中文版 | English
题名

基于碳纳米管薄膜的结构设计及其电磁屏蔽性能研究

其他题名
STUDY ON STRUCTURAL DESIGN AND ELECTROMANGNETIC SHIDLDING PERFORMANCE BASED ON CARBON NANOTUBE FILM
姓名
姓名拼音
SHI Yuying
学号
12233368
学位类型
硕士
学位专业
0856 材料与化工
学科门类/专业学位类别
08 工学
导师
万艳君
导师单位
中国科学院深圳先进技术研究院
论文答辩日期
2024-05-07
论文提交日期
2024-07-08
学位授予单位
南方科技大学
学位授予地点
深圳
摘要

随着便携式设备和无线通信的迅猛发展,电磁干扰问题已经变得愈发 突出与严重。它不但会干扰电子设备的正常工作和运行,还可能对人类健 康构成威胁。研制高性能电磁屏蔽材料是解决电磁干扰的有效手段。碳纳 米管(CNT)以其卓越的电学和力学性能脱颖而出,逐渐成为电磁屏蔽材 料的理想选择。然而,CNT 宏观组装体中弱的 CNT 管间相互作用以及 CNT 的无序性,导致其电学、力学和电磁屏蔽性能不佳,难以满足要求。基于 以上问题,本文通过原位引入金属颗粒以及构建具有高取向结构的致密 CNT 薄膜来进行结构设计,实现了 CNT 薄膜电学、力学及电磁屏蔽性能的 提升。主要研究内容如下:

开发了一种基于金属有机分解物(MOD)的工艺方法,将银颗粒原位 填充 CNT 薄膜内部,获得了具有强 CNT 管间相互作用的银-碳纳米管(AgCNT)薄膜。Ag-CNT 薄膜(7.8±0.81 μm)的电导率高达(6.82±0.35) ×10 5 S/m,在 3-40 GHz 超宽频段内的屏蔽效能超过 66 dB。Ag 与 CNT 具 有较好的结合力,经过 2000 次对折弯曲后,薄膜的屏蔽效能仍可保持在 62 dB。更为重要的是,Ag 的引入能够有效提升 CNT 薄膜的力学性能,AgCNT 薄膜的拉伸强度提升至 76.06±6.20 MPa;比原始薄膜增加 153%;杨 氏模量达到 8.90±0.97 GPa,提升幅度高达 695%。此外,Ag-CNT 薄膜也 具有出色的近场屏蔽效能,可有效阻断电子设备的无线传输。 通过一种 CNT 取向和致密化协同增强的策略,实现了 CNT 薄膜电学 性能、力学性能和电磁屏蔽性能的提升。

采用氯磺酸(CSA)辅助拉伸的 方法,实现了 CNT 的取向度的提高并消除了薄膜内部空隙,制备了具有强 CNT 管间相互作用的取向致密 CNT 薄膜。取向后的 CNT 薄膜表现出各向 异性,在平行于取向方向 CSA-40% CNT 薄膜(7.4±1.3 μm)的电导率大 幅提升至(5.95±0.11)×10 5 S/m,在 8.2-12.4 GHz 的频率范围内的屏蔽效 能达到 69 dB。拉伸强度增加到 109.34±1.93 MPa,提升幅度为 551%;杨 氏模量增加至 0.85±0.21 GPa,提升幅度达到 962%。

其他摘要

The proliferation of portable devices and the development of wireless communication result in an increasingly severe problem of electromagnetic (EM) radiation, which adversely impacts both electronic devices and living beings. Developing high-efficiency electromagnetic interference (EMI) shielding materials has become an effective way to solve the EM radiation. Carbon nanotube (CNT) is an ideal candidate for fabricating EMI shielding materials due to the excellent electrical conductivity and high mechanical strength. However, the weak tube-tube interaction of CNT makes it difficult to achieve satisfied EMI shielding performance and mechanical strength in their macroscopic assemblies. To solve these problems, introduction of metal particles into the CNT film and construction of densified CNT film with aligned structure are proposed, and the electrical conductivity, mechanical propert y and EMI shielding performance of CNT film are invesgated. The main research contents are summaried as follows:

A novel strategy based on metal-organic decomposition (MOD) is proposed to in-situ introduce silver (Ag) particles into CNT film, which enhances the tube-tube interaction of CNT. The electrical conductivity of Ag-CNT film (7.8±0.81 μm) is up to (6.82±0.35)×10 5 S/m, and the EMI shielding effectiveness (SE) of Ag-CNT film exceeds 66 dB in the ultra - broad frequency range of 3-40 GHz. It shows strong interaction between Ag and CNT, and the EMI SE of the film can still be maintained at 62 dB after bending for 2000 cycles. Importantly, the introduction of Ag can effectively improve the mechanical propert y of CNT film. The tensile strength of Ag-CNT film is increased to 76.06±6.20 MPa, which is 253% higher than that of CNT film. The Young's modulus increase s to 8.90±0.97 GPa, showing an extraordinary increase of 795%. Moreover, the Ag-CNT film exhibits excellent near-field shielding performance, which can effectively block wireless power transmission of electronic devices.

