中文版 | English
题名

基于柔性传感的下肢外骨骼设计与控制策略研究

其他题名
RESEARCH ON LOWER LIMB EXOSKELETONDESIGN AND CONTROL STRATEGYBASEDON FLEXIBLE SENSING
姓名
姓名拼音
XIAO Yang
学号
12233330
学位类型
硕士
学位专业
0856 材料与化工
学科门类/专业学位类别
08 工学
导师
陈春杰
导师单位
中国科学院深圳先进技术研究院
论文答辩日期
2024-05-20
论文提交日期
2024-07-11
学位授予单位
南方科技大学
学位授予地点
深圳
摘要

本文主要设计了一种电阻式柔性拉伸传感器,提出一种基于该传感器进行步态划分的神经肌肉-机械的多模融合模式识别方法,以及基于该传感器控制的柔性下肢外骨骼。传统下肢外骨骼的刚性传感器存在人机耦合不足和生物相容性过低等问题,因此引入柔性传感技术成为创新解决方案,柔性传感器能够以柔软、灵活的方式嵌入外骨骼结构,实现对用户姿态实时感知,提供更准确、自然的外骨骼控制,增强用户与外骨骼之间的相容性和适应性。本文详细介绍了一种电阻式柔性拉伸传感器的设计原理、材料选择、制作过程和基本性能,并展示了其在测量下肢关节角度中的应用,平均角度误差在2°左右,相对误差不到4%。此外,提出了一种基于该柔性传感器步态划分的神经肌肉-机械融合算法,应用于识别运动模式和任务,通过融合肌肉电信号和加速度信号,获得更准确和可靠的识别结果,在使用SVM分类算法、窗口长度为170、增量为20时对R/W/A特征集进行运动模式和速度估计,识别准确率最高,所有任务的识别率从97.4%99.9%不等。最后,文章进行了基于该电阻式柔性拉伸传感器的下肢外骨骼的研究,展示了该传感器测量髋关节角度并对外骨骼实施控制的能力,肌肉电信号疲劳度实验显示出在穿戴基于该传感器控制的柔性外骨骼时肌肉的疲劳度能得到很好的降低,验证了该电阻式柔性拉伸传感器实际应用的可行性。

关键词
语种
中文
培养类别
独立培养
入学年份
2022
学位授予年份
2024-07
参考文献列表

[1]王陇德, 彭斌, 张鸿祺, 等. 《中国脑卒中防治报告2020》概要[J]. 中国脑血管病杂志, 2022, 19(02): 136-144.
[2]Deng W, Papavasileiou I, Qiao Z, et al. Advances in automation technologies for lower extremity neurorehabilitation: A review and future challenges[J]. IEEE reviews in biomedical engineering, 2018, 11: 289-305.
[3]Slade P, Kochenderfer M J, Delp S L, et al. Personalizing exoskeleton assistance while walking in the real world[J]. Nature, 2022, 610(7931): 277-282.
[4]Siviy C, Baker L M, Quinlivan B T, et al. Opportunities and challenges in the development of exoskeletons for locomotor assistance[J]. Nature Biomedical Engineering, 2023, 7(4): 456-472.
[5]Sado F, Yap H J, Ghazilla R A R, et al. Design and control of a wearable lower-body exoskeleton for squatting and walking assistance in manual handling works[J]. Mechatronics, 2019, 63: 102272.
[6]Xiao X, Yin J, Shen S, et al. Advances in solid-state fiber batteries for wearable bioelectronics[J]. Current Opinion in Solid State and Materials Science, 2022, 26(6): 101042.
[7]董理权, 吴小高, 任伟华, 等. 我国落实世卫组织《增进获得辅助技术决议》的基础与路径[J]. 残疾人研究, 2019(2):5.
[8]Siviy C, Bae J, Baker L, et al. Offline assistance optimization of a soft exosuit for augmenting ankle power of stroke survivors during walking[J]. IEEE Robotics and Automation Letters, 2020, 5(2):828-835.
[9]Bützer T, Lambercy O, Arata J, et al. Fully wearable actuated soft exoskeleton for grasping assistance in everyday activities[J]. Soft Robotics, 2020, 8(2).
[10]Ning L, Tie Y, Peng Y, et al. Bio-inspired upper limb soft exoskeleton to reduce stroke-induced complications[J]. Bioinspiration & Biomimetics, 2018.
