中文版 | English
题名

葡萄糖作为磁共振探针材料及其代谢成像研究

其他题名
GLUCOSE AS A MAGNETIC RESONANCE PROBE MATERIAL AND ITS METABOLIC IMAGING STUDIES
姓名
姓名拼音
MA Yuxuan
学号
12233287
学位类型
硕士
学位专业
0856 材料与化工
学科门类/专业学位类别
08 工学
导师
周洋
导师单位
中国科学院深圳先进技术研究院
论文答辩日期
2024-05-07
论文提交日期
2024-07-03
学位授予单位
南方科技大学
学位授予地点
深圳
摘要

葡萄糖作为一种重要的单糖,不仅在人体能量的供应中发挥着至关重
要的作用,而且也是维持机体正常生理功能的必需物质。在一系列复杂的
生化过程中,葡萄糖可被转化为糖原储存在肝脏和肌肉中。将葡萄糖、糖
原作为探针应用于医学成像技术具有巨大的潜力。对葡萄糖、糖原进行成
像可以揭示其分布和代谢动态,以及在病理状态下的异常积累,为疾病诊
断和治疗提供了关键的生物标志物信息。现有的葡萄糖及糖原成像方法包
括正电子发射断层成像、光学成像、磁共振成像, 这些技术能够以非侵入
性的方式提供有关葡萄糖和糖原代谢状态的信息,然而这些方法具有各自
的局限性,多数方法难以在人体上应用。
本文发展了一种基于中继核奥式效应(rNOE)的人体糖原磁共振成像
方法(glycoNOE),应用于人体肌糖原代谢成像研究。首先通过体外实验,
分析并建立了glycoNOE 信号与糖原浓度的定量关系,接着在33 名健康受
试者的小腿上进行了glycoNOE 的验证,得到肌糖原浓度为92±5mM,符
合预期。此外,为了探究葡萄糖对人小腿运动后糖原消耗及补充的影响,
本研究在23 名空腹受试者进行规定方案运动前后人体肌糖原的变化情况,
并选择其中五名受试者在运动后摄入葡萄糖饮品。结果表明,高强度运动
的肌肉产生了三种类型的糖原消耗补充情况,且摄入葡萄糖可以促进这一
过程。本文的研究结果对于高灵敏度无创检测人体糖原提供了新角度,并
提供了潜在的优化运动表现方法。

关键词
语种
中文
培养类别
独立培养
入学年份
2022
学位授予年份
2024-07
参考文献列表

[1] GIUGLIANO D, CERIELLO A, ESPOSITO K. Glucose metabol ism andhyperglycemia[J] . The Amer ican Journal of Cl inical Nut r i t ion, 2008, 87(1) :217S-222S.
[2] HAY N. Reprogramming glucose metabol i sm in cancer : can i t be exploi tedfor cancer therapy? 10[J] . Nature Reviews Cancer, 2016, 16(10) : 635 –649.
[3] MUÑOZ-PINEDO C, EL MJIYAD N, RICCI J -E. Cancer metabol ism: cur rentperspect ives and future di rect ions: 1[J] . Cel l Death & Di sease, 2012, 3(1) :e248–e248.
[4] BOROUGHS L K, DEBERARDINIS R J. Metabol ic pathways promot ingcancer cel l survival and growth: 4[J] . Nature Cel l Biology, 2015, 17(4) :351–359.
[5] Anonymous. Hal lmarks of cancer : the next generat ion[J] . Cel l , 2011, 144(5) :646–674.
[6] Anonymous. Metabol ic exchanges wi thin tumor microenvi ronment [J] . CancerLet ters, 2016, 380(1) : 272–280.
[7] K O P P E N O L W H, B O U N D S P L , D A N G C V. O t t o wa r b u rg ’s c o n t r i b u t i o n s t ocur rent concept s of cancer metabol ism: 5[J] . Nature Reviews Cancer, 2011,11(5) : 325–337.
[8] WARBURG O. On the or igin of cancer cel l s[J] . Science, 1956, 123(3191) :309–314.
[9] WARBURG O, WIND F, NEGELEIN E. THE metabol i sm of tumors in thebody[J] . The Journal of General Physiology, 1927, 8(6) : 519 –530.