By employing a synergistic strategy that combines CNT alignment and densification, the electrical conductivity, mechanical property and EMI shielding performance of CNT film are significantly improved. Chlorosulfonic acid (CSA)-assisted stretching can improve the CNT alignment and eliminate the inter-tube voids between the tubes, which results in a high alignment and dense CNT film with strong tube-tube interaction. The CSA-40% CNT film (7.4±1.3 μm) exhibits anisotropic conductivity and EMI SE, significantly increasing to (5.95±0.11)×10 5 S/m and 69 dB (8.2-12.4 GHz) in the direction parallel to the alignment, respectively. Moreover, the tensile strength reaches 109.34±1.93 MPa, with an increase of 651%. Young's modulus is increased to 0.85±0.21 GPa, which is 1062% higher than that of CNT film.

关键词
其他关键词
语种
中文
培养类别
独立培养
入学年份
2022
学位授予年份
2024-06
参考文献列表

[1] ZACHARIAH S M, GROHENS Y, KALARIKKAL N, et al. Hybrid materials for electromagnetic shielding: A review [J]. Polymer Composites, 2022, 43(5): 2507-44.
[2] ZENG Z, WANG G, WOLAN B F, et al. Printable aligned single -walled carbon nanotube film with outstanding thermal conductivity and electromagnetic interference shielding performance [J]. Nano-Micro Letters, 2022, 14(1): 179.
[3] WEI Q, PEI S, QIAN X, et al. Superhigh electromagnetic interference shielding of ultrathin aligned pristine graphene nanosheets film [J]. Advanced Materials, 2020, 32(14): 1907411.
[4] SONG Q, YE F, YIN X, et al. Carbon nanotube -multilayered graphene edge plane core-shell hybrid foams for ultrahigh -performance electromagnetic -interference shielding [J]. Advanced Materials, 2017, 29(31): 1701583.
[5] WANG H, SUN X, WANG Y, et al. Acid enhanced zipping effect to densify MWCNT packing for multifunctional MWCNT films with ultra -high electrical conductivity [J]. Nature Communications, 2023, 14(1): 380.
[6] LEE J, LEE D M, JUNG Y, et al. Direct spinning and densification method for high-performance carbon nanotube fibers [J]. Nature Communications, 2019, 10(1): 2962.
[7] JO E, LEE Y-B, JUNG Y, et al. Integration of gold nanoparticle -carbon nanotube composite for enhanced contact lifetime of microelectromechanical switches with very low contact resistance [J]. ACS Applied Materials & Interfaces, 2021, 13(14): 16959 -67.
[8] BAI Y, ZHANG R, YE X, et al. Carbon nanotube bundles with tensile strength over 80 GPa [J]. Nature Nanotechnology, 2018, 13(7): 589 -95.
[9] ZHOU T, NIU Y, LI Z, et al. The synergetic relationship between the length and orientation of carbon nanotubes in direct spinning of high -strength carbon nanotube fibers [J]. Materials & Design, 2021, 203: 109557.
[10] THOMASSIN J-M, JéRôME C, PARDOEN T, et al. Polymer/carbon based composites as electromagnetic interference (EMI) shielding materials [J]. Materials Science and Engineering: R: Reports, 2013, 74(7): 211 -32.
[11] ABBASI H, ANTUNES M, VELASCO J I. Recent advances in carbon -based polymer nanocomposites for electromagnetic interference shielding [J]. Progress in Materials Science, 2019, 103: 319 -73.
