[1] ZACHARIAH S M, GROHENS Y, KALARIKKAL N, et al. Hybrid materials for electromagnetic shielding: A review [J]. Polymer Composites, 2022, 43(5): 2507-44.
[2] ZENG Z, WANG G, WOLAN B F, et al. Printable aligned single -walled carbon nanotube film with outstanding thermal conductivity and electromagnetic interference shielding performance [J]. Nano-Micro Letters, 2022, 14(1): 179.
[3] WEI Q, PEI S, QIAN X, et al. Superhigh electromagnetic interference shielding of ultrathin aligned pristine graphene nanosheets film [J]. Advanced Materials, 2020, 32(14): 1907411.
[4] SONG Q, YE F, YIN X, et al. Carbon nanotube -multilayered graphene edge plane core-shell hybrid foams for ultrahigh -performance electromagnetic -interference shielding [J]. Advanced Materials, 2017, 29(31): 1701583.
[5] WANG H, SUN X, WANG Y, et al. Acid enhanced zipping effect to densify MWCNT packing for multifunctional MWCNT films with ultra -high electrical conductivity [J]. Nature Communications, 2023, 14(1): 380.
[6] LEE J, LEE D M, JUNG Y, et al. Direct spinning and densification method for high-performance carbon nanotube fibers [J]. Nature Communications, 2019, 10(1): 2962.
[7] JO E, LEE Y-B, JUNG Y, et al. Integration of gold nanoparticle -carbon nanotube composite for enhanced contact lifetime of microelectromechanical switches with very low contact resistance [J]. ACS Applied Materials & Interfaces, 2021, 13(14): 16959 -67.
[8] BAI Y, ZHANG R, YE X, et al. Carbon nanotube bundles with tensile strength over 80 GPa [J]. Nature Nanotechnology, 2018, 13(7): 589 -95.
[9] ZHOU T, NIU Y, LI Z, et al. The synergetic relationship between the length and orientation of carbon nanotubes in direct spinning of high -strength carbon nanotube fibers [J]. Materials & Design, 2021, 203: 109557.
[10] THOMASSIN J-M, JéRôME C, PARDOEN T, et al. Polymer/carbon based composites as electromagnetic interference (EMI) shielding materials [J]. Materials Science and Engineering: R: Reports, 2013, 74(7): 211 -32.
[11] ABBASI H, ANTUNES M, VELASCO J I. Recent advances in carbon -based polymer nanocomposites for electromagnetic interference shielding [J]. Progress in Materials Science, 2019, 103: 319 -73.
[12] HASHEMI S A, GHAFFARKHAH A, HOSSEINI E, et al. Recent progress on hybrid fibrous electromagnetic shields: key protectors of living species against electromagnetic radiation [J]. Matter, 2022, 5(11): 3807 -68.
[13] WANG C, MURUGADOSS V, KONG J, et al. Overview of carbon nanostructures and nanocomposites for electromagnetic wave shielding [J]. Carbon, 2018, 140: 696 -733.
[14] CHRISTOPOULOS C. Principles and techniques of electromagnetic compatibility [M]. CRC press, 2022.
[15] CHENG J, LI C, XIONG Y, et al. Recent advances in design strategies and multifunctionality of flexible electromagnetic interference shielding materials [J]. Nano-micro letters, 2022, 14(1): 80.
[16] WANG X Y, LIAO S Y, WAN Y J, et al. Near-field and far-field EMI shielding response of lightweight and flexible MXene -decorated polyester textiles [J]. Materials Today Physics, 2022, 23.
[17] KIM H, KIM K, LEE C, et al. Electrical conductivity and electromagnetic interference shielding of multiwalled carbon nanotube composites containing Fe catalyst [J]. Applied physics letters, 2004, 84(4): 589 -91.
[18] WANG M, TANG X-H, CAI J-H, et al. Construction, mechanism and prospective of conductive polymer composites with multiple interfaces for electromagnetic interference shielding: A review [J]. Carbon, 2021, 177: 377-402.