[10] GROUP T D research. Diabetes cont rol and compl icat ions t r ial (dcct ) :resul t s of feasibi l i ty study. the dcct research group[J] . Diabetes Care, 1987,10(1) : 1–19.
[11] ROSENSTOCK J, RASKIN P. Diabetes and i ts compl icat ions: blood glucosecont rol vs. genet ic suscept ibi l i ty[J] . Diabetes/Metabol ism Reviews, 1988,4(5) : 417–435.
[12] RASKIN P, PIETRI A O, UNGER R, et al . The effect of diabet ic cont rol onthe width of skeletal -muscle capi l lary basement membrane in pat ient s wi thtype i diabetes mel l i tus[J] . New England Journal of Medicine, 1983, 309(25) :1546–1550.
[13] ESCHWEGE E, RICHARD J L, THIBULT N, et al . Coronary hear t di seasemor tal i ty in relat ion wi th diabetes, blood glucose and plasma insul in levels.the par i s prospect ive study, ten years later [J] . Hormone and metabol icresearch Supplement Ser ies, 1985, 15: 41 –46.
[14] FLIER J S, UNDERHILL L H, BROWNLEE M, et al . Advanced glycosylat ionend product s in t i ssue and the biochemical basi s of diabet ic compl icat ions[J] .New England Journal of Medicine, 1988, 318(20) : 1315 –1321.
[15] PEARSON-STUTTARD J, BLUNDELL S, HARRIS T, et al . Diabetes andinfect ion: assessing the associat ion wi th glycaemic cont rol in populat ion -based studies[J] . The Lancet Diabetes & Endocr inology, 2016, 4(2) : 148 –158.
[16] LORENZI M, MONTISANO D F, TOLEDO S, et al . High glucose inducesdna damage in cul tured human endothel ial cel l s. [J] . The Journal of Cl inicalInvest igat ion, 1986, 77(1) : 322 –325.
[17] Anonymous. Glucose toxici ty[J] . [no date] . .
[18] SIEBER F E, SMITH D S, TRAYSTMAN R J, et al . Glucose: a reevaluat ionof i t s int raoperat ive use[J] . Anesthesiology, 1987, 67(1) : 72 –81.
[19] ZIMMET P Z, MAGLIANO D J, HERMAN W H, et al . Diabetes: a 21stcentury chal lenge[J] . The Lancet Diabetes & Endocr inology, 2014, 2(1) : 56 –64.
[20] WOLEVER T, MILLER J. Sugars and blood glucose cont rol [J] . TheAmer ican Journal of Cl inical Nut r i t ion, 1995, 62(1) : 212S -227S.
[21] MULUKUTLA B C, KHAN S, LANGE A, et al . Glucose metabol i sm inmammal ian cel l cul ture: new insights for tweaking vintage pathways[J] .Trends in Biotechnology, 2010, 28(9) : 476 –484.
[22] J P. The comparat ive biochemi st ry of glycogen and starch[J] . Biology ofCarbohydrates. , 1981: 199–314.
[23] VINOGRADOV E. MRI moni tor ing of energy storage in vivo usingmagnet izat ion pathways[J] . Proceedings of the Nat ional Academy ofSciences, 2020, 117(10) : 5092 –5094.
[24] CHEN S, JIANG M, YUAN Y, et al . Using endogenous glycogen asrelaxat ion agent for imaging l iver metabol ism by mr i [J] . FundamentalResearch, 2023, 3(4) : 481–487.
[25] VAN HEESWIJK R B, MORGENTHALER F D, XIN L, et al . Quant i f icat ionof brain glycogen concent rat ion and turnover through local ized 13c nmr ofboth the c1 and c6 resonances[J] . NMR in Biomedicine, 2010, 23(3) : 270 –276.
[26] SUN R C, YOUNG L E A, BRUNTZ R C, et al . Brain glycogen serves as acr i t ical glucosamine cache requi red for protein glycosylat ion[J] . Cel lMetabol i sm, 2021, 33(7) : 1404 -1417.e9.
[27] KÖNIG M, BULIK S, HOLZHÜTTER H-G. Quant i fying the cont r ibut ion ofthe l iver to glucose homeostasis: a detai led kinet ic model of human hepat icglucose metabol ism[J] . PLOS Computat ional Biology, 2012, 8(6) : e1002577.