[12] HASHEMI S A, GHAFFARKHAH A, HOSSEINI E, et al. Recent progress on hybrid fibrous electromagnetic shields: key protectors of living species against electromagnetic radiation [J]. Matter, 2022, 5(11): 3807 -68.
[13] WANG C, MURUGADOSS V, KONG J, et al. Overview of carbon nanostructures and nanocomposites for electromagnetic wave shielding [J]. Carbon, 2018, 140: 696 -733.
[14] CHRISTOPOULOS C. Principles and techniques of electromagnetic compatibility [M]. CRC press, 2022.
[15] CHENG J, LI C, XIONG Y, et al. Recent advances in design strategies and multifunctionality of flexible electromagnetic interference shielding materials [J]. Nano-micro letters, 2022, 14(1): 80.
[16] WANG X Y, LIAO S Y, WAN Y J, et al. Near-field and far-field EMI shielding response of lightweight and flexible MXene -decorated polyester textiles [J]. Materials Today Physics, 2022, 23.
[17] KIM H, KIM K, LEE C, et al. Electrical conductivity and electromagnetic interference shielding of multiwalled carbon nanotube composites containing Fe catalyst [J]. Applied physics letters, 2004, 84(4): 589 -91.
[18] WANG M, TANG X-H, CAI J-H, et al. Construction, mechanism and prospective of conductive polymer composites with multiple interfaces for electromagnetic interference shielding: A review [J]. Carbon, 2021, 177: 377-402.
[19] ZHANG D, LIANG S, CHAI J, et al. Highly effective shielding of electromagnetic waves in MoS2 nanosheets synthesized by a hydrothermal method [J]. Journal of Physics and Chemistry of Solids, 2019, 134: 77 -82.
[20] SANKARAN S, DESHMUKH K, AHAMED M B, et al. Recent advances in electromagnetic interference shielding properties of metal and carbon filler reinforced flexible polymer composites: A review [J]. Composites Part A: Applied Science and Manufacturing, 2018, 114 : 49-71.
[21] PAKDEL E, WANG J, KASHI S, et al. Advances in photocatalytic selfcleaning, superhydrophobic and electromagnetic interference shielding textile treatments [J]. Advances in colloid and interface science, 2020, 277: 102116.
[22] ZHANG D, LIU T, CHENG J, et al. Light-weight and low-cost electromagnetic wave absorbers with high performances based on biomassderived reduced graphene oxides [J]. Nanotechnology, 2019, 30(44): 445708.
[23] ZHANG D, YANG X, CHENG J, et al. Facile preparation, characterization, and highly effective microwave absorption performance of CNTs/Fe3O4/PANI nanocomposites [J]. Journal of Nanomaterials, 2013, 2013: 134-.
[24] LIANG C, GU Z, ZHANG Y, et al. Structural Design Strategies of Polymer Matrix Composites for Electromagnetic Interference Shielding: A Review [J]. Nano-Micro Letters, 2021, 13(1): 181.
[25] CHENG S, XIE A, PAN X, et al. Modulating surficial oxygen vacancy of the VO2 nanostructure to boost its electromagnetic absorption performance [J]. Journal of Materials Chemistry C, 2021, 9(29): 9158 -68.
[26] HUANG W, ZHANG X, ZHAO Y, et al. Hollow N-doped carbon polyhedra embedded Co and Mo2C nanoparticles for high -efficiency and wideband microwave absorption [J]. Carbon, 2020, 167: 19 -30.
[27] CHOI H K, LEE A, PARK M, et al. Hierarchical porous film with layer-bylayer assembly of 2D copper nanosheets for ultimate electromagnetic interference shielding [J]. ACS nano, 2021, 15(1): 829 -39.
[28] JIANG Z-Y, HUANG W, CHEN L-S, et al. Ultrathin, lightweight, and freestanding metallic mesh for transparent electromagnetic interference shielding [J]. Optics express, 2019, 27(17): 24194 -206.
[29] WANG Z, JIAO B, QING Y, et al. Flexible and transparent ferroferric oxide-modified silver nanowire film for efficient electromagnetic interference shielding [J]. ACS applied materials & interfaces, 2019, 12(2): 2826-34.