[19] ZHANG D, LIANG S, CHAI J, et al. Highly effective shielding of electromagnetic waves in MoS2 nanosheets synthesized by a hydrothermal method [J]. Journal of Physics and Chemistry of Solids, 2019, 134: 77 -82.
[20] SANKARAN S, DESHMUKH K, AHAMED M B, et al. Recent advances in electromagnetic interference shielding properties of metal and carbon filler reinforced flexible polymer composites: A review [J]. Composites Part A: Applied Science and Manufacturing, 2018, 114 : 49-71.
[21] PAKDEL E, WANG J, KASHI S, et al. Advances in photocatalytic selfcleaning, superhydrophobic and electromagnetic interference shielding textile treatments [J]. Advances in colloid and interface science, 2020, 277: 102116.
[22] ZHANG D, LIU T, CHENG J, et al. Light-weight and low-cost electromagnetic wave absorbers with high performances based on biomassderived reduced graphene oxides [J]. Nanotechnology, 2019, 30(44): 445708.
[23] ZHANG D, YANG X, CHENG J, et al. Facile preparation, characterization, and highly effective microwave absorption performance of CNTs/Fe3O4/PANI nanocomposites [J]. Journal of Nanomaterials, 2013, 2013: 134-.
[24] LIANG C, GU Z, ZHANG Y, et al. Structural Design Strategies of Polymer Matrix Composites for Electromagnetic Interference Shielding: A Review [J]. Nano-Micro Letters, 2021, 13(1): 181.
[25] CHENG S, XIE A, PAN X, et al. Modulating surficial oxygen vacancy of the VO2 nanostructure to boost its electromagnetic absorption performance [J]. Journal of Materials Chemistry C, 2021, 9(29): 9158 -68.
[26] HUANG W, ZHANG X, ZHAO Y, et al. Hollow N-doped carbon polyhedra embedded Co and Mo2C nanoparticles for high -efficiency and wideband microwave absorption [J]. Carbon, 2020, 167: 19 -30.
[27] CHOI H K, LEE A, PARK M, et al. Hierarchical porous film with layer-bylayer assembly of 2D copper nanosheets for ultimate electromagnetic interference shielding [J]. ACS nano, 2021, 15(1): 829 -39.
[28] JIANG Z-Y, HUANG W, CHEN L-S, et al. Ultrathin, lightweight, and freestanding metallic mesh for transparent electromagnetic interference shielding [J]. Optics express, 2019, 27(17): 24194 -206.
[29] WANG Z, JIAO B, QING Y, et al. Flexible and transparent ferroferric oxide-modified silver nanowire film for efficient electromagnetic interference shielding [J]. ACS applied materials & interfaces, 2019, 12(2): 2826-34.
[30] SHAJARI S, ARJMAND M, PAWAR S P, et al. Synergistic effect of hybrid stainless steel fiber and carbon nanotube on mechanical properties and electromagnetic interference shielding of polypropylene nanocomposites [J]. Composites Part B: Engineering, 2019, 16 5: 662-70.
[31] GUPTA S, TAI N-H. Carbon materials and their composites for electromagnetic interference shielding effectiveness in X -band [J]. Carbon, 2019, 152: 159-87.
[32] ZHANG H, HENG Z, ZHOU J, et al. In -situ co-continuous conductive network induced by carbon nanotubes in epoxy composites with enhanced electromagnetic interference shielding performance [J]. Chemical Engineering Journal, 2020, 398: 125559.
[33] HAN M, SHUCK C E, RAKHMANOV R, et al. Beyond Ti3C2T x: MXenes for electromagnetic interference shielding [J]. ACS nano, 2020, 14(4): 5008-16.
[34] SHAHZAD F, ALHABEB M, HATTER C B, et al. Electromagnetic interference shielding with 2D transition metal carbides (MXenes) [J]. Science, 2016, 353(6304): 1137-40.