[28] WEISS R, PYLES K, SRIRAMA V, et al . Invest igat ing the connect ionbetween cardiac glycogen accumulat ion and hyper t rophy[J] . Physiology,2023, 38(S1) : 5723706.
[29] ARETA J L, HOPKINS W G. Skeletal muscle glycogen content at rest anddur ing endurance exercise in humans: a meta -analysi s[J] . Spor t s Medicine,2018, 48(9) : 2091–2102.
[30] HANNAH W B, DERKS T G J, DRUMM M L, et al . Glycogen storagediseases: 1[J] . Nature Reviews Di sease Pr imers, 2023, 9(1) : 1 –23.
[31] ZOIS C E, FAVARO E, HARRIS A L. Glycogen metabol i sm in cancer [J] .Biochemical Pharmacology, 2014, 92(1) : 3 –11.
[32] LEW C R, GUIN S, THEODORESCU D. Target ing glycogen metabol i sm inbladder cancer : 7[J] . Nature Reviews Urology, 2015, 12(7) : 383 –391.
[33] YU X, TAO J, WU Y, et al . Def iciency of asgr1 al leviates diet - inducedsystemic insul in resi stance via improved hepat ic insul in sensi t ivi ty[J/OL] .Diabetes & metabol ism Journal , 2024
[2024 –02–25] .
[34] KRSSAK M, BREHM A, BERNROIDER E, et al . Al terat ions in postprandialhepat ic glycogen metabol i sm in type 2 diabetes[J] . Diabetes, 2004, 53(12) :3048–3056.
[35] DEMO E, FRUSH D, GOTTFRIED M, et al . Glycogen storage disease typei i i -hepatocel lular carcinoma a long - term compl icat ion?[J] . Journal ofHepatology, 2007, 46(3) : 492 –498.
[36] POISA-BEIRO L, THOMA J, LANDRY J, et al . Glycogen accumulat ion,cent ral carbon metabol ism, and aging of hematopoiet ic stem and progeni torcel l s: 1[J] . Scient i f ic Repor t s, 2020, 10(1) : 11597.
[37] BØTKER H E, HELLIGSØ P, KIMOSE H H, et al . Determinat ion of highenergy phosphates and glycogen in cardiac and skeletal muscle biopsies,wi th special reference to inf luence of biopsy technique and delayedf reezing[J] . Cardiovascular Research, 1994, 28(4) : 524 –527.
[38] COSTILL D L, PEARSON D R, FINK W J. Impai red muscle glycogenstorage af ter muscle biopsy[J] . Journal of Appl ied Physiology, 1988, 64(5) :2245–2248.
[39] DUPLESSIS M, BLAIS L, POISSON W, et al . Technical note: ext rapolat ionof hepat ic glycogen concent rat ion of the whole organ by per forming a l iverbiopsy[J] . Journal of Dai ry Science, 2020, 103(5) : 4858 –4862.
[40] ZOU C, WANG Y, SHEN Z. 2-nbdg as a f luorescent indicator for di rectglucose uptake measurement [J] . Journal of Biochemical and BiophysicalMethods, 2005, 64(3) : 207–215.
[41] O ’ N E I L R G, WU L , MU L L A N I N. Up t a k e o f a f l u o r e s c e n t d e o x y g l u c o s eanalog (2-nbdg) in tumor cel l s[J] . Molecular Imaging and Biology, 2005,7(6) : 388–392.
[42] LIU S, LIU Q, SUN S, et al . The appl icat ion of 2 -nbdg as a f luorescentt racer for assessing hepat ic glucose product ion in mice dur inghyper insul inemic euglycemic clamp[J] . Acta Pharmaceut ica Sinica B, 2012,2(4) : 403–410.
[43] TSYTSAREV V, MASLOV K I , YAO J, et al . In vivo imaging of epi lept icact ivi ty using 2-nbdg, a f luorescent deoxyglucose analog[J] . Journal ofNeuroscience Methods, 2012, 203(1) : 136 –140.
[44] MARIC T, MIKHAYLOV G, KHODAKIVSKYI P, et al . Bioluminescent -based imaging and quant i f icat ion of glucose uptake in vivo: 6[J] . NatureMethods, 2019, 16(6) : 526–532.
[45] LONG R, ZHANG L, SHI L, et al . Two -color vibrat ional imaging of glucosemetabol ism using st imulated raman scat ter ing[J] . Chemical Communicat ions,2017, 54(2) : 152–155.
