, 9(2): 1293-1304.
[28] YANG Y, CHU L, YANG S, et al. Dual-functional 3D-printed composite scaffold for inhibiting bacterial infection and promoting bone regeneration in infected bone defect models[J]. Acta Biomaterialia, 2018, 79: 265-275.
[29] YANG Y, YANG S, WANG Y, et al. Anti-infective efficacy, cytocompatibility and biocompatibility of a 3D-printed osteoconductive composite scaffold functionalized with quaternized chitosan[J]. Acta Biomaterialia, 2016, 46: 112-128.
[30] CURRAN J M, CHEN R, HUNT J A. The guidance of human mesenchymal stem cell differentiation in vitro by controlled modifications to the cell substrate[J]. Biomaterials, 2006, 27(27): 4783-4793.
[31] CHEN M, ZHANG Y, ZHOU Y, et al. Pendant small functional groups on poly(ϵ-caprolactone) substrate modulate adhesion, proliferation and differentiation of human mesenchymal stem cell[J]. Colloids and Surfaces B: Biointerfaces, 2015, 134: 322-331.
[32] KESELOWSKY B G, COLLARD D M, GARCÍA A J. Surface chemistry modulates focal adhesion composition and signaling through changes in integrin binding[J]. Biomaterials, 2004, 25(28): 5947-5954.
[33] DI LUCA A, KLEIN-GUNNEWIEK M, VANCSO J G, et al. Covalent Binding of Bone Morphogenetic Protein-2 and Transforming Growth Factor-β3 to 3D Plotted Scaffolds for Osteochondral Tissue Regeneration[J]. Biotechnology Journal, 2017, 12(12): 1700072.
[34] WONG L S, KHAN F, MICKLEFIELD J. Selective Covalent Protein Immobilization: Strategies and Applications[J]. Chemical Reviews, 2009, 109(9): 4025-4053.
[35] MAO A S, MOONEY D J. Regenerative medicine: Current therapies and future directions[J]. Proceedings of the National Academy of Sciences, 2015, 112(47): 14452-14459.
[36] LI R, MCCARTHY A, ZHANG Y S, et al. Decorating 3D Printed Scaffolds with Electrospun Nanofiber Segments for Tissue Engineering[J]. Advanced Biosystems, 2019, 3(12): 1900137.
[37] CHEN G, SUN Y, LU F, et al. A three-dimensional (3D) printed biomimetic hierarchical scaffold with a covalent modular release system for osteogenesis[J]. Materials Science and Engineering: C, 2019, 104: 109842.
[38] LANGMUIR I. Oscillations in Ionized Gases[J]. Proceedings of the National Academy of Sciences, 1928, 14(8): 627-637.
[39] SIOW K S, BRITCHER L, KUMAR S, et al. Plasma Methods for the Generation of Chemically Reactive Surfaces for Biomolecule Immobilization and Cell Colonization - A Review[J]. Plasma Processes and Polymers, 2006, 3(6-7): 392-418.
[40] LU X, NAIDIS G V, LAROUSSI M, et al. Reactive species in non-equilibrium atmospheric-pressure plasmas: Generation, transport, and biological effects[J]. Physics Reports, 2016, 630: 1-84.
[41] HONG J, MURPHY A B, ASHFORD B, et al. Plasma-digital nexus: plasma nanotechnology for the digital manufacturing age[J]. Reviews of Modern Plasma Physics, 2020, 4(1): 1.
[42] ADAMOVICH I, BAALRUD S D, BOGAERTS A, et al. The 2017 Plasma Roadmap: Low temperature plasma science and technology[J]. Journal of Physics D: Applied Physics, 2017, 50(32): 323001.
[43] BILEK M M M. Biofunctionalization of surfaces by energetic ion implantation: Review of progress on applications in implantable biomedical devices and antibody microarrays[J]. Applied Surface Science, 2014, 310: 310.
[44] BILEK M M M, BAX D V, KONDYURIN A, et al. Free radical functionalization of surfaces to prevent adverse responses to biomedical devices[J]. Proceedings of the National Academy of Sciences, 2011, 108(35): 14405-14410.
[45] NINAN N, JOSEPH B, MADATHIPARAMBIL VISALAKSHAN R, et al. Plasma assisted design of biocompatible 3D printed PCL/silver nanoparticle scaffolds: in vitro and in vivo analyses[J]. Materials Advances, 2021, 2(20): 6620-6630.
[46] CÁMARA-TORRES M, SINHA R, SCOPECE P, et al. Tuning Cell Behavior on 3D Scaffolds Fabricated by Atmospheric Plasma-Assisted Additive Manufacturing[J]. ACS Applied Materials & Interfaces, 2021, 13(3): 36313644.