[35] LIU J, ZHANG H B, SUN R, et al. Hydrophobic, flexible, and lightweight MXene foams for high-performance electromagnetic -interference shielding [J]. Advanced Materials, 2017, 29(38): 1702367.
[36] WAN Y J, WANG X Y, LI X M, et al. Ultrathin Densified Carbon Nanotube Film with "Metal-like" Conductivity, Superior Mechanical Strength, and Ultrahigh Electromagnetic Interference Shielding Effectiveness [J]. ACS Nano, 2020, 14(10): 14134-45.
[37] LIANG L, YAO C, YAN X, et al. High -efficiency electromagnetic interference shielding capability of magnetic Ti 3C2Tx MXene/CNT composite film [J]. Journal of Materials Chemistry A, 2021, 9(43): 24560 -70.
[38] YANG R, GUI X, YAO L, et al. Ultrathin, Lightweight, and Flexible CNT Buckypaper Enhanced Using MXenes for Electromagnetic Interference Shielding [J]. Nano-Micro Letters, 2021, 13(1): 66.
[39] WANG M, TIAN L, ZHANG Q, et al. Absorption -based electromagnetic interference shielding composites with sandwich structure by one-step electrodeposition method [J]. Carbon, 2023, 202: 414 -24.
[40] IIJIMA S. Helical microtubules of graphitic carbon [J]. nature, 1991, 354(6348): 56-8.
[41] KARIMI M, SOLATI N, AMIRI M, et al. Carbon nanotubes part I: preparation of a novel and versatile drug -delivery vehicle [J]. Expert opinion on drug delivery, 2015, 12(7): 1071 -87.
[42] QIU L, DING F. Understanding single -walled carbon nanotube growth for chirality controllable synthesis [J]. Accounts of Materials Research, 2021, 2(9): 828-41.
[43] YU M-F, FILES B S, AREPALLI S, et al. Tensile loading of ropes of single wall carbon nanotubes and their mechanical properties [J]. Physical review letters, 2000, 84(24): 5552.
[44] DRESSELHAUS M, DRESSELHAUS G, SAITO R. Physics of carbon nanotubes [J]. Carbon, 1995, 33(7): 883-91.
[45] KONG J, ZHOU C, MORPURGO A, et al. Synthesis, integration, and electrical properties of individual single -walled carbon nanotubes [J]. Applied Physics A, 1999, 69: 305-8.
[46] FUJII M, ZHANG X, XIE H, et al. Measuring the thermal conductivity of a single carbon nanotube [J]. Physical review letters, 2005, 95(6): 065502.
[47] JIANG K, LI Q, FAN S. Spinning continuous carbon nanotube yarns [J]. Nature, 2002, 419(6909): 801-.
[48] LIU K, SUN Y, LIU P, et al. Periodically striped films produced from superalignedcarbon nanotube arrays [J]. Nanotechnology, 2009, 20(33): 335705.
[49] HAN B, XUE X, XU Y, et al. Preparation of carbon nanotube film with high alignment and elevated density [J]. Carbon, 2017, 122: 496 -503.
[50] MA W, SONG L, YANG R, et al. Directly synthesized strong, highly conducting, transparent single -walled carbon nanotube films [J]. Nano Letters, 2007, 7(8): 2307-11.
[51] XU W, CHEN Y, ZHAN H, et al. High-strength carbon nanotube film from improving alignment and densification [J]. Nano letters, 2016, 16(2): 946 -52.
[52] WU Z, CHEN Z, DU X, et al. Transparent, conductive carbon nanotube films [J]. Science, 2004, 305(5688): 1273 -6.
[53] HE X, GAO W, XIE L, et al. Wafer-scale monodomain films of spontaneously aligned single -walled carbon nanotubes [J]. Nature nanotechnology, 2016, 11(7): 633 -8.
[54] CHEN Z, YANG Y, WU Z, et al. Electric -field-enhanced assembly of singlewalled carbon nanotubes on a solid surface [J]. The Journal of Physical Chemistry B, 2005, 109(12): 5473 -7.