[46] WANG K, ZHANG R, ZHAO X, et al . Reversible recogni t ion-based boronicacid probes for glucose detect ion in l ive cel ls and zebraf ish[J] . Journal ofthe Amer ican Chemical Society, 2023, 145(15) : 8408 –8416.
[47] FLETCHER J W, DJULBEGOVIC B, SOARES H P, et al . Recommendat ionson the use of 18f - fdg pet in oncology[J] . Journal of Nuclear Medicine, 2008,49(3) : 480–508.
[48] LI Y, SIJTSEMA N M, DE VETTE S P M, et al . Val idat ion of the 18f - fdg petimage biomarker model predict ing late xerostomia af ter head and neckcancer radiotherapy[J] . Radiotherapy and Oncology, 2023, 180: 109458.
[49] YANG Q, HUANG D, WU J, et al . Per formance of
[18f ] fdg pet /ct versus fapipet /ct for lung cancer assessment : a systemat ic review and meta -analysi s[J] .European Radiology, 2024, 34(2) : 1077 –1085.
[50] WEI Y, MA L, LI P, et al . FAPI compared wi th fdg pet /ct for diagnosi s ofpr imary and metastat ic lung cancer [J] . Radiology, 2023, 308(2) : e222785.
[51] DING J, QIU J, HAO Z, et al . Compar ing the cl inical value of basel ine
[68 ga]ga- fapi -04 pet /ct and
[18f ] f - fdg pet /ct in pancreat ic ductaladenocarcinoma: addi t ional prognost ic value of the distal pancreat i t i s[J] .European Journal of Nuclear Medicine and Molecular Imaging, 2023, 50(13) :4036–4050.
[52] YADAV N N, XU J, BAR-SHIR A, et al . Natural d-glucose as abiodegradable mr i relaxat ion agent [J] . Magnet ic Resonance in Medicine,2014, 72(3) : 823–828.
[53] NASRALLAH F A, PAGÈS G, KUCHEL P W, et al . Imaging braindeoxyglucose uptake and metabol i sm by glucocest mr i [J] . Journal ofCerebral Blood Flow & Metabol ism, 2013, 33(8) : 1270 –1278.
[54] SEHGAL A A, LI Y, LAL B, et al . CEST mr i of 3 -o-methyl -d-glucose uptakeand accumulat ion in brain tumors[J] . Magnet ic Resonance in Medicine, 2019,81(3) : 1993–2000.
[55] HACKETT M J, SYLVAIN N J, HOU H, et al . Concur rent glycogen andlactate imaging wi th f t i r spect roscopy to spat ial ly local ize metabol icparameters of the gl ial response fol lowing brain i schemia[J] . Analyt icalChemi st ry, 2016, 88(22) : 10949 –10956.
[56] ZHANG L, SHI L, SHEN Y, et al . Spect ral t racing of deuter ium for imagingglucose metabol ism: 5[J] . Nature Biomedical Engineer ing, 2019, 3(5) : 402 –413.
[57] LEE D, DU J, YU R, et al . Vi sual izing subcel lular enr ichment of glycogen inl ive cancer cel l s by st imulated raman scat ter ing[J] . Analyt ical Chemist ry,2020, 92(19) : 13182–13191.
[58] KUHL D E, EDWARDS R Q. Image separat ion radioisotope scanning[J] .Radiology, 1963, 80(4) : 653–662.
[59] WAHL R L, QUINT L E, GREENOUGH R L, et al . Staging of mediast inalnon-smal l cel l lung cancer wi th fdg pet , ct , and fusion images: prel iminaryprospect ive evaluat ion. [J] . Radiology, 1994, 191(2) : 371 –377.
[60] TAI Y F, PICCINI P. Appl icat ions of posi t ron emi ssion tomography (pet ) inneurology[J] . Journal of Neurology, Neurosurgery & Psychiat ry, 2004, 75(5) :669–676.
[61] ROHREN E M, TURKINGTON T G, COLEMAN R E. Cl inical appl icat ions ofpet in oncology[J] . Radiology, 2004, 231(2) : 305 –332.
[62] SCHWAIGER M, ZIEGLER S, NEKOLLA S G. PET/ct : chal lenge for nuclearcardiology[J] . Journal of Nuclear Medicine, 2005, 46(10) : 1664 –1678.