[30] SHAJARI S, ARJMAND M, PAWAR S P, et al. Synergistic effect of hybrid stainless steel fiber and carbon nanotube on mechanical properties and electromagnetic interference shielding of polypropylene nanocomposites [J]. Composites Part B: Engineering, 2019, 16 5: 662-70.
[31] GUPTA S, TAI N-H. Carbon materials and their composites for electromagnetic interference shielding effectiveness in X -band [J]. Carbon, 2019, 152: 159-87.
[32] ZHANG H, HENG Z, ZHOU J, et al. In -situ co-continuous conductive network induced by carbon nanotubes in epoxy composites with enhanced electromagnetic interference shielding performance [J]. Chemical Engineering Journal, 2020, 398: 125559.
[33] HAN M, SHUCK C E, RAKHMANOV R, et al. Beyond Ti3C2T x: MXenes for electromagnetic interference shielding [J]. ACS nano, 2020, 14(4): 5008-16.
[34] SHAHZAD F, ALHABEB M, HATTER C B, et al. Electromagnetic interference shielding with 2D transition metal carbides (MXenes) [J]. Science, 2016, 353(6304): 1137-40.
[35] LIU J, ZHANG H B, SUN R, et al. Hydrophobic, flexible, and lightweight MXene foams for high-performance electromagnetic -interference shielding [J]. Advanced Materials, 2017, 29(38): 1702367.
[36] WAN Y J, WANG X Y, LI X M, et al. Ultrathin Densified Carbon Nanotube Film with "Metal-like" Conductivity, Superior Mechanical Strength, and Ultrahigh Electromagnetic Interference Shielding Effectiveness [J]. ACS Nano, 2020, 14(10): 14134-45.
[37] LIANG L, YAO C, YAN X, et al. High -efficiency electromagnetic interference shielding capability of magnetic Ti 3C2Tx MXene/CNT composite film [J]. Journal of Materials Chemistry A, 2021, 9(43): 24560 -70.
[38] YANG R, GUI X, YAO L, et al. Ultrathin, Lightweight, and Flexible CNT Buckypaper Enhanced Using MXenes for Electromagnetic Interference Shielding [J]. Nano-Micro Letters, 2021, 13(1): 66.
[39] WANG M, TIAN L, ZHANG Q, et al. Absorption -based electromagnetic interference shielding composites with sandwich structure by one-step electrodeposition method [J]. Carbon, 2023, 202: 414 -24.
[40] IIJIMA S. Helical microtubules of graphitic carbon [J]. nature, 1991, 354(6348): 56-8.
[41] KARIMI M, SOLATI N, AMIRI M, et al. Carbon nanotubes part I: preparation of a novel and versatile drug -delivery vehicle [J]. Expert opinion on drug delivery, 2015, 12(7): 1071 -87.
[42] QIU L, DING F. Understanding single -walled carbon nanotube growth for chirality controllable synthesis [J]. Accounts of Materials Research, 2021, 2(9): 828-41.
[43] YU M-F, FILES B S, AREPALLI S, et al. Tensile loading of ropes of single wall carbon nanotubes and their mechanical properties [J]. Physical review letters, 2000, 84(24): 5552.
[44] DRESSELHAUS M, DRESSELHAUS G, SAITO R. Physics of carbon nanotubes [J]. Carbon, 1995, 33(7): 883-91.
[45] KONG J, ZHOU C, MORPURGO A, et al. Synthesis, integration, and electrical properties of individual single -walled carbon nanotubes [J]. Applied Physics A, 1999, 69: 305-8.
[46] FUJII M, ZHANG X, XIE H, et al. Measuring the thermal conductivity of a single carbon nanotube [J]. Physical review letters, 2005, 95(6): 065502.
[47] JIANG K, LI Q, FAN S. Spinning continuous carbon nanotube yarns [J]. Nature, 2002, 419(6909): 801-.
[48] LIU K, SUN Y, LIU P, et al. Periodically striped films produced from superalignedcarbon nanotube arrays [J]. Nanotechnology, 2009, 20(33): 335705.
[49] HAN B, XUE X, XU Y, et al. Preparation of carbon nanotube film with high alignment and elevated density [J]. Carbon, 2017, 122: 496 -503.
[50] MA W, SONG L, YANG R, et al. Directly synthesized strong, highly conducting, transparent single -walled carbon nanotube films [J]. Nano Letters, 2007, 7(8): 2307-11.