[55] ENGEL M, SMALL J P, STEINER M, et al. Thin film nanotube transistors based on self-assembled, aligned, semiconducting carbon nanotube arrays [J]. ACS nano, 2008, 2(12): 2445 -52.
[56] CRANFORD S, YAO H, ORTIZ C, et al. A single degree of freedom ‘lollipop’model for carbon nanotube bundle formation [J]. Journal of the Mechanics and Physics of Solids, 2010, 58(3): 409 -27.
[57] KUZNETSOV A A, FONSECA A F, BAUGHMAN R H, et al. Structural model for dry-drawing of sheets and yarns from carbon nanotube forests [J]. Acs Nano, 2011, 5(2): 985-93.
[58] BADAIRE S, PICHOT V, ZAKRI C, et al. Correlation of properties with preferred orientation in coagulated and stretch -aligned single-wall carbon nanotubes [J]. Journal of applied physics, 2004, 96(12): 7509 -13.
[59] ZHANG S, PARK J G, NGUYEN N, et al. Ultra -high conductivity and metallic conduction mechanism of scale -up continuous carbon nanotube sheets by mechanical stretching and stable chemical doping [J]. Carbon, 2017, 125: 649-58.
[60] BAI Y, ZHANG R, YE X, et al. Carbon nanotube bundles with tensile strength over 80 GPa [J]. Nature nanotechnology, 2018, 13(7): 589 -95.
[61] ZHOU T, NIU Y, LI Z, et al. The synergetic relationship between the length and orientation of carbon nanotubes in direct spinning of high -strength carbon nanotube fibers [J]. Materials & Design, 2021, 203.
[62] BEESE A M, WEI X, SARKAR S, et al. Key factors limiting carbon nanotube yarn strength: exploring processing -structure -property relationships [J]. ACS nano, 2014, 8(11): 11454 -66.
[63] VILATELA J J, ELLIOTT J A, WINDLE A H. A model for the strength of yarn-like carbon nanotube fibers [J]. ACS nano, 2011, 5(3): 1921 -7.
[64] ZHU L, WANG J, DING F. The great reduction of a carbon nanotube’s mechanical performance by a few topological defects [J]. ACS nano, 2016, 10(6): 6410-5.
[65] HEADRICK R J, TSENTALOVICH D E, BERDEGUé J, et al. Structure –property relations in carbon nanotube fibers by downscaling solution processing [J]. Advanced Materials, 2018, 30(9): 1704482.
[66] GAO E, LU W, XU Z. Strength loss of carbon nanotube fibers explained in a three-level hierarchical model [J]. Carbon, 2018, 138: 134 -42.
[67] LIU G L, CHEN Y T, SHI H L, et al. Preparation of carbon nanotube/SiO2 composite films and their tensile properties in harsh wet environments [J]. Carbon, 2022, 200: 116 -23.
[68] WANG Y, COLAS G, FILLETER T. Improvements in the mechanical properties of carbon nanotube fibers through graphene oxide interlocking [J]. Carbon, 2016, 98: 291-9.
[69] QIU L, ZOU H, WANG X, et al. Au nanoparticle -boosted interfacial interaction enhances the electrical and thermal conductivities of carbon nanotube fibers [J]. Carbon, 2018.
[70] ANDREWS J B, MONDAL K, NEUMANN T V, et al. Patterned Liquid Metal Contacts for Printed Carbon Nanotube Transistors [J]. ACS Nano, 2018, 12(6): 5482-8.
[71] LUO S, LIU T, BENJAMIN S M, et al. Variable range hopping in single -wall carbon nanotube thin films: a processing–structure–property relationship study [J]. Langmuir, 2013, 29(27): 8694 -702.
[72] WANG D, FELDMAN D, PERKINS B, et al. Hopping conduction in disordered carbon nanotubes [J]. Solid state communications, 2007, 142(5): 287-91.