[63] KUHL D E, EDWARDS R Q. Image separat ion radioisotope scanning[J] .Radiology, 1963, 80(4) : 653–662.
[64] GREENBERG J H, REIVICH M, ALAVI A, et al . Metabol ic mapping offunct ional act ivi ty in human subject s wi th the
[18f ] f luorodeoxyglucosetechnique[J] . Science, 1981, 212(4495) : 678 –680.
[65] CHUGANI H T. A cr i t ical per iod of brain development : studies of cerebralglucose ut i l izat ion wi th pet [J] . Prevent ive Medicine, 1998, 27(2) : 184 –188.
[66] WITNEY T H, CARROLL L, ALAM I S, et al . A novel radiot racer to imageglycogen metabol i sm in tumors by posi t ron emi ssion tomography[J] . CancerResearch, 2014, 74(5) : 1319–1328.
[67] ALGER J R. Magnet ic resonance spect roscopy[M/OL] . SQUIRE L R,ed. / /Encyclopedia of Neuroscience. Oxford: Academic Press, 2009: 601 –607
[2024–02–27] .
[68] BECKMANN N, FRIED R, TURKALJ I , et al . Noninvaive observat ion ofhepat ic glycogen format ion in man by13c mrs af ter or l and int ravenousglucose administ rat ion[J] . Magnet ic Resonance in Medicine, 1993, 29(5) :583–590.
[69] ROSER W, BECKMANN N, WIESMANN U, et al . Absolute quant i f icat ion ofthe hepat ic glycogen content in a pat ient wi th glycogen storage disease by13c magnet ic resonance spect roscopy[J] . Magnet ic Resonance Imaging, 1996,14(10) : 1217–1220.
[70] DE FEYTER H M, BEHAR K L, CORBIN Z A, et al . Deuter ium metabol icimaging (dmi ) for mr i -based 3d mapping of metabol ism in vivo[J] . ScienceAdvances, 2018, 4(8) : eaat7314.
[71] VAN ZIJL P C M, JONES C K, REN J, et al . MRI detect ion of glycogen invivo by using chemical exchange saturat ion t ransfer imaging (glycocest ) [J] .Proceedings of the Nat ional Academy of Sciences, 2007, 104(11) : 4359 –4364.
[72] DENG M, CHEN S-Z, YUAN J, et al . Chemical exchange saturat ion t ransfer(cest ) mr technique for l iver imaging at 3.0 tesla: an evaluat ion of di fferentoffset number and an af ter -meal and over -night - fast compar ison[J] .Molecular Imaging and Biology, 2016, 18(2) : 274 –282.
[73] ZHOU Y, VAN ZIJL P C M, XU X, et al . Magnet ic resonance imaging ofglycogen using i t s magnet ic coupl ing wi th water [J] . Proceedings of theNat ional Academy of Sciences, 2020, 117(6) : 3144 –3149.
[74] ZAISS M, BACHERT P. Chemical exchange saturat ion t ransfer (cest ) and mrz-spect roscopy in vivo: a review of theoret ical approaches and methods[J] .Physics in Medicine and Biology, 2013, 58(22) : R221 -269.
[75] ABERGEL D, PALMER A G. Approximate solut ions of the bloch –mcconnel lequat ions for two-si te chemical exchange[J] . ChemPhysChem, 2004, 5(6) :787–793.
[76] MILOUSHEV V Z, PALMER A G. R1 ρ r e l a x a t i o n f o r t wo -si te chemicalexchange: general approximat ions and some exact solut ions[J] . Journal ofMagnet ic Resonance, 2005, 177(2) : 221 –227.
[77] ZAISS M, BACHERT P. Exchange -dependent relaxat ion in the rotat ing f ramefor slow and intermediate exchange – model ing off - resonant spin- lock andchemical exchange saturat ion t ransfer [J] . NMR in Biomedicine, 2013, 26(5) :507–518.
[78]VAN ZIJL P C M, YADAV N N. Chemical exchange saturat ion t ransfer (cest ) :wh a t i s i n a n ame a n d wh a t i s n ’t ? : c e s t : wh a t i s i n a n a me a n d wh a t i s n ’t ? [ J ] .Magnet ic Resonance in Medicine, 2011, 65(4) : 927 –948.
