[1]王陇德, 彭斌, 张鸿祺, 等. 《中国脑卒中防治报告2020》概要[J]. 中国脑血管病杂志, 2022, 19(02): 136-144.
[2]Deng W, Papavasileiou I, Qiao Z, et al. Advances in automation technologies for lower extremity neurorehabilitation: A review and future challenges[J]. IEEE reviews in biomedical engineering, 2018, 11: 289-305.
[3]Slade P, Kochenderfer M J, Delp S L, et al. Personalizing exoskeleton assistance while walking in the real world[J]. Nature, 2022, 610(7931): 277-282.
[4]Siviy C, Baker L M, Quinlivan B T, et al. Opportunities and challenges in the development of exoskeletons for locomotor assistance[J]. Nature Biomedical Engineering, 2023, 7(4): 456-472.
[5]Sado F, Yap H J, Ghazilla R A R, et al. Design and control of a wearable lower-body exoskeleton for squatting and walking assistance in manual handling works[J]. Mechatronics, 2019, 63: 102272.
[6]Xiao X, Yin J, Shen S, et al. Advances in solid-state fiber batteries for wearable bioelectronics[J]. Current Opinion in Solid State and Materials Science, 2022, 26(6): 101042.
[7]董理权, 吴小高, 任伟华, 等. 我国落实世卫组织《增进获得辅助技术决议》的基础与路径[J]. 残疾人研究, 2019(2):5.
[8]Siviy C, Bae J, Baker L, et al. Offline assistance optimization of a soft exosuit for augmenting ankle power of stroke survivors during walking[J]. IEEE Robotics and Automation Letters, 2020, 5(2):828-835.
[9]Bützer T, Lambercy O, Arata J, et al. Fully wearable actuated soft exoskeleton for grasping assistance in everyday activities[J]. Soft Robotics, 2020, 8(2).
[10]Ning L, Tie Y, Peng Y, et al. Bio-inspired upper limb soft exoskeleton to reduce stroke-induced complications[J]. Bioinspiration & Biomimetics, 2018.
[11]Rognon C, Mintchev S, Dell’Agnola F, et al. Flyjacket: An upper body soft exoskeleton for immersive drone control[J]. IEEE Robotics and Automation Letters, 2018, 3(3): 2362-2369.
[12]Awad L N, Bae J, O’donnell K, et al. A soft robotic exosuit improves walking in patients after stroke[J]. Science translational medicine, 2017, 9(400).
[13]高久伟, 卢乾波, 郑璐, 等. 柔性生物电传感技术[J]. 材料导报, 2020, 034(001):95-106.
[14]Di C, Zhang F, Zhu D. Multi‐functional integration of organic field‐effect transistors (OFETs): advances and perspectives[J]. Advanced Materials, 2013, 25(3): 313-330.
[15]Schwartz G, Tee B C K, Mei J, et al. Flexible polymer transistors with high pressure sensitivity for application in electronic skin and health monitoring[J]. Nature communications, 2013, 4: 1859.
[16]王燕芳. 基于下肢外骨骼机器人的多传感器数据融合研究[D]. 华南理工大学, 2017.
[17]Mosher R S. Handyman to hardiman[J]. Sae Transactions, 1968:588-597.
[18]Chou L S , Kaufman K R, Brey R H, et al. Motion of the whole body’s center of mass when stepping over obstacles of different heights[J]. Gait & posture, 2001, 13(1):17- 26.
[19]Finley F R, Karpovich P V. Electrogoninmetric analysis of normal and pathological gaits[J]. Research quarterly, 1964, 35: SUPPL:379
[20]Yun X, Bachmann E R. Design, implementation, and experimental results of a quaternion-based Kalman filter for human body motion tracking[J]. IEEE transactions on Robotics, 2006, 22(6): 1216-1227.
[21]Tao Y, Hu H, Zhou H. Integration of vision and inertial sensors for 3D arm motion tracking in home-based rehabilitation[J]. The International Journal of Robotics Research, 2007, 26(6): 607-624.
[22]黄经纬. 生物信号采集与分析系统的设计与实现[D]. 上海工程技术大学, 2021.
[23]Madias J E. A comparison of 2-lead, 6-lead, and 12-lead ECGs in patients with changing edematous states: implications for the employment of quantitative electrocardiography in research and clinical applications[J]. Chest, 2003, 124(6): 2057-2063.
[24]Kim J, Lee G, Heimgartner R, et al. Reducing the metabolic rate of walking and running with a versatile, portable exosuit[J]. Science, 2019, 365(6454):668-672.
[25]Schmidt K, Duarte J E, Grimmer M, et al. The Myosuit: Bi-Articular Anti-gravity Exosuit that Reduces Hip Extensor Activity in Sitting Transfers[J]. Frontiers in neurorobotics, 2017.