[47] AINSWORTH M J, LOTZ O, GILMOUR A, et al. Covalent protein immobilization on 3D‐ printed microfiber meshes for guided cartilage regeneration[J]. Advanced Functional Materials, 2023, 33(2), 2206583.
[48] LOTZ O, MCKENZIE D R, BILEK M M, et al. Biofunctionalized 3D printed structures for biomedical applications: A critical review of recent advances and future prospects[J]. Progress in Materials Science, 2023, 137: 101124.
[49] WALIA R, AKHAVAN B, KOSOBRODOVA E, et al. Hydrogel−Solid Hybrid Materials for Biomedical Applications Enabled by Surface-Embedded Radicals[J]. Advanced Functional Materials, 2020, 30(38): 2004599.
[50] MARTIN L J, AKHAVAN B, BILEK M M M. Electric fields control the orientation of peptides irreversibly immobilized on radical-functionalized surfaces[J]. Nature Communications, 2018, 9(1): 357.
[51] AKHAVAN B, CROES M, WISE S G, et al. Radical-functionalized plasma polymers: Stable biomimetic interfaces for bone implant applications[J]. Applied Materials Today, 2019, 16: 456-473.
[52] STEWART C A C, AKHAVAN B, HUNG J, et al. Multifunctional ProteinImmobilized Plasma Polymer Films for Orthopedic Applications[J]. ACS Biomaterials Science & Engineering, 2018, 4(12): 4084-4094.
[53] KHELIFA F, ERSHOV S, HABIBI Y, et al. Free-Radical-Induced Grafting from Plasma Polymer Surfaces[J]. Chemical Reviews, 2016, 116(6): 39754005.
[54] DELALAT B, HARDING F, GUNDSAMBUU B, et al. 3D printed lattices as an activation and expansion platform for T cell therapy[J]. Biomaterials, 2017, 140: 58-68.
[55] CROES M, AKHAVAN B, SHARIFAHMADIAN O, et al. A multifaceted biomimetic interface to improve the longevity of orthopedic implants[J]. Acta Biomaterialia, 2020, 110: 266-279.
[56] MAFFEI A, MICHIELI N, BRUN P, et al. An atmospheric pressure plasma jet to tune the bioactive peptide coupling to polycaprolactone electrospun layers[J]. Applied Surface Science, 2020, 507: 144713.
[57] PERMYAKOVA E S, POLČAK J, SLUKIN P V, et al. Antibacterial biocompatible PCL nanofibers modified by COOH-anhydride plasma polymers and gentamicin immobilization[J]. Materials & Design, 2018, 153: 60-70.
[58] DOLCI L S, LIGUORI A, MERLETTINI A, et al. Antibody immobilization on poly(L-lactic acid) nanofibers advantageously carried out by means of a nonequilibrium atmospheric plasma process[J]. Journal of Physics D: Applied Physics, 2016, 49(27): 274003.
[59] MEI T, GAO M, WANG Y, et al. Effects of acid treatment and plasma micromachining on the surface properties of carbon fibers[J]. Applied Surface Science, 2022, 592: 153261.
[60] ALAVI S K, LOTZ O, AKHAVAN B, et al. Atmospheric Pressure Plasma Jet Treatment of Polymers Enables Reagent-Free Covalent Attachment of Biomolecules for Bioprinting[J]. ACS Applied Materials & Interfaces, 2020, 12(34): 38730-38743.
[61] S. HERNANDEZ D, T. RITSCHDORFF E, K. SEIDLITS S, et al. Functionalizing micro-3D-printed protein hydrogels for cell adhesion and patterning[J]. Journal of Materials Chemistry B, 2016, 4(10): 1818-1826.
[62] BERTLEIN S, HOCHLEITNER G, SCHMITZ M, et al. Permanent Hydrophilization and Generic Bioactivation of Melt Electrowritten Scaffolds[J]. Advanced Healthcare Materials, 2019, 8(7): 1801544.
[63] AINSWORTH M J, LOTZ O, GILMOUR A, et al. Covalent Protein Immobilization on 3D-Printed Microfiber Meshes for Guided Cartilage Regeneration[J]. Advanced Functional Materials, 2023, 33(2): 2206583.
[64] WEI J, XIA X, XIAO S, et al. Sequential Dual-Biofactor Release from the Scaffold of Mesoporous HA Microspheres and PLGA Matrix for Boosting Endogenous Bone Regeneration[J]. Advanced Healthcare Materials, 2023, 12(20): 2300624.