[79] ZHOU J, WILSON D A, SUN P Z, et al . Quant i tat ive descr ipt ion of protonexchange processes between water and endogenous and exogenous agent s forwex, cest , and apt exper iment s[J] . Magnet ic Resonance in Medicine, 2004,51(5) : 945–952.
[80] HILLS B P. The proton exchange cross - relaxat ion model of water relaxat ionin biopolymer systems[J] . Molecular Physics, 1992, 76(3) : 489 –508.
[81] LIEPINSH E, OTTING G. Proton exchange rates f rom amino acid sidechains— impl icat ions for image cont rast [J] . Magnet ic Resonance inMedicine, 1996, 35(1) : 30–42.
[82] SPENCER R G S, HORSKA A, FERRETTI J A, et al . Spi l lover andincomplete saturat ion in kinet ic measurements[J] . Journal of Magnet icResonance, Ser ies B, 1993, 101(3) : 294 –296.
[83] HORSKÁ A, SPENCER G S. Cor rect ly account ing for radiof requencyspi l lover in saturat ion t ransfer exper iment s: appl icat ion to measurement ofthe creat ine kinase react ion rate in human forearm muscle[J] . Magnet icResonance Mater ial s in Physics, Biology and Medicine, 1997, 5(2) : 159 –163.
[84] VAN ZIJL P C M, ELEFF S M, ULATOWSKI J A, et al . Quant i tat iveassessment of blood f low, blood volume and blood oxygenat ion effect s infunct ional magnet ic resonance imaging: 2[J] . Nature Medicine, 1998, 4(2) :159–167.
[85] PEKAR J, JEZZARD P, ROBERTS D A, et al . Per fusion imaging wi thcompensat ion for asymmet r ic magnet izat ion t ransfer effect s[J] . Magnet icResonance in Medicine, 1996, 35(1) : 70 –79.
[86] JONES C K, POLDERS D, HUA J, et al . In vivo three -dimensional whole -brain pulsed steady-state chemical exchange saturat ion t ransfer at 7 t [J] .Magnet ic Resonance in Medicine, 2012, 67(6) : 1579 –1589.
[87] OTTING G. NMR studies of water bound to biological molecules[J] .Progress in Nuclear Magnet ic Resonance Spect roscopy, 1997, 31(2) : 259 –285.
[88] SOLOMON I . Relaxat ion processes in a system of two spins[J] . PhysicalReview, 1955, 99(2) : 559–565.
[89] ZHOU Y, BIE C, ZIJL P C M van, et al . The relayed nuclear overhausereffect in magnet izat ion t ransfer and chemical exchange saturat ion t ransfermr i [J/OL] . NMR in Biomedicine, 2022
[2022 –10–25] .
[90] ZAISS M, HERZ K, DESHMANE A, et al . Possible ar t i fact s in dynamic ces tmr i due to mot ion and f ield al terat ions[J] . Journal of Magnet ic Resonance,2019, 298: 16–22.
[91] POBLADOR RODRIGUEZ E, MOSER P, AUNO S, et al . Real - t ime mot ionand ret rospect ive coi l sensi t ivi ty cor rect ion for cest using volumet r icnavigators (vnavs) at 7t [J] . Magnet ic Resonance in Medicine, 2021, 85(4) :1909–1923.
[92] ZHANG Y, HEO H-Y, LEE D-H, et al . Select ing the reference image forregist rat ion of cest ser ies[J] . Journal of Magnet ic Resonance Imaging, 2016,43(3) : 756–761.
[93] KIM M, GILLEN J, LANDMAN B A, et al . Water saturat ion shi f t referencing(wassr ) for chemical exchange saturat ion t ransfer (cest ) exper iments: watershi f t referencing for cest imaging[J] . Magnet ic Resonance in Medicine, 2009,61(6) : 1441–1450.
[94] WINDSCHUH J, ZAISS M, MEISSNER J -E, et al . Cor rect ion of b1-inhomogenei t ies for relaxat ion -compensated cest imaging at 7 t [J] . NMR inBiomedicine, 2015, 28(5) : 529 –537.
[95] SINGH A, CAI K, HARIS M, et al . On b1 inhomogenei ty cor rect ion of invivo human brain glutamate chemical exchange saturat ion t ransfer cont rastat 7t [J] . Magnet ic Resonance in Medicine, 2013, 69(3) : 818 –824.