[51] XU W, CHEN Y, ZHAN H, et al. High-strength carbon nanotube film from improving alignment and densification [J]. Nano letters, 2016, 16(2): 946 -52.
[52] WU Z, CHEN Z, DU X, et al. Transparent, conductive carbon nanotube films [J]. Science, 2004, 305(5688): 1273 -6.
[53] HE X, GAO W, XIE L, et al. Wafer-scale monodomain films of spontaneously aligned single -walled carbon nanotubes [J]. Nature nanotechnology, 2016, 11(7): 633 -8.
[54] CHEN Z, YANG Y, WU Z, et al. Electric -field-enhanced assembly of singlewalled carbon nanotubes on a solid surface [J]. The Journal of Physical Chemistry B, 2005, 109(12): 5473 -7.
[55] ENGEL M, SMALL J P, STEINER M, et al. Thin film nanotube transistors based on self-assembled, aligned, semiconducting carbon nanotube arrays [J]. ACS nano, 2008, 2(12): 2445 -52.
[56] CRANFORD S, YAO H, ORTIZ C, et al. A single degree of freedom ‘lollipop’model for carbon nanotube bundle formation [J]. Journal of the Mechanics and Physics of Solids, 2010, 58(3): 409 -27.
[57] KUZNETSOV A A, FONSECA A F, BAUGHMAN R H, et al. Structural model for dry-drawing of sheets and yarns from carbon nanotube forests [J]. Acs Nano, 2011, 5(2): 985-93.
[58] BADAIRE S, PICHOT V, ZAKRI C, et al. Correlation of properties with preferred orientation in coagulated and stretch -aligned single-wall carbon nanotubes [J]. Journal of applied physics, 2004, 96(12): 7509 -13.
[59] ZHANG S, PARK J G, NGUYEN N, et al. Ultra -high conductivity and metallic conduction mechanism of scale -up continuous carbon nanotube sheets by mechanical stretching and stable chemical doping [J]. Carbon, 2017, 125: 649-58.
[60] BAI Y, ZHANG R, YE X, et al. Carbon nanotube bundles with tensile strength over 80 GPa [J]. Nature nanotechnology, 2018, 13(7): 589 -95.
[61] ZHOU T, NIU Y, LI Z, et al. The synergetic relationship between the length and orientation of carbon nanotubes in direct spinning of high -strength carbon nanotube fibers [J]. Materials & Design, 2021, 203.
[62] BEESE A M, WEI X, SARKAR S, et al. Key factors limiting carbon nanotube yarn strength: exploring processing -structure -property relationships [J]. ACS nano, 2014, 8(11): 11454 -66.
[63] VILATELA J J, ELLIOTT J A, WINDLE A H. A model for the strength of yarn-like carbon nanotube fibers [J]. ACS nano, 2011, 5(3): 1921 -7.
[64] ZHU L, WANG J, DING F. The great reduction of a carbon nanotube’s mechanical performance by a few topological defects [J]. ACS nano, 2016, 10(6): 6410-5.
[65] HEADRICK R J, TSENTALOVICH D E, BERDEGUé J, et al. Structure –property relations in carbon nanotube fibers by downscaling solution processing [J]. Advanced Materials, 2018, 30(9): 1704482.
[66] GAO E, LU W, XU Z. Strength loss of carbon nanotube fibers explained in a three-level hierarchical model [J]. Carbon, 2018, 138: 134 -42.
[67] LIU G L, CHEN Y T, SHI H L, et al. Preparation of carbon nanotube/SiO2 composite films and their tensile properties in harsh wet environments [J]. Carbon, 2022, 200: 116 -23.
[68] WANG Y, COLAS G, FILLETER T. Improvements in the mechanical properties of carbon nanotube fibers through graphene oxide interlocking [J]. Carbon, 2016, 98: 291-9.
[69] QIU L, ZOU H, WANG X, et al. Au nanoparticle -boosted interfacial interaction enhances the electrical and thermal conductivities of carbon nanotube fibers [J]. Carbon, 2018.
[70] ANDREWS J B, MONDAL K, NEUMANN T V, et al. Patterned Liquid Metal Contacts for Printed Carbon Nanotube Transistors [J]. ACS Nano, 2018, 12(6): 5482-8.