[11]Rognon C, Mintchev S, Dell’Agnola F, et al. Flyjacket: An upper body soft exoskeleton for immersive drone control[J]. IEEE Robotics and Automation Letters, 2018, 3(3): 2362-2369.
[12]Awad L N, Bae J, O’donnell K, et al. A soft robotic exosuit improves walking in patients after stroke[J]. Science translational medicine, 2017, 9(400).
[13]高久伟, 卢乾波, 郑璐, 等. 柔性生物电传感技术[J]. 材料导报, 2020, 034(001):95-106.
[14]Di C, Zhang F, Zhu D. Multi‐functional integration of organic field‐effect transistors (OFETs): advances and perspectives[J]. Advanced Materials, 2013, 25(3): 313-330.
[15]Schwartz G, Tee B C K, Mei J, et al. Flexible polymer transistors with high pressure sensitivity for application in electronic skin and health monitoring[J]. Nature communications, 2013, 4: 1859.
[16]王燕芳. 基于下肢外骨骼机器人的多传感器数据融合研究[D]. 华南理工大学, 2017.
[17]Mosher R S. Handyman to hardiman[J]. Sae Transactions, 1968:588-597.
[18]Chou L S , Kaufman K R, Brey R H, et al. Motion of the whole body’s center of mass when stepping over obstacles of different heights[J]. Gait & posture, 2001, 13(1):17- 26.
[19]Finley F R, Karpovich P V. Electrogoninmetric analysis of normal and pathological gaits[J]. Research quarterly, 1964, 35: SUPPL:379
[20]Yun X, Bachmann E R. Design, implementation, and experimental results of a quaternion-based Kalman filter for human body motion tracking[J]. IEEE transactions on Robotics, 2006, 22(6): 1216-1227.
[21]Tao Y, Hu H, Zhou H. Integration of vision and inertial sensors for 3D arm motion tracking in home-based rehabilitation[J]. The International Journal of Robotics Research, 2007, 26(6): 607-624.
[22]黄经纬. 生物信号采集与分析系统的设计与实现[D]. 上海工程技术大学, 2021.
[23]Madias J E. A comparison of 2-lead, 6-lead, and 12-lead ECGs in patients with changing edematous states: implications for the employment of quantitative electrocardiography in research and clinical applications[J]. Chest, 2003, 124(6): 2057-2063.
[24]Kim J, Lee G, Heimgartner R, et al. Reducing the metabolic rate of walking and running with a versatile, portable exosuit[J]. Science, 2019, 365(6454):668-672.
[25]Schmidt K, Duarte J E, Grimmer M, et al. The Myosuit: Bi-Articular Anti-gravity Exosuit that Reduces Hip Extensor Activity in Sitting Transfers[J]. Frontiers in neurorobotics, 2017.
[26]Chen C J, Zhang Y, Li Y, et al. Iterative learning control for a soft exoskeleton with hip and knee joint assistance[J]. Sensors, 2020, 20(15): 4333.
[27]Ma L, Leng Y, Jiang W, et al. Design an underactuated soft exoskeleton to sequentially provide knee extension and ankle plantarflexion assistance[J]. IEEE Robotics and Automation Letters, 2021, 7(1): 271-278.
[28]Asbeck A T, De Rossi S M M, Galiana I, et al. Stronger, smarter, softer: next-generation wearable robots[J]. IEEE Robotics & Automation Magazine, 2014, 21(4): 22-33.
[29]Gao L, Zhu C, Li L, et al. All paper-based flexible and wearable piezoresistive pressure sensor[J]. ACS applied materials & interfaces, 2019, 11(28): 25034-25042.
[30]Marchiori B, Regal S, Arango Y, et al. PVDF-TrFE-based stretchable contact and non-contact temperature sensor for E-skin application[J]. Sensors, 2020, 20(3): 623.
[31]Tay R Y, Li H, Lin J, et al. Lightweight, superelastic boron nitride/ polydimethylsiloxane foam as air dielectric substitute for multifunctional capacitive sensor applications[J]. Advanced Functional Materials, 2020, 30(10): 1909604.
[32]CAO M, SU J, FAN S, et al. Wearable piezoresistive pressure sensors based on 3D graphene[J]. Chemical Engineering Journal, 2021(406):126777.