[26]Chen C J, Zhang Y, Li Y, et al. Iterative learning control for a soft exoskeleton with hip and knee joint assistance[J]. Sensors, 2020, 20(15): 4333.
[27]Ma L, Leng Y, Jiang W, et al. Design an underactuated soft exoskeleton to sequentially provide knee extension and ankle plantarflexion assistance[J]. IEEE Robotics and Automation Letters, 2021, 7(1): 271-278.
[28]Asbeck A T, De Rossi S M M, Galiana I, et al. Stronger, smarter, softer: next-generation wearable robots[J]. IEEE Robotics & Automation Magazine, 2014, 21(4): 22-33.
[29]Gao L, Zhu C, Li L, et al. All paper-based flexible and wearable piezoresistive pressure sensor[J]. ACS applied materials & interfaces, 2019, 11(28): 25034-25042.
[30]Marchiori B, Regal S, Arango Y, et al. PVDF-TrFE-based stretchable contact and non-contact temperature sensor for E-skin application[J]. Sensors, 2020, 20(3): 623.
[31]Tay R Y, Li H, Lin J, et al. Lightweight, superelastic boron nitride/ polydimethylsiloxane foam as air dielectric substitute for multifunctional capacitive sensor applications[J]. Advanced Functional Materials, 2020, 30(10): 1909604.
[32]CAO M, SU J, FAN S, et al. Wearable piezoresistive pressure sensors based on 3D graphene[J]. Chemical Engineering Journal, 2021(406):126777.
[33]潘晓君, 鲍容容, 潘曹峰. 可穿戴柔性触觉传感器的研究进展[J]. 高等学校化学学报, 2021, 42(8): 2359-2373.
[34]MENG K, XIAO X, WEI W, et al. Wearable pressure sensors for pulse wave monitoring[J]. Advanced Materials, 2022, 34(21):2109357.
[35]HWANG J, KIM Y, YANG H, et al. Fabrication of hierarchically porous structured PDMS composites and their application as a flexible capacitive pressure sensor[J]. Composites Part B:Engineering, 2021(211):108607.
[36]BAI N, WANG L, WANG Q, et al. Graded intrafillable architecture-based iontronic pressure sensor with ultra-broad-range high sensitivity[J]. Nature Communications, 2020(1):209.
[37]BOUTRY C M, KAIZAWA Y, SCHROEDER B C, et al. A stretchable and biodegradable strain and pressure sensor for orthopaedic application[J]. Nature Electronics, 2018(1):314- 321.
[38]YANG Y, PAN H, XIE G, et al. Flexible piezoelectric pressure sensor based on polydopamine-modified BaTiO3/PVDF composite film for human motion monitoring[J]. Sensors and Actuators A:Physical, 2020(301):111789.
[39]CHEN Z, WANG Z, LI X, et al. Flexible piezoelectric-induced pressure sensors for static measurements based on nanowires/graphene heterostructures[J]. Acs Nano, 2017, 11(5):4507- 4513.
[40]ZHU G, YANG W Q, ZHANG T, et al. Self-powered, ultrasensitive, flexible tactile sensors based on contact electrification[J]. Nano Letters, 2014, 14(6):3208- 3213.
[41]JIA J, HUANG G, DENG J, et al. Skin-inspired flexible and high-sensitivity pressure sensors based on rGO films with continuous-gradient wrinkles[J]. Nanoscale, 2019, 11(10):4258- 4266.
[42]CHENG Y, MA Y, LI L, et al. Bioinspired microspines for a high-performance spray Ti3C2Tx MXene-based piezoresistive sensor[J]. Acs Nano, 2020, 14(2):2145- 2155.
[43]PAN L, CHORTOS A, YU G, et al. An ultra-sensitive resistive pressure sensor based on hollow-sphere microstructure induced elasticity in conducting polymer film[J]. Nature Communications, 2014(5):3002.
[44]王曳舟. 可拉伸液态金属天线与RFID标签设计[D]. 华中科技大学, 2016.
[45]Kubo M, Li X, Kim C, et al. Stretchable Microfluidic Radiofrequency Antennas[J]. Advanced Materials, 2010, 22(25): 2749-52.
[46]Rogers J A, Someya T, Huang Y. Materials and Mechanics for Stretchable Electronic[J]. Science, 2010, 327(5973): 1603.
[47]秦琴, 刘宜伟, 王永刚, 等. 基于液态金属的柔性导线的制备方法研究进展[J]. 电子元件与材料, 2017, 36(04): 1-8.
[48]Choi W M, Song J, Khang D Y, et al. Biaxially stretchable “wavy” silicon nanomembranes[J]. Nano Letters, 2007, 7(6): 1655-1663.
[49]Kim D H, Song J, Choi W M, et al. Materials and noncoplanar mesh designs for integrated circuits with linear elastic responses to extreme mechanical deformations[J]. Proceedings of the National Academy of Sciences, 2008, 105(48): 18675-18680.