[71] LUO S, LIU T, BENJAMIN S M, et al. Variable range hopping in single -wall carbon nanotube thin films: a processing–structure–property relationship study [J]. Langmuir, 2013, 29(27): 8694 -702.
[72] WANG D, FELDMAN D, PERKINS B, et al. Hopping conduction in disordered carbon nanotubes [J]. Solid state communications, 2007, 142(5): 287-91.
[73] DEWEY O, HEADRICK R, TAYLOR L, et al. Transport and photo -conduction in carbon nanotube fibers [J]. Applied Physics Letters, 2019, 115(2).
[74] GAO J, LOO Y L. Temperature ‐ Dependent Electrical Transport in Polymer ‐ Sorted Semiconducting Carbon Nanotube Networks [J]. Advanced Functional Materials, 2015, 25(1): 105 -10.
[75] ZARE Y, RHEE K Y. A simple methodology to predict the tunneling conductivity of polymer/CNT nanocomposites by the roles of tunneling distance, interphase and CNT waviness [J]. RSC advances, 2017, 7(55): 34912-21.
[76] ZHAN H, CHEN Y W, SHI Q Q, et al. Highly aligned and densified carbon nanotube films with superior thermal conductivity and mechanical strength [J]. Carbon, 2022, 186: 205-14.
[77] SALEEMI S, MANNAN H A, IDRIS A, et al. Synergistic effect of esterification and densification on structural modification of CNT yarn for efficient interfacial performance [J]. Chemical Papers, 2023, 77(1): 75 -87.
[78] KIM H, LEE J, PARK B, et al. Improving the tensile strength of carbon nanotube yarn via one -step double
[2+ 1] cycloadditions [J]. Korean Journal of Chemical Engineering, 2016, 33: 299 -304.
[79] PARK O-K, CHOI H, JEONG H, et al. High -modulus and strength carbon nanotube fibers using molecular cross-linking [J]. Carbon, 2017, 118: 413 -21.
[80] LEE J, LEE D M, JUNG Y, et al. Direct spinning and densification method for high-performance carbon nanotube fibers [J]. Nature Communications, 2019, 10(1): 2962.
[81] WU K, WANG B, NIU Y, et al. Carbon nanotube fibers with excellent mechanical and electrical properties by structural realigning and densification [J]. Nano Research, 2023, 16(11): 12762 -71.
[82] KOZIOL K, VILATELA J, MOISALA A, et al. High -performance carbon nanotube fiber [J]. Science, 2007, 318(5858): 1892 -5.
[83] CHOI Y, SEONG K D, PIAO Y. Metal-Organic Decomposition Ink for Printed Electronics [J]. Advanced Materials Interfaces, 2019, 6(20).
[84] XU W, WANG T. Synergetic effect of blended alkylamines for copper complex ink to form conductive copper films [J]. Langmuir, 2017, 33(1): 82-90.
[85] DONG Y, LI X, LIU S, et al. Facile synthesis of high silver content MOD ink by using silver oxalate precursor for inkjet printing applications [J]. Thin Solid Films, 2015, 589: 381-7.
[86] FELTEN A, BITTENCOURT C, COLOMER J F, et al. Nucleation of metal clusters on plasma treated multi wall carbon nanotubes [J]. Carbon, 2007, 45(1): 110-6.
[87] DRESSELHAUS M, DRESSELHAUS G, JORIO A. Raman spectroscopy of carbon nanotubes in 1997 and 2007 [J]. The Journal of Physical Chemistry C, 2007, 111(48): 17887-93.
[88] GRAUPNER R. Raman spectroscopy of covalently functionalized single -wall carbon nanotubes [J]. Journal of Raman Spectroscopy: An International Journal for Original Work in all Aspects of Raman Spectroscopy, Including Higher Order Processes, and also Brillouin and Rayleigh Scattering, 2007, 38(6): 673-83.
[89] GOPEE V, THOMAS O, HUNT C, et al. Carbon nanotube interconnects realized through functionalization and sintered silver attachment [J]. ACS applied materials & interfaces, 2016, 8(8): 5563 -70.
[90] BITTENCOURT C, NAVIO C, NICOLAY A, et al. Atomic Oxygen Functionalization of Vertically Aligned Carbon Nanotubes [J]. The Journal of Physical Chemistry C, 2011, 115(42): 20412 -8.