[33]潘晓君, 鲍容容, 潘曹峰. 可穿戴柔性触觉传感器的研究进展[J]. 高等学校化学学报, 2021, 42(8): 2359-2373.
[34]MENG K, XIAO X, WEI W, et al. Wearable pressure sensors for pulse wave monitoring[J]. Advanced Materials, 2022, 34(21):2109357.
[35]HWANG J, KIM Y, YANG H, et al. Fabrication of hierarchically porous structured PDMS composites and their application as a flexible capacitive pressure sensor[J]. Composites Part B:Engineering, 2021(211):108607.
[36]BAI N, WANG L, WANG Q, et al. Graded intrafillable architecture-based iontronic pressure sensor with ultra-broad-range high sensitivity[J]. Nature Communications, 2020(1):209.
[37]BOUTRY C M, KAIZAWA Y, SCHROEDER B C, et al. A stretchable and biodegradable strain and pressure sensor for orthopaedic application[J]. Nature Electronics, 2018(1):314- 321.
[38]YANG Y, PAN H, XIE G, et al. Flexible piezoelectric pressure sensor based on polydopamine-modified BaTiO3/PVDF composite film for human motion monitoring[J]. Sensors and Actuators A:Physical, 2020(301):111789.
[39]CHEN Z, WANG Z, LI X, et al. Flexible piezoelectric-induced pressure sensors for static measurements based on nanowires/graphene heterostructures[J]. Acs Nano, 2017, 11(5):4507- 4513.
[40]ZHU G, YANG W Q, ZHANG T, et al. Self-powered, ultrasensitive, flexible tactile sensors based on contact electrification[J]. Nano Letters, 2014, 14(6):3208- 3213.
[41]JIA J, HUANG G, DENG J, et al. Skin-inspired flexible and high-sensitivity pressure sensors based on rGO films with continuous-gradient wrinkles[J]. Nanoscale, 2019, 11(10):4258- 4266.
[42]CHENG Y, MA Y, LI L, et al. Bioinspired microspines for a high-performance spray Ti3C2Tx MXene-based piezoresistive sensor[J]. Acs Nano, 2020, 14(2):2145- 2155.
[43]PAN L, CHORTOS A, YU G, et al. An ultra-sensitive resistive pressure sensor based on hollow-sphere microstructure induced elasticity in conducting polymer film[J]. Nature Communications, 2014(5):3002.
[44]王曳舟. 可拉伸液态金属天线与RFID标签设计[D]. 华中科技大学, 2016.
[45]Kubo M, Li X, Kim C, et al. Stretchable Microfluidic Radiofrequency Antennas[J]. Advanced Materials, 2010, 22(25): 2749-52.
[46]Rogers J A, Someya T, Huang Y. Materials and Mechanics for Stretchable Electronic[J]. Science, 2010, 327(5973): 1603.
[47]秦琴, 刘宜伟, 王永刚, 等. 基于液态金属的柔性导线的制备方法研究进展[J]. 电子元件与材料, 2017, 36(04): 1-8.
[48]Choi W M, Song J, Khang D Y, et al. Biaxially stretchable “wavy” silicon nanomembranes[J]. Nano Letters, 2007, 7(6): 1655-1663.
[49]Kim D H, Song J, Choi W M, et al. Materials and noncoplanar mesh designs for integrated circuits with linear elastic responses to extreme mechanical deformations[J]. Proceedings of the National Academy of Sciences, 2008, 105(48): 18675-18680.
[50]王东周, 李光, 江建明. 导电高分子研究概述[J]. 合成技术及应用, 2001(03): 36-39.
[51]Muth J T, Vogt D M, Truby R L, et al. Embedded 3D printing of strain sensors within highly stretchable elastomers[J]. Advanced Materials, 2014, 26(36): 6307- 6312.
[52]单静. 无颗粒型铜导电墨水的制备及成膜研究[D]. 天津大学, 2013.
[53]Zhu S, So J H, Mays R, et al. Ultrastretchable fibers with metallic conductivity using a liquid metal alloy core[J]. Advanced Functional Materials, 2013, 23(18): 2308-2314
[54]杨露叶. 用于人体下肢运动测量的柔性传感器研究[D]. 华中科技大学, 2021.
[55]Parri A, Yuan K, Marconi D, et al. Real-time hybrid locomotion mode recognition for lower limb wearable robots[J]. IEEE/ASME Transactions on Mechatronics, 2017, 22(6): 2480-2491.