[73] DEWEY O, HEADRICK R, TAYLOR L, et al. Transport and photo -conduction in carbon nanotube fibers [J]. Applied Physics Letters, 2019, 115(2).
[74] GAO J, LOO Y L. Temperature ‐ Dependent Electrical Transport in Polymer ‐ Sorted Semiconducting Carbon Nanotube Networks [J]. Advanced Functional Materials, 2015, 25(1): 105 -10.
[75] ZARE Y, RHEE K Y. A simple methodology to predict the tunneling conductivity of polymer/CNT nanocomposites by the roles of tunneling distance, interphase and CNT waviness [J]. RSC advances, 2017, 7(55): 34912-21.
[76] ZHAN H, CHEN Y W, SHI Q Q, et al. Highly aligned and densified carbon nanotube films with superior thermal conductivity and mechanical strength [J]. Carbon, 2022, 186: 205-14.
[77] SALEEMI S, MANNAN H A, IDRIS A, et al. Synergistic effect of esterification and densification on structural modification of CNT yarn for efficient interfacial performance [J]. Chemical Papers, 2023, 77(1): 75 -87.
[78] KIM H, LEE J, PARK B, et al. Improving the tensile strength of carbon nanotube yarn via one -step double
[2+ 1] cycloadditions [J]. Korean Journal of Chemical Engineering, 2016, 33: 299 -304.
[79] PARK O-K, CHOI H, JEONG H, et al. High -modulus and strength carbon nanotube fibers using molecular cross-linking [J]. Carbon, 2017, 118: 413 -21.
[80] LEE J, LEE D M, JUNG Y, et al. Direct spinning and densification method for high-performance carbon nanotube fibers [J]. Nature Communications, 2019, 10(1): 2962.
[81] WU K, WANG B, NIU Y, et al. Carbon nanotube fibers with excellent mechanical and electrical properties by structural realigning and densification [J]. Nano Research, 2023, 16(11): 12762 -71.
[82] KOZIOL K, VILATELA J, MOISALA A, et al. High -performance carbon nanotube fiber [J]. Science, 2007, 318(5858): 1892 -5.
[83] CHOI Y, SEONG K D, PIAO Y. Metal-Organic Decomposition Ink for Printed Electronics [J]. Advanced Materials Interfaces, 2019, 6(20).
[84] XU W, WANG T. Synergetic effect of blended alkylamines for copper complex ink to form conductive copper films [J]. Langmuir, 2017, 33(1): 82-90.
[85] DONG Y, LI X, LIU S, et al. Facile synthesis of high silver content MOD ink by using silver oxalate precursor for inkjet printing applications [J]. Thin Solid Films, 2015, 589: 381-7.
[86] FELTEN A, BITTENCOURT C, COLOMER J F, et al. Nucleation of metal clusters on plasma treated multi wall carbon nanotubes [J]. Carbon, 2007, 45(1): 110-6.
[87] DRESSELHAUS M, DRESSELHAUS G, JORIO A. Raman spectroscopy of carbon nanotubes in 1997 and 2007 [J]. The Journal of Physical Chemistry C, 2007, 111(48): 17887-93.
[88] GRAUPNER R. Raman spectroscopy of covalently functionalized single -wall carbon nanotubes [J]. Journal of Raman Spectroscopy: An International Journal for Original Work in all Aspects of Raman Spectroscopy, Including Higher Order Processes, and also Brillouin and Rayleigh Scattering, 2007, 38(6): 673-83.
[89] GOPEE V, THOMAS O, HUNT C, et al. Carbon nanotube interconnects realized through functionalization and sintered silver attachment [J]. ACS applied materials & interfaces, 2016, 8(8): 5563 -70.
[90] BITTENCOURT C, NAVIO C, NICOLAY A, et al. Atomic Oxygen Functionalization of Vertically Aligned Carbon Nanotubes [J]. The Journal of Physical Chemistry C, 2011, 115(42): 20412 -8.