[91] GAO J, WU X, LI Q, et al. Template -Free Growth of Well-Ordered Silver Nano Forest/Ceramic Metamaterial Films with Tunable Optical Responses [J]. Advanced Materials, 2017, 29(16): 1605324.
[92] BAI X, LIAO S, HUANG Y, et al. Continuous draw spinning of extra -long silver submicron fibers with micrometer patterning capability [J]. Nano letters, 2017, 17(3): 1883-91.
[93] DEAR J W, POLL C G, LAI K T, et al. Solution -processable transparent conducting films by defunctionalization of amine functionalized carbon nanotubes [J]. Journal of Photonics for Energy, 2018, 8(3): 032221 -.
[94] CHEN Y, LIU B, HE X, et al. Failure analysis and the optimal toughness design of carbon nanotube -reinforced composites [J]. Composites Science and Technology, 2010, 70(9): 1360 -7.
[95] WU B, ZHANG J, WEI Z, et al. Chemical alignment of oxidatively shortened single -walled carbon nanotubes on silver surface [J]. The Journal of Physical Chemistry B, 2001, 105(22): 5075 -8.
[96] KALASHNYK N, FAULQUES E, SCHJøDT-THOMSEN J, et al. Strain sensing in single carbon fiber epoxy composites by simultaneous in -situ Raman and piezoresistance measurements [J]. Carbon, 2016, 109: 124 -30.
[97] LI Q, KANG Y L, QIU W, et al. Deformation mechanisms of carbon nanotube fibres under tensile loading by in situ Raman spectroscopy analysis [J]. Nanotechnology, 2011, 22(22): 225704.
[98] FERNáNDEZ-TORIBIO J C, MIKHALCHAN A, SANTOS C, et al. Understanding cooperative loading in carbon nanotube fibres through in -situ structural studies during stretching [J]. Carbon, 2020, 156: 430 -7.
[99] WU Z P, LI M M, HU Y Y, et al. Electromagnetic interference shielding of carbon nanotube macrofilms [J]. Scripta Materialia, 2011, 64(9): 809 -12.
[100] PANAHI-SARMAD M, SAMSAMI S, GHAFFARKHAH A, et al. MOFBased Electromagnetic Shields Multiscale Design: Nanoscale Chemistry, Microscale Assembly, and Macroscale Manufacturing [J]. Advanced Functional Materials, 2023: 2304473.
[101] ZHANG X, TIAN X-L, QIN Y, et al. Conductive Metal-Organic Frameworks with Tunable Dielectric Properties for Boosting Electromagnetic Wave Absorption [J]. ACS nano, 2023.
[102] KUMAR R, SAHOO S, JOANNI E, et al. Recent progress on carbon -based composite materials for microwave electromagnetic interference shielding [J]. Carbon, 2021, 177: 304-31.
[103] SUN Y, HAN X, GUO P, et al. Slippery Graphene -Bridging Liquid Metal Layered Heterostructure Nanocomposite for Stable High -Performance Electromagnetic Interference Shielding [J]. ACS Nano, 2023, 17(13): 12616-28.
[104] WU N, YANG Y, WANG C, et al. Ultrathin cellulose nanofiber assisted ambient‐pressure‐dried, ultralight, mechanically robust, multifunctional MXene aerogels [J]. Advanced Materials, 2023, 35(1): 2207969.
[105] HAMASAKI H, NAGAHAMA S, HIRAHARA K. Electrical conductivity of a single parallel contact between carbon nanotubes [J]. Nanoscale, 2022, 14(32): 11529-34.
[106] BEHABTU N, YOUNG C C, TSENTALOVICH D E, et al. Strong, light, multifunctional fibers of carbon nanotubes with ultrahigh conductivity [J]. science, 2013, 339(6116): 182-6.
[107] TRAN C-D, HUMPHRIES W, SMITH S M, et al. Improving the tensile strength of carbon nanotube spun yarns using a modified spinning process [J]. Carbon, 2009, 47(11): 2662 -70.
[108] LI S, PARK J G, LIANG Z, et al. In situ characterization of structural changes and the fraction of aligned carbon nanotube networks produced by stretching [J]. Carbon, 2012, 50(10): 3859 -67.