[96] CEMBER A T J, HARIHARAN H, KUMAR D, et al . Improved method forpost -processing cor rect ion of b1 inhomogenei ty in glutamate -weighted cestimages of the human brain[J] . NMR in Biomedicine, 2021, 34(6) : e4503.
[97] TAYLOR R, PRICE T B, ROTHMAN D L, et al . Val idat ion of 13c nmrmeasurement of human skeletal muscle glycogen by di rect biochemical assayof needle biopsy samples[J] . Magnet ic Resonance in Medicine, 1992, 27(1) :13–20.
[98] CHEN W, AVISON M J, ZHU X H, et al . NMR studies of 1h noes inglycogen[J] . Biochemist ry, 1993, 32(43) : 11483 –11487.
[99] CHEN W, AVISON M J, BLOCH G, et al . Proton nmr observat ion ofglycogen in vivo[J] . Magnet ic Resonance in Medicine, 1994, 31(5) : 576 –579.
[100] IVY J L. Muscle glycogen synthesis before and af ter exerci se[J] . Spor t sMedicine, 1991, 11(1) : 6–19.
[101]PRICE T B, ROTHMAN D L, TAYLOR R, et al . Human muscle glycogenresynthesi s af ter exercise: insul in -dependent and - independent phases[J] .Journal of Appl ied Physiology, 1994, 76(1) : 104 –111.
[102]PRICE T B, ROTHMAN D L, AVISON M J, et al . 13C-nmr measurements ofmuscle glycogen dur ing low- intensi ty exerci se[J] . Journal of Appl iedPhysiology, 1991, 70(4) : 1836 –1844.
[103]HARGREAVES M, DILLO P, ANGUS D, et al . Effect of f luid ingest ion onmuscle metabol ism dur ing prolonged exercise[J] . Journal of Appl iedPhysiology, 1996, 80(1) : 363 –366.
[104]TSINTZAS O K, WILLIAMS C, WILSON W, et al . Inf luence ofcarbohydrate supplementat ion ear ly in exerci se on endurance runningcapaci ty[J] . Medicine and science in spor ts and Exercise, 1996, 28(11) :1373–1379.
[105]ZEHNDER M, RICO-SANZ J, KÜHNE G, et al . Resynthesi s of muscleglycogen af ter soccer speci f ic per formance examined by 13c -magnet icresonance spect roscopy in el i te players[J] . European Journal of Appl iedPhysiology, 2001, 84(5) : 443 –447.
[106]ROTMAN S, SLOTBOOM J, KREIS R, et al . Muscle glycogen recoveryaf ter exerci se measured by13c -magnet ic resonance spect roscopy in humans:effect of nut r i t ional solut ions[J] . Magma: Magnet ic Resonance Mater ial s inPhysics, Biology, and Medicine, 2000, 11(3) : 114 –121.
[107]PIEHL K. Time course for ref i l l ing of glycogen stores in human musclef ibres fol lowing exercise - induced glycogen deplet ion[J] . Acta PhysiologicaScandinavica, 1974, 90(2) : 297 –302.
[108]WALLIS G A, HULSTON C J, MANN C H, et al . Postexercise muscleglycogen synthesi s wi th combined glucose and f ructose ingest ion[J] .Medicine & Science in Spor ts & Exerci se, 2008, 40(10) : 1789 –1794.
[109]BLOM P C, HØSTMARK A T, VAAGE O, et al . Effect of di fferent post -exerci se sugar diet s on the rate of muscle glycogen synthesi s[J] . Medicineand science in spor ts and Exerci se, 1987, 19(5) : 491 –496.

所在学位评定分委会
材料与化工
国内图书分类号
R445.2
来源库
人工提交
成果类型学位论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/779120
专题中国科学院深圳理工大学(筹)联合培养
推荐引用方式
GB/T 7714
马雨轩. 葡萄糖作为磁共振探针材料及其代谢成像研究[D]. 深圳. 南方科技大学,2024.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
12233287-马雨轩-中国科学院深圳(5181KB)----限制开放--请求全文
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[马雨轩]的文章
百度学术
百度学术中相似的文章
[马雨轩]的文章
必应学术
必应学术中相似的文章
[马雨轩]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。