[50]王东周, 李光, 江建明. 导电高分子研究概述[J]. 合成技术及应用, 2001(03): 36-39.
[51]Muth J T, Vogt D M, Truby R L, et al. Embedded 3D printing of strain sensors within highly stretchable elastomers[J]. Advanced Materials, 2014, 26(36): 6307- 6312.
[52]单静. 无颗粒型铜导电墨水的制备及成膜研究[D]. 天津大学, 2013.
[53]Zhu S, So J H, Mays R, et al. Ultrastretchable fibers with metallic conductivity using a liquid metal alloy core[J]. Advanced Functional Materials, 2013, 23(18): 2308-2314
[54]杨露叶. 用于人体下肢运动测量的柔性传感器研究[D]. 华中科技大学, 2021.
[55]Parri A, Yuan K, Marconi D, et al. Real-time hybrid locomotion mode recognition for lower limb wearable robots[J]. IEEE/ASME Transactions on Mechatronics, 2017, 22(6): 2480-2491.
[56]Kyeong S, Shin W, Yang M, et al. Recognition of walking environments and gait period by surface electromyography[J]. Frontiers of Information Technology & Electronic Engineering, 2019, 20(3): 342-352.
[57]Kyeong S, Feng J, Ryu J K, et al. Surface electromyography characteristics for motion intention recognition and implementation issues in lower-limb exoskeletons[J]. International Journal of Control, Automation and Systems, 2022, 20(3): 1018-1028.
[58]Young A J, Kuiken T A, Hargrove L J. Analysis of using EMG and mechanical sensors to enhance intent recognition in powered lower limb prostheses[J]. Journal of neural engineering, 2014, 11(5): 056021.
[59]Zhang K, Zhang W, Xiao W, et al. Sequential decision fusion for environmental classification in assistive walking[J]. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2019, 27(9): 1780-1790.
[60]Zhong B, Da Silva R L, Li M, et al. Environmental context prediction for lower limb prostheses with uncertainty quantification[J]. IEEE Transactions on Automation Science and Engineering, 2020, 18(2): 458-470.
[61]Li M, Zhong B, Lobaton E, et al. Fusion of human gaze and machine vision for predicting intended locomotion mode[J]. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2022, 30: 1103-1112.
[62]Farris D J, Sawicki G S. Human medial gastrocnemius force–velocity behavior shifts with locomotion speed and gait[J]. Proceedings of the National Academy of Sciences, 2012, 109(3): 977-982.
[63]Fukuchi R K, Fukuchi C A, Duarte M. A public dataset of running biomechanics and the effects of running speed on lower extremity kinematics and kinetics[J]. PeerJ, 2017, 5: e3298.
[64]Witte T H, Wilson A M. Accuracy of non-differential GPS for the determination of speed over ground[J]. Journal of biomechanics, 2004, 37(12): 1891-1898.
[65]Demur T, Demura S. Relationship among gait parameters while walking with varying loads[J]. Journal of physiological anthropology, 2010, 29(1): 29-34.
[66]Attwells R L, Birrell S A, Hooper R H, et al. Influence of carrying heavy loads on soldiers' posture, movements and gait[J]. Ergonomics, 2006, 49(14): 1527-1537.
[67]Walsh G S, Low D C. Military load carriage effects on the gait of military personnel: A systematic review[J]. Applied ergonomics, 2021, 93: 103376.
[68]Boffey D, Harat I, Gepner Y, et al. The physiology and biomechanics of load carriage performance[J]. Military medicine, 2019, 184(1-2): e83-e90.
[69]Hermens H J, Freriks B, Disselhorst-Klug C, et al. Development of recommendations for SEMG sensors and sensor placement procedures[J]. Journal of electromyography and Kinesiology, 2000, 10(5): 361-374.
[70]Vapnik V. The nature of statistical learning theory Springer[J]. New York, 1995, 10: 978-1.
[71]Cover T, Hart P. Nearest neighbor pattern classification[J]. IEEE transactions on information theory, 1967, 13(1): 21-27.
[72]Hastie T, Tibshirani R, Friedman J H, et al. The elements of statistical learning: data mining, inference, and prediction[M]. New York: springer, 2009.
[73]Loh W Y. Classification and regression trees[J]. Wiley interdisciplinary reviews: data mining and knowledge discovery, 2011, 1(1): 14-23.
[74]陈灵星. 面向柔性外骨骼的自然人机交互技术与方法[D]. 中国科学院大学, 2022.
[75]Wang Z, Wu X Y, Zhang Y, et al. A semi-active exoskeleton based on EMGs reduces muscle fatigue when squatting[J]. Frontiers in Neurorobotics, 2021, 15: 625479.
修改评论