[91] GAO J, WU X, LI Q, et al. Template -Free Growth of Well-Ordered Silver Nano Forest/Ceramic Metamaterial Films with Tunable Optical Responses [J]. Advanced Materials, 2017, 29(16): 1605324.
[92] BAI X, LIAO S, HUANG Y, et al. Continuous draw spinning of extra -long silver submicron fibers with micrometer patterning capability [J]. Nano letters, 2017, 17(3): 1883-91.
[93] DEAR J W, POLL C G, LAI K T, et al. Solution -processable transparent conducting films by defunctionalization of amine functionalized carbon nanotubes [J]. Journal of Photonics for Energy, 2018, 8(3): 032221 -.
[94] CHEN Y, LIU B, HE X, et al. Failure analysis and the optimal toughness design of carbon nanotube -reinforced composites [J]. Composites Science and Technology, 2010, 70(9): 1360 -7.
[95] WU B, ZHANG J, WEI Z, et al. Chemical alignment of oxidatively shortened single -walled carbon nanotubes on silver surface [J]. The Journal of Physical Chemistry B, 2001, 105(22): 5075 -8.
[96] KALASHNYK N, FAULQUES E, SCHJøDT-THOMSEN J, et al. Strain sensing in single carbon fiber epoxy composites by simultaneous in -situ Raman and piezoresistance measurements [J]. Carbon, 2016, 109: 124 -30.
[97] LI Q, KANG Y L, QIU W, et al. Deformation mechanisms of carbon nanotube fibres under tensile loading by in situ Raman spectroscopy analysis [J]. Nanotechnology, 2011, 22(22): 225704.
[98] FERNáNDEZ-TORIBIO J C, MIKHALCHAN A, SANTOS C, et al. Understanding cooperative loading in carbon nanotube fibres through in -situ structural studies during stretching [J]. Carbon, 2020, 156: 430 -7.
[99] WU Z P, LI M M, HU Y Y, et al. Electromagnetic interference shielding of carbon nanotube macrofilms [J]. Scripta Materialia, 2011, 64(9): 809 -12.
[100] PANAHI-SARMAD M, SAMSAMI S, GHAFFARKHAH A, et al. MOFBased Electromagnetic Shields Multiscale Design: Nanoscale Chemistry, Microscale Assembly, and Macroscale Manufacturing [J]. Advanced Functional Materials, 2023: 2304473.
[101] ZHANG X, TIAN X-L, QIN Y, et al. Conductive Metal-Organic Frameworks with Tunable Dielectric Properties for Boosting Electromagnetic Wave Absorption [J]. ACS nano, 2023.
[102] KUMAR R, SAHOO S, JOANNI E, et al. Recent progress on carbon -based composite materials for microwave electromagnetic interference shielding [J]. Carbon, 2021, 177: 304-31.
[103] SUN Y, HAN X, GUO P, et al. Slippery Graphene -Bridging Liquid Metal Layered Heterostructure Nanocomposite for Stable High -Performance Electromagnetic Interference Shielding [J]. ACS Nano, 2023, 17(13): 12616-28.
[104] WU N, YANG Y, WANG C, et al. Ultrathin cellulose nanofiber assisted ambient‐pressure‐dried, ultralight, mechanically robust, multifunctional MXene aerogels [J]. Advanced Materials, 2023, 35(1): 2207969.
[105] HAMASAKI H, NAGAHAMA S, HIRAHARA K. Electrical conductivity of a single parallel contact between carbon nanotubes [J]. Nanoscale, 2022, 14(32): 11529-34.
[106] BEHABTU N, YOUNG C C, TSENTALOVICH D E, et al. Strong, light, multifunctional fibers of carbon nanotubes with ultrahigh conductivity [J]. science, 2013, 339(6116): 182-6.
[107] TRAN C-D, HUMPHRIES W, SMITH S M, et al. Improving the tensile strength of carbon nanotube spun yarns using a modified spinning process [J]. Carbon, 2009, 47(11): 2662 -70.