[109] DI J, WANG X, XING Y, et al. Dry‐Processable Carbon Nanotubes for Functional Devices and Composites [J]. Small, 2014, 10(22): 4606 -25.
[110] LI S, SHANG Y, ZHAO W, et al. Efficient purification of single -walled carbon nanotube fibers by instantaneous current injection and acid washing [J]. RSC advances, 2016, 6(100): 97865 -72.
[111] WU K, NIU Y, ZHANG Y, et al. Continuous growth of carbon nanotube films: From controllable synthesis to real applications [J]. Composites Part A: Applied Science and Manufacturing, 2021, 144: 106359.
[112] KHANBOLOUKI P, TEHRANI M. Purification, structural evolutions, and electrical properties of carbon nanotube yarns processed via incandescent annealing [J]. Carbon, 2020, 168: 710 -8.
[113] WANG S, LIU Q, LI M, et al. Property improvements of CNT films induced by wet-stretching and tension -heating post treatments [J]. Composites Part A: Applied Science and Manufacturing, 2017, 103: 106 -12.
[114] LEE J, LEE D M, KIM Y K, et al. Significantly Increased Solubility of Carbon Nanotubes in Superacid by Oxidation and Their Assembly into High -Performance Fibers [J]. Small, 2017, 13(38): 1701131.
[115] LEE J, LEE D-M, JUNG Y, et al. Direct spinning and densification method for high-performance carbon nanotube fibers [J]. Nature communications, 2019, 10(1): 2962.
[116] HAN Y, ZHANG X, YU X, et al. Bio -inspired aggregation control of carbon nanotubes for ultra -strong composites [J]. Scientific Reports, 2015, 5(1): 11533.
[117] LIU F, SHIRASU K, HASHIDA T. Epitaxial pyrolytic carbon coatings templated with defective carbon nanotube cores for structural annealing and tensile property improvement [J]. Journal of Materials Science, 2021, 56: 19015-28.
[118] WU K, ZHANG Y, YONG Z, et al. Continuous preparation and performance enhancement techniques of carbon nanotube fibers [J]. Acta Physi Chim Sin, 2021, 38(9): 2106034.
[119] JUNG Y, CHO Y S, LEE J W, et al. How can we make carbon nanotube yarn stronger? [J]. Composites Science and Technology, 2018, 166: 95 -108.
[120] ERICSON L M, FAN H, PENG H, et al. Macroscopic, neat, single -walled carbon nanotube fibers [J]. Science, 2004, 305(5689): 1447 -50.
[121] KIM S G, CHOI G M, JEONG H D, et al. Hierarchical structure control in solution spinning for strong and multifunctional carbon nanotube fibers [J]. Carbon, 2022, 196: 59-69.
[122] CONLEY K, KARTTUNEN A J. Bridging the junction: Electrical conductivity of carbon nanotube networks [J]. The Journal of Physical Chemistry C, 2022, 126(40): 17266 -74.
[123] PINT C L, XU Y-Q, MOROSAN E, et al. Alignment dependence of one -dimensional electronic hopping transport observed in films of highly aligned, ultralong single -walled carbon nanotubes [J]. Applied Physics Letters, 2009, 94(18).
[124] LI B, YANG Y, WU N, et al. Bicontinuous, High -Strength, and Multifunctional Chemical-Cross-Linked MXene/Superaligned Carbon Nanotube Film [J]. ACS Nano, 2022, 16(11): 19293 -304.ZACHARIAH S M, GROHENS Y, KALARIKKAL N, et al. Hybrid materials for electromagnetic shielding: A review [J]. Polymer Composites, 2022, 43(5): 2507 -44.

所在学位评定分委会
材料与化工
国内图书分类号
TB333
来源库
人工提交
成果类型学位论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/779105
专题中国科学院深圳理工大学(筹)联合培养
推荐引用方式
GB/T 7714
石钰莹. 基于碳纳米管薄膜的结构设计及其电磁屏蔽性能研究[D]. 深圳. 南方科技大学,2024.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
12233368-石钰莹-中国科学院深圳(6675KB)----限制开放--请求全文
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[石钰莹]的文章
百度学术
百度学术中相似的文章
[石钰莹]的文章
必应学术
必应学术中相似的文章
[石钰莹]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。