[65] DASH T K, KONKIMALLA V B. Poly-є-caprolactone based formulations for drug delivery and tissue engineering: A review[J]. Journal of Controlled Release, 2012, 158(1): 15-33.
[66] WANG P, YANG H, CHEN D, et al. Fabrication of bone scaffolds with sequential delivery of SDF-1 and MGF and study on their synergistic effect on bone regeneration[J]. Journal of Controlled Release, 2017, 259: e105-e106.
[67] PUPPI D, CHIELLINI F, PIRAS A M, et al. Polymeric materials for bone and cartilage repair[J]. Progress in Polymer Science, 2010, 35(4): 403-440.
[68] KANG X, XIE Y, POWELL H M, et al. Adipogenesis of murine embryonic stem cells in a three-dimensional culture system using electrospun polymer scaffolds[J]. Biomaterials, 2007, 28(3): 450-458.
[69] 雷博程. 3D 打印磷酸镁/聚已内酯原位组织再生支架的构建及体内外成骨性能研究[D].中国医科大学,2022.
[70] WANG C, LAI J, LI K, et al. Cryogenic 3D printing of dual-delivery scaffolds for improved bone regeneration with enhanced vascularization[J]. Bioactive Materials, 2021, 6(1): 137-145.
[71] ZHOU H, LAWRENCE J G, BHADURI S B. Fabrication aspects of PLACaP/PLGA-CaP composites for orthopedic applications: A review[J]. Acta Biomaterialia, 2012, 8(6): 1999-2016.
[72] KWON S H, JUN Y K, HONG S H, et al. Synthesis and dissolution behavior of β-TCP and HA/β-TCP composite powders[J]. Journal of the European Ceramic Society, 2003, 23(7): 1039-1045.
[73] ZHAO C, PAN F, ZHANG L, et al. Microstructure, mechanical properties, biocorrosion properties and cytotoxicity of as-extruded Mg-Sr alloys[J]. Materials Science and Engineering: C, 2017, 70: 1081-1088.
[74] FENG A, HAN Y. Mechanical and in vitro degradation behavior of ultrafine calcium polyphosphate reinforced magnesium-alloy composites[J]. Materials & Design, 2011, 32(5): 2813-2820.
[75] LIU D B, HUANG Y, PRANGNELL P B. Microstructure and performance of a biodegradable Mg–1Ca–2Zn–1TCP composite fabricated by combined solidification and deformation processing[J]. Materials Letters, 2012, 82: 79.
[76] GUOLIANG L, GUANGQUAN X, BOBO H, et al. Fabrication and properties of a biodegradable β-TCP/Zn–Mg bio-composite[J]. Materials Research Express, 2019, 6(8): 0865i1.
[77] DOROZHKIN S V. Biphasic, triphasic and multiphasic calcium orthophosphates[J]. Acta Biomaterialia, 2012, 8(3): 963-977.
[78] DETSCH R, MAYR H, ZIEGLER G. Formation of osteoclast-like cells on HA and TCP ceramics[J]. Acta Biomaterialia, 2008, 4(1): 139-148.
[79] MAQUET V, BOCCACCINI A R, PRAVATA L, et al. Porous poly(αhydroxyacid)/Bioglass® composite scaffolds for bone tissue engineering. I: preparation and in vitro characterisation[J]. Biomaterials, 2004, 25(18): 41854194.
[80] WEI G, MA P X. Structure and properties of nano-hydroxyapatite/polymer composite scaffolds for bone tissue engineering[J]. Biomaterials, 2004, 25(19): 4749-4757.
[81] ZHOU Y, HUTMACHER D W, VARAWAN S L, et al. In vitro bone engineering based on polycaprolactone and polycaprolactone–tricalcium phosphate composites[J]. Polymer International, 2007, 56(3): 333-342.
[82] RAI B, TEOH S H, HUTMACHER D W, et al. Novel PCL-based honeycomb scaffolds as drug delivery systems for rhBMP-2[J]. Biomaterials, 2005, 26(17): 3739-3748.
[83] RAI B, TEOH S H, HO K H, et al. The effect of rhBMP-2 on canine osteoblasts seeded onto 3D bioactive polycaprolactone scaffolds[J]. Biomaterials, 2004, 25(24): 5499-5506.
[84] KHOJASTEH A, BEHNIA H, HOSSEINI F S, et al. The effect of PCL-TCP scaffold loaded with mesenchymal stem cells on vertical bone augmentation in dog mandible: A preliminary report[J]. Journal of Biomedical Materials Research Part B: Applied Biomaterials, 2013, 101B(5): 848-854.