[108] LI S, PARK J G, LIANG Z, et al. In situ characterization of structural changes and the fraction of aligned carbon nanotube networks produced by stretching [J]. Carbon, 2012, 50(10): 3859 -67.
[109] DI J, WANG X, XING Y, et al. Dry‐Processable Carbon Nanotubes for Functional Devices and Composites [J]. Small, 2014, 10(22): 4606 -25.
[110] LI S, SHANG Y, ZHAO W, et al. Efficient purification of single -walled carbon nanotube fibers by instantaneous current injection and acid washing [J]. RSC advances, 2016, 6(100): 97865 -72.
[111] WU K, NIU Y, ZHANG Y, et al. Continuous growth of carbon nanotube films: From controllable synthesis to real applications [J]. Composites Part A: Applied Science and Manufacturing, 2021, 144: 106359.
[112] KHANBOLOUKI P, TEHRANI M. Purification, structural evolutions, and electrical properties of carbon nanotube yarns processed via incandescent annealing [J]. Carbon, 2020, 168: 710 -8.
[113] WANG S, LIU Q, LI M, et al. Property improvements of CNT films induced by wet-stretching and tension -heating post treatments [J]. Composites Part A: Applied Science and Manufacturing, 2017, 103: 106 -12.
[114] LEE J, LEE D M, KIM Y K, et al. Significantly Increased Solubility of Carbon Nanotubes in Superacid by Oxidation and Their Assembly into High -Performance Fibers [J]. Small, 2017, 13(38): 1701131.
[115] LEE J, LEE D-M, JUNG Y, et al. Direct spinning and densification method for high-performance carbon nanotube fibers [J]. Nature communications, 2019, 10(1): 2962.
[116] HAN Y, ZHANG X, YU X, et al. Bio -inspired aggregation control of carbon nanotubes for ultra -strong composites [J]. Scientific Reports, 2015, 5(1): 11533.
[117] LIU F, SHIRASU K, HASHIDA T. Epitaxial pyrolytic carbon coatings templated with defective carbon nanotube cores for structural annealing and tensile property improvement [J]. Journal of Materials Science, 2021, 56: 19015-28.
[118] WU K, ZHANG Y, YONG Z, et al. Continuous preparation and performance enhancement techniques of carbon nanotube fibers [J]. Acta Physi Chim Sin, 2021, 38(9): 2106034.
[119] JUNG Y, CHO Y S, LEE J W, et al. How can we make carbon nanotube yarn stronger? [J]. Composites Science and Technology, 2018, 166: 95 -108.
[120] ERICSON L M, FAN H, PENG H, et al. Macroscopic, neat, single -walled carbon nanotube fibers [J]. Science, 2004, 305(5689): 1447 -50.
[121] KIM S G, CHOI G M, JEONG H D, et al. Hierarchical structure control in solution spinning for strong and multifunctional carbon nanotube fibers [J]. Carbon, 2022, 196: 59-69.
[122] CONLEY K, KARTTUNEN A J. Bridging the junction: Electrical conductivity of carbon nanotube networks [J]. The Journal of Physical Chemistry C, 2022, 126(40): 17266 -74.
[123] PINT C L, XU Y-Q, MOROSAN E, et al. Alignment dependence of one -dimensional electronic hopping transport observed in films of highly aligned, ultralong single -walled carbon nanotubes [J]. Applied Physics Letters, 2009, 94(18).
[124] LI B, YANG Y, WU N, et al. Bicontinuous, High -Strength, and Multifunctional Chemical-Cross-Linked MXene/Superaligned Carbon Nanotube Film [J]. ACS Nano, 2022, 16(11): 19293 -304.ZACHARIAH S M, GROHENS Y, KALARIKKAL N, et al. Hybrid materials for electromagnetic shielding: A review [J]. Polymer Composites, 2022, 43(5): 2507 -44.
修改评论