[56]Kyeong S, Shin W, Yang M, et al. Recognition of walking environments and gait period by surface electromyography[J]. Frontiers of Information Technology & Electronic Engineering, 2019, 20(3): 342-352.
[57]Kyeong S, Feng J, Ryu J K, et al. Surface electromyography characteristics for motion intention recognition and implementation issues in lower-limb exoskeletons[J]. International Journal of Control, Automation and Systems, 2022, 20(3): 1018-1028.
[58]Young A J, Kuiken T A, Hargrove L J. Analysis of using EMG and mechanical sensors to enhance intent recognition in powered lower limb prostheses[J]. Journal of neural engineering, 2014, 11(5): 056021.
[59]Zhang K, Zhang W, Xiao W, et al. Sequential decision fusion for environmental classification in assistive walking[J]. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2019, 27(9): 1780-1790.
[60]Zhong B, Da Silva R L, Li M, et al. Environmental context prediction for lower limb prostheses with uncertainty quantification[J]. IEEE Transactions on Automation Science and Engineering, 2020, 18(2): 458-470.
[61]Li M, Zhong B, Lobaton E, et al. Fusion of human gaze and machine vision for predicting intended locomotion mode[J]. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2022, 30: 1103-1112.
[62]Farris D J, Sawicki G S. Human medial gastrocnemius force–velocity behavior shifts with locomotion speed and gait[J]. Proceedings of the National Academy of Sciences, 2012, 109(3): 977-982.
[63]Fukuchi R K, Fukuchi C A, Duarte M. A public dataset of running biomechanics and the effects of running speed on lower extremity kinematics and kinetics[J]. PeerJ, 2017, 5: e3298.
[64]Witte T H, Wilson A M. Accuracy of non-differential GPS for the determination of speed over ground[J]. Journal of biomechanics, 2004, 37(12): 1891-1898.
[65]Demur T, Demura S. Relationship among gait parameters while walking with varying loads[J]. Journal of physiological anthropology, 2010, 29(1): 29-34.
[66]Attwells R L, Birrell S A, Hooper R H, et al. Influence of carrying heavy loads on soldiers' posture, movements and gait[J]. Ergonomics, 2006, 49(14): 1527-1537.
[67]Walsh G S, Low D C. Military load carriage effects on the gait of military personnel: A systematic review[J]. Applied ergonomics, 2021, 93: 103376.
[68]Boffey D, Harat I, Gepner Y, et al. The physiology and biomechanics of load carriage performance[J]. Military medicine, 2019, 184(1-2): e83-e90.
[69]Hermens H J, Freriks B, Disselhorst-Klug C, et al. Development of recommendations for SEMG sensors and sensor placement procedures[J]. Journal of electromyography and Kinesiology, 2000, 10(5): 361-374.
[70]Vapnik V. The nature of statistical learning theory Springer[J]. New York, 1995, 10: 978-1.
[71]Cover T, Hart P. Nearest neighbor pattern classification[J]. IEEE transactions on information theory, 1967, 13(1): 21-27.
[72]Hastie T, Tibshirani R, Friedman J H, et al. The elements of statistical learning: data mining, inference, and prediction[M]. New York: springer, 2009.
[73]Loh W Y. Classification and regression trees[J]. Wiley interdisciplinary reviews: data mining and knowledge discovery, 2011, 1(1): 14-23.
[74]陈灵星. 面向柔性外骨骼的自然人机交互技术与方法[D]. 中国科学院大学, 2022.
[75]Wang Z, Wu X Y, Zhang Y, et al. A semi-active exoskeleton based on EMGs reduces muscle fatigue when squatting[J]. Frontiers in Neurorobotics, 2021, 15: 625479.

所在学位评定分委会
材料与化工
国内图书分类号
TP212
来源库
人工提交
成果类型学位论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/779118
专题中国科学院深圳理工大学(筹)联合培养
推荐引用方式
GB/T 7714
肖杨. 基于柔性传感的下肢外骨骼设计与控制策略研究[D]. 深圳. 南方科技大学,2024.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
12233330-肖杨-中国科学院深圳理(4050KB)----限制开放--请求全文
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[肖杨]的文章
百度学术
百度学术中相似的文章
[肖杨]的文章
必应学术
必应学术中相似的文章
[肖杨]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。