[85] HOLDEN P, NAIR L S. Deferoxamine: An Angiogenic and Antioxidant Molecule for Tissue Regeneration[J]. Tissue Engineering Part B: Reviews, 2019, 25(6): 461-470.
[86] ZHANG J, TONG D, SONG H, et al. Osteoimmunity‐Regulating Biomimetically Hierarchical Scaffold for Augmented Bone Regeneration[J]. Advanced Materials, 2022, 34(36): 2202044.
[87] LIN C, MCGOUGH R, ASWAD B, et al. Hypoxia induces HIF-1α and VEGF expression in chondrosarcoma cells and chondrocytes[J]. Journal of Orthopaedic Research, 2004, 22(6): 1175-1181.
[88] POTIER E, FERREIRA E, DENNLER S, et al. Desferrioxamine‐driven upregulation of angiogenic factor expression by human bone marrow stromal cells[J]. Journal of tissue engineering and regenerative medicine, 2008, 2(5), 272-278.
[89] DONG X, WU P, YAN L, et al. Oriented nanofibrous P(MMD-coLA)/Deferoxamine nerve scaffold facilitates peripheral nerve regeneration by regulating macrophage phenotype and revascularization[J]. Biomaterials, 2022, 280: 121288.
[90] YAN Y, CHEN H, ZHANG H, et al. Vascularized 3D printed scaffolds for promoting bone regeneration[J]. Biomaterials, 2019, 190-191: 97-110.
[91] HAN X, SUN M, CHEN B, et al. Lotus seedpod-inspired internal vascularized 3D printed scaffold for bone tissue repair[J]. Bioactive Materials, 2021, 6(6): 1639-1652.
[92] RASQUINHA M T, SUR M, LASRADO N, et al. IL-10 as a Th2 Cytokine: Differences Between Mice and Humans[J]. The Journal of Immunology, 2021, 207(9): 2205-2215.
[93] POTAS J R, HAQUE F, MACLEAN F L, et al. Interleukin-10 conjugated electrospun polycaprolactone (PCL) nanofibre scaffolds for promoting alternatively activated (M2) macrophages around the peripheral nerve in vivo[J]. Journal of Immunological Methods, 2015, 420: 38-49.
[94] BOEHLER R M, KUO R, SHIN S, et al. Lentivirus delivery of IL‐10 to promote and sustain macrophage polarization towards an anti‐inflammatory phenotype[J]. Biotechnology and Bioengineering, 2014, 111(6): 1210-1221.
[95] CHANG C H, FURUE M, TAMAKI K. B7-1 expression of Langerhans cells is up-regulated by proinflammatory cytokines, and is down-regulated by interferon-γ or by interleukin-10[J]. European Journal of Immunology, 1995, 25(2): 394-398.
[96] WILLEMS F, MARCHANT A, DELVILLE J P, et al. Interleukin-10 inhibits B7 and intercellular adhesion molecule-1 expression on human monocytes[J]. European Journal of Immunology, 1994, 24(4): 1007-1009.
[97] ATRI C, GUERFALI F, LAOUINI D. Role of Human Macrophage Polarization in Inflammation during Infectious Diseases[J]. International Journal of Molecular Sciences, 2018, 19(6): 1801.
[98] QIAN Y, LI L, SONG Y, et al. Surface modification of nanofibrous matrices via layer-by-layer functionalized silk assembly for mitigating the foreign body reaction[J]. Biomaterials, 2018, 164: 22-37.
[99] MAHON O R, BROWE D C, GONZALEZ-FERNANDEZ T, et al. Nano-particle mediated M2 macrophage polarization enhances bone formation and MSC osteogenesis in an IL-10 dependent manner[J]. Biomaterials, 2020, 239: 119833.
[100] XIE L, WANG G, WU Y, et al. Programmed surface on poly(aryl-ether-etherketone) initiating immune mediation and fulfilling bone regeneration sequentially[J]. The Innovation, 2021, 2(3): 100148.
[101] PATRA J K, DAS G, FRACETO L F, et al. Nano based drug delivery systems: recent developments and future prospects[J]. Journal of Nanobiotechnology, 2018, 16(1): 71.
[102] HAI T, WAN X, YU D G, et al. Electrospun lipid-coated medicated nanocomposites for an improved drug sustained-release profile[J]. Materials & Design, 2019, 162: 70-79.
[103] CHATZINIKOLAIDOU M, PONTIKOGLOU C, TERZAKI K, et al. Recombinant human bone morphogenetic protein 2 (rhBMP-2) immobilized on laser-fabricated 3D scaffolds enhance osteogenesis[J]. Colloids and Surfaces B: Biointerfaces, 2017, 149: 233-242.